U-BOOT源码分析及移植一(转)

来源:互联网 发布:淘宝店运费险怎么算的 编辑:程序博客网 时间:2024/06/05 19:44
本文从以下几个方面粗浅地分析u-boot并移植到FS2410板上:
1、u-boot工程的总体结构
2、u-boot的流程、主要的数据结构、内存分配。
3、u-boot的重要细节,主要分析流程中各函数的功能。
4、基于FS2410板子的u-boot移植。实现了NOR Flash和NANDFlash启动,网络功能。 
这些认识源于自己移植u-boot过程中查找的资料和对源码的简单阅读。下面主要以smdk2410为分析对象。



一、u-boot工程的总体结构:
1、源代码组织
对于ARM而言,主要的目录如下:
board????????????????? 平台依赖???????? 存放电路板相关的目录文件,每一套板子对应一个目录。如smdk2410(arm920t)

cpu??????????????????? 平台依赖????????? 存放CPU相关的目录文件,每一款CPU对应一个目录,例如:arm920t、xscale、i386等目录
lib_arm??????????????? 平台依赖?????????? 存放对ARM体系结构通用的文件,主要用于实现ARM平台通用的函数,如软件浮点。

common????????????? 通用?????????通用的多功能函数实现,如环境,命令,控制台相关的函数实现。
include??????????????? 通用??????????????头文件和开发板配置文件,所有开发板的配置文件都在configs目录下??????????????????????????????????????
lib_generic???????? 通用????????????通用库函数的实现
net??????????????????? 通用???????????????存放网络协议的程序
drivers????????????? 通用??????????????通用的设备驱动程序,主要有以太网接口的驱动,nand驱动。
.......
2.makefile简要分析
所有这些目录的编译连接都是由顶层目录的makefile来确定的。
在执行make之前,先要执行make $(board)_config对工程进行配置,以确定特定于目标板的各个子目录和头文件。
$(board)_config:是makefile中的一个伪目标,它传入指定的CPU,ARCH,BOARD,SOC参数去执行mkconfig脚本。
这个脚本的主要功能在于连接目标板平台相关的头文件夹,生成config.h文件包含板子的配置头文件。
使得makefile能根据目标板的这些参数去编译正确的平台相关的子目录。
以smdk2410板为例,执行 make smdk2410_config,
主要完成三个功能:
@在include文件夹下建立相应的文件(夹)软连接,

#如果是ARM体系将执行以下操作:
#ln -s???? asm-arm??????? asm ?
#ln -s? arch-s3c24x0??? asm-arm/arch
#ln -s?? proc-armv?????? asm-arm/proc

@生成Makefile包含文件include/config.mk,内容很简单,定义了四个变量:

ARCH?? = arm
CPU??? = arm920t
BOARD? = smdk2410
SOC??? = s3c24x0

@生成include/config.h头文件,只有一行:


#include "config/smdk2410.h"

顶层makefile先调用各子目录的makefile,生成目标文件或者目标文件库。
然后再连接所有目标文件(库)生成最终的u-boot.bin。
连接的主要目标(库)如下:
OBJS? = cpu/$(CPU)/start.o
LIBS? = lib_generic/libgeneric.a
LIBS += board/$(BOARDDIR)/lib$(BOARD).a
LIBS += cpu/$(CPU)/lib$(CPU).a
ifdef SOC
LIBS += cpu/$(CPU)/$(SOC)/lib$(SOC).a
endif
LIBS += lib_$(ARCH)/lib$(ARCH).a
LIBS += fs/cramfs/libcramfs.a fs/fat/libfat.a fs/fdos/libfdos.afs/jffs2/libjffs2.a \
fs/reiserfs/libreiserfs.a fs/ext2/libext2fs.a
LIBS += net/libnet.a
LIBS += disk/libdisk.a
LIBS += rtc/librtc.a
LIBS += dtt/libdtt.a
LIBS += drivers/libdrivers.a
LIBS += drivers/nand/libnand.a
LIBS += drivers/nand_legacy/libnand_legacy.a
LIBS += drivers/sk98lin/libsk98lin.a
LIBS += post/libpost.a post/cpu/libcpu.a
LIBS += common/libcommon.a
LIBS += $(BOARDLIBS)
显然跟平台相关的主要是:
cpu/$(CPU)/start.o
board/$(BOARDDIR)/lib$(BOARD).a 
cpu/$(CPU)/lib$(CPU).a
cpu/$(CPU)/$(SOC)/lib$(SOC).a 
lib_$(ARCH)/lib$(ARCH).a
这里面的四个变量定义在include/config.mk(见上述)。
其余的均与平台无关。
所以考虑移植的时候也主要考虑这几个目标文件(库)对应的目录。

关于u-boot的makefile更详细的分析可以参照http://blog.mcuol.com/User/lvembededsys/Article/4355_1.htm。

3、u-boot的通用目录是怎么做到与平台无关的?
include/config/smdk2410.h ?
这个头文件中主要定义了两类变量。
一类是选项,前缀是CONFIG_,用来选择处理器、设备接口、命令、属性等,主要用来决定是否编译某些文件或者函数。

另一类是参数,前缀是CFG_,用来定义总线频率、串口波特率、Flash地址等参数。这些常数参量主要用来支持通用目录中的代码,定义板子资源参数。

这两类宏定义对u-boot的移植性非常关键,比如drive/CS8900.c,对cs8900而言,很多操作都是通用的,但不是所有的板子上面都有这个芯片,即使有它在内存中映射的基地址也是平台相关的。所以对于smdk2410板,在smdk2410.h中定义了
#define CONFIG_DRIVER_CS8900 1?????????????
#define CS8900_BASE 0x19000300?????????????
CONFIG_DRIVER_CS8900的定义使得cs8900.c可以被编译(当然还得定义CFG_CMD_NET才行),因为cs8900.c中在函数定义的前面就有编译条件判断:#ifdefCONFIG_DRIVER_CS8900 如果这个选项没有定义,整个cs8900.c就不会被编译了。
而常数参量CS8900_BASE则用在cs8900.h头文件中定义各个功能寄存器的地址。u-boot的CS8900工作在IO模式下,只要给定IO寄存器在内存中映射的基地址,其余代码就与平台无关了。

u-boot的命令也是通过目标板的配置头文件来配置的,比如要添加ping命令,就必须添加CFG_CMD_NET和CFG_CMD_PING才行。不然common/cmd_net.c就不会被编译了。
从这里我可以这么认为,u-boot工程可配置性和移植性可以分为两层:
一是由makefile来实现,配置工程要包含的文件和文件夹上,用什么编译器。
二是由目标板的配置头文件来实现源码级的可配置性,通用性。主要使用的是#ifdef#else #endif 之类来实现的。
4、smkd2410其余重要的文件:
include/s3c24x0.h  ?????定义了s3x24x0芯片的各个特殊功能寄存器(SFR)的地址。
cpu/arm920t/start.s????????在flash中执行的引导代码,也就是bootloader中的stage1,负责初始化硬件环境,把u-boot从flash加载到RAM中去,然后跳到lib_arm/board.c中的start_armboot中去执行。
lib_arm/board.c  ???????u-boot的初始化流程,尤其是u-boot用到的全局数据结构gd,bd的初始化,以及设备和控制台的初始化。
board/smdk2410/flash.c??????在board目录下代码的都是严重依赖目标板,对于不同的CPU,SOC,ARCH,u-boot都有相对通用的代码,但是板子构成却是多样的,主要是内存地址,flash型号,外围芯片如网络。对fs2410来说,主要考虑从smdk2410板来移植,差别主要在norflash上面。

二、u-boot的流程、主要的数据结构、内存分配
1、u-boot的启动流程:
从文件层面上看主要流程是在两个文件中:cpu/arm920t/start.s,lib_arm/board.c, 
1)start.s 
在flash中执行的引导代码,也就是bootloader中的stage1,负责初始化硬件环境,把u-boot从flash加载到RAM中去,然后跳到lib_arm/board.c中的start_armboot中去执行。
1.1.6版本的start.s流程:
硬件环境初始化:
进入svc模式;关闭watchdog;屏蔽所有IRQ掩码;设置时钟频率FCLK、HCLK、PCLK;清I/Dcache;禁止MMU和CACHE;配置memory control;
重定位:
如果当前代码不在连接指定的地址上(对smdk2410是0x3f000000)则需要把u-boot从当前位置拷贝到RAM指定位置中;
建立堆栈,堆栈是进入C函数前必须初始化的。
清.bss区。
跳到start_armboot函数中执行。(lib_arm/board.c)
2)lib_arm/board.c:
start_armboot是U-Boot执行的第一个C语言函数,完成系统初始化工作,进入主循环,处理用户输入的命令。这里只简要列出了主要执行的函数流程:
void start_armboot (void)
{
//全局数据变量指针gd占用r8。
DECLARE_GLOBAL_DATA_PTR;


gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t));
memset ((void*)gd, 0, sizeof (gd_t));


gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));
memset (gd->bd, 0, sizeof (bd_t));
monitor_flash_len = _bss_start -_armboot_start;//取u-boot的长度。


for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr){
if ((*init_fnc_ptr)() != 0) {
hang ();
}
}


size = flash_init ();
……

mem_malloc_init (_armboot_start - CFG_MALLOC_LEN);

env_relocate ();

gd->bd->bi_ip_addr = getenv_IPaddr("ipaddr");

……
devices_init ();?????
jumptable_init ();? //跳转表初始化
console_init_r ();???
enable_interrupts ();

if ((s = getenv ("loadaddr")) != NULL) {
load_addr = simple_strtoul (s, NULL, 16);
}

for (;;) {
main_loop ();?????
}
}

初始化函数序列init_sequence[]
init_sequence[]数组保存着基本的初始化函数指针。这些函数名称和实现的程序文件在下列注释中。

init_fnc_t *init_sequence[] = {
cpu_init,????????????
board_init,??????????
interrupt_init,??????
env_init,????????????
init_baudrate,???????
serial_init,?????????
console_init_f,??????
display_banner,??????
dram_init,???????????
display_dram_config,?
NULL,
};

整个u-boot的执行就进入等待用户输入命令,解析并执行命令的死循环中。

2、u-boot主要的数据结构

u-boot的主要功能是用于引导OS的,但是本身也提供许多强大的功能,可以通过输入命令行来完成许多操作。所以它本身也是一个很完备的系统。u-boot的大部分操作都是围绕它自身的数据结构,这些数据结构是通用的,但是不同的板子初始化这些数据就不一样了。所以u-boot的通用代码是依赖于这些重要的数据结构的。这里说的数据结构其实就是一些全局变量。
1)gd 全局数据变量指针,它保存了u-boot运行需要的全局数据,类型定义:
typedef struct global_data {
bd_t? *bd;????? //board data pointor板子数据指针
unsigned long flags; //指示标志,如设备已经初始化标志等。
unsigned long baudrate; //串口波特率
unsigned long have_console;
unsigned long reloc_off;??
unsigned long env_addr;
unsigned long env_valid;
unsigned long fb_base;
#ifdef CONFIG_VFD
unsigned char vfd_type;
#endif
void? **jt;?
} gd_t;
2)bd 板子数据指针。板子很多重要的参数。类型定义如下:?? ?
typedef struct bd_info {
int?? bi_baudrate;????
unsigned long bi_ip_addr;??
unsigned char bi_enetaddr[6];
struct environment_s??????? *bi_env;
ulong???????? bi_arch_number;
ulong???????? bi_boot_params;
struct???
{
ulong start;
ulong size;
}bi_dram[CONFIG_NR_DRAM_BANKS];
} bd_t;
3)环境变量指针 env_t *env_ptr = (env_t*)(&environment[0]);(common/env_flash.c)
env_ptr指向环境参数区,系统启动时默认的环境参数environment[],定义在common/environment.c中。 
参数解释:
bootdelay 定义执行自动启动的等候秒数
baudrate 定义串口控制台的波特率
netmask 定义以太网接口的掩码
ethaddr 定义以太网接口的MAC地址
bootfile 定义缺省的下载文件
bootargs 定义传递给Linux内核的命令行参数
bootcmd 定义自动启动时执行的几条命令
serverip 定义tftp服务器端的IP地址
ipaddr 定义本地的IP地址
stdin 定义标准输入设备,一般是串口
stdout 定义标准输出设备,一般是串口
stderr 定义标准出错信息输出设备,一般是串口
4)设备相关:
标准IO设备数组 evice_t *stdio_devices[] = { NULL, NULL, NULL};
设备列表    list_t??? devlist = 0;
device_t的定义:include\devices.h中:
typedef struct {
int flags;???      
int ext;?????      
char name[16];??      ?? ?
?? ?
int (*start) (void);?    
int (*stop) (void);?     ?? ?
?? ?
void (*putc) (const char c);
void (*puts) (const char *s); ? ?
? ?
int (*tstc) (void);?     
int (*getc) (void);?     ? ?
?? ?
void *priv;??        
} device_t;
u-boot把可以用为控制台输入输出的设备添加到设备列表devlist,并把当前用作标准IO的设备指针加入stdio_devices数组中。
在调用标准IO函数如printf()时将调用stdio_devices数组对应设备的IO函数如putc()。
5)命令相关的数据结构,后面介绍。
6)与具体设备有关的数据结构,
如flash_info_t flash_info[CFG_MAX_FLASH_BANKS];记录norflash的信息。
nand_info_t nand_info[CFG_MAX_NAND_DEVICE]; nandflash块设备信息
3、u-boot重定位后的内存分布:
对于smdk2410,RAM范围从0x30000000~0x34000000.u-boot占用高端内存区。从高地址到低地址内存分配如下:


显示缓冲区??????????????? (.bss_end~34000000)
u-boot(bss,data,text)? (33f00000~.bss_end)
heap(for malloc)
gd(global data)
bd(board data)
stack?????????????????????? ?
....
nor flash????????????????????? (0~2M)

三、u-boot的重要细节。

主要分析流程中各函数的功能。按启动顺序罗列一下启动函数执行细节。按照函数start_armboot流程进行分析:
1)DECLARE_GLOBAL_DATA_PTR;
这个宏定义在include/global_data.h中:
#define DECLARE_GLOBAL_DATA_PTR???? register volatile gd_t *gd asm("r8")
声明一个寄存器变量 gd占用r8。这个宏在所有需要引用全局数据指针gd_t*gd的源码中都有申明。
这个申明也避免编译器把r8分配给其它的变量. 所以gd就是r8,这个指针变量不占用内存。
2)gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN -sizeof(gd_t));
对全局数据区进行地址分配,_armboot_start为0x3f000000,CFG_MALLOC_LEN是堆大小+环境数据区大小,config/smdk2410.h中CFG_MALLOC_LEN大小定义为192KB.
3)gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));
分配板子数据区bd首地址。
这样结合start.s中栈的分配,
stack_setup:
ldr r0, _TEXT_BASE?
sub r0, r0, #CFG_MALLOC_LEN
sub r0, r0, #CFG_GBL_DATA_SIZE
#ifdef CONFIG_USE_IRQ
sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)
#endif
sub sp, r0, #12?
不难得出上文所述的内存分配结构。
下面几个函数是初始化序列表init_sequence[]中的函数:
4)cpu_init();定义于cpu/arm920t/cpu.c
分配IRQ,FIQ栈底地址,由于没有定义CONFIG_USE_IRQ,所以相当于空实现。
5)board_init;极级初始化,定义于board/smdk2410/smdk2410.c
设置PLL时钟,GPIO,使能I/D cache.
设置bd信息:gd->bd->bi_arch_number= MACH_TYPE_SMDK2410;//板子的ID,没啥意义。
gd->bd->bi_boot_params =0x30000100;//内核启动参数存放地址
6)interrupt_init;定义于cpu/arm920t/s3c24x0/interrupt.c
初始化2410的PWM timer4,使其能自动装载计数值,恒定的产生时间中断信号,但是中断被屏蔽了用不上。
7)env_init;定义于common/env_flash.c(搜索的时候发现别的文件也定义了这个函数,而且没有宏定义保证只有一个被编译,这是个问题,有高手知道指点一下!)
功能:指定环境区的地址。default_environment是默认的环境参数设置。
gd->env_addr? =(ulong)&default_environment[0];
gd->env_valid = 0;
8)init_baudrate;初始化全局数据区中波特率的值
gd->bd->bi_baudrate =gd->baudrate =(i > 0)
? (int) simple_strtoul (tmp, NULL, 10)
: CONFIG_BAUDRATE;
9)serial_init; 串口通讯设置定义于cpu/arm920t/s3c24x0/serial.c
根据bd中波特率值和pclk,设置串口寄存器。
10)console_init_f;控制台前期初始化common/console.c
由于标准设备还没有初始化(gd->flags&GD_FLG_DEVINIT=0),这时控制台使用串口作为控制台
函数只有一句:gd->have_console = 1;
10)dram_init,初始化内存RAM信息。board/smdk2410/smdk2410.c
其实就是给gd->bd中内存信息表赋值而已。
gd->bd->bi_dram[0].start =PHYS_SDRAM_1;
gd->bd->bi_dram[0].size =PHYS_SDRAM_1_SIZE;
初始化序列表init_sequence[]主要函数分析结束。
11)flash_init;定义在board/smdk2410/flash.c
这个文件与具体平台关系密切,smdk2410使用的flash与FS2410不一样,所以移植时这个程序就得重写。
flash_init()是必须重写的函数,它做哪些操作呢?
首先是有一个变量flash_info_tflash_info[CFG_MAX_FLASH_BANKS]来记录flash的信息。flash_info_t定义:
typedef struct {
ulong size;??
ushort sector_count;?
ulong flash_id;?
ulong start[CFG_MAX_FLASH_SECT];??
uchar protect[CFG_MAX_FLASH_SECT];
#ifdef CFG_FLASH_CFI //我不管CFI接口。
.....
#endif
} flash_info_t;
flash_init()的操作就是读取ID号,ID号指明了生产商和设备号,根据这些信息设置size,sector_count,flash_id.以及start[]、protect[]。
12)把视频帧缓冲区设置在bss_end后面。
addr = (_bss_end + (PAGE_SIZE - 1)) & ~(PAGE_SIZE -1);
size = vfd_setmem (addr);
gd->fb_base = addr;
13)mem_malloc_init (_armboot_start - CFG_MALLOC_LEN);
设置heap区,供malloc使用。下面的变量和函数定义在lib_arm/board.c
malloc可用内存由mem_malloc_start,mem_malloc_end指定。而当前分配的位置则是mem_malloc_brk。
mem_malloc_init负责初始化这三个变量。malloc则通过sbrk函数来使用和管理这片内存。
static ulong mem_malloc_start = 0;
static ulong mem_malloc_end = 0;
static ulong mem_malloc_brk = 0;

static
void mem_malloc_init (ulong dest_addr)
{
mem_malloc_start = dest_addr;
mem_malloc_end = dest_addr + CFG_MALLOC_LEN;
mem_malloc_brk = mem_malloc_start;

memset ((void *) mem_malloc_start, 0,
mem_malloc_end - mem_malloc_start);
}
void *sbrk (ptrdiff_t increment)
{
ulong old = mem_malloc_brk;
ulong new = old + increment;

if ((new < mem_malloc_start) || (new> mem_malloc_end)) {
return (NULL);
}
mem_malloc_brk = new;
return ((void *) old);
}
14)env_relocate() 环境参数区重定位
由于初始化了heap区,所以可以通过malloc()重新分配一块环境参数区,
但是没有必要,因为默认的环境参数已经重定位到RAM中了。

15)IP,MAC地址的初始化。主要是从环境中读,然后赋给gd->bd对应域就OK。
16)devices_init ();定义于common/devices.c
int devices_init(void)//我去掉了编译选项,注释掉的是因为对应的编译选项没有定义。
{
devlist = ListCreate (sizeof (device_t));//创建设备列表
i2c_init (CFG_I2C_SPEED,CFG_I2C_SLAVE);//初始化i2c接口,i2c没有注册到devlist中去。
//drv_lcd_init ();
//drv_video_init ();
//drv_keyboard_init ();
//drv_logbuff_init ();
drv_system_init();  //这里其实是定义了一个串口设备,并且注册到devlist中。
//serial_devices_init ();
//drv_usbtty_init ();
//drv_nc_init ();
}
经过devices_init(),创建了devlist,但是只有一个串口设备注册在内。显然,devlist中的设备都是可以做为console的。

16) jumptable_init();初始化gd->jt。1.1.6版本的jumptable只起登记函数地址的作用。并没有其他作用。
17)console_init_r ();后期控制台初始化
主要过程:查看环境参数stdin,stdout,stderr中对标准IO的指定的设备名称,再按照环境指定的名称搜索devlist,将搜到的设备指针赋给标准IO数组stdio_devices[]。置gd->flag标志GD_FLG_DEVINIT。这个标志影响putc,getc函数的实现,未定义此标志时直接由串口serial_getc和serial_putc实现,定义以后通过标准设备数组stdio_devices[]中的putc和getc来实现IO。
下面是相关代码:
void putc (const char c)
{
#ifdef CONFIG_SILENT_CONSOLE
if (gd->flags &GD_FLG_SILENT)//GD_FLG_SILENT无输出标志
return;
#endif
if (gd->flags & GD_FLG_DEVINIT){//设备list已经初始化

fputc (stdout, c);
} else {

serial_putc (c);//未初始化时直接从串口输出。
}
}
void fputc (int file, const char c)
{
if (file < MAX_FILES)
stdio_devices[file]->putc (c);
}

为什么要使用devlist,std_device[]?

为了更灵活地实现标准IO重定向,任何可以作为标准IO的设备,如USB键盘,LCD屏,串口等都可以对应一个device_t的结构体变量,只需要实现getc和putc等函数,就能加入到devlist列表中去,也就可以被assign为标准IO设备std_device中去。如函数

int console_assign (int file, char *devname);

这个函数功能就是把名为devname的设备重定向为标准IO文件file(stdin,stdout,stderr)。其执行过程是在devlist中查找devname的设备,返回这个设备的device_t指针,并把指针值赋给std_device[file]。


18)enable_interrupts(),使能中断。由于CONFIG_USE_IRQ没有定义,空实现。
#ifdef CONFIG_USE_IRQ

void enable_interrupts (void)
{
unsigned long temp;
__asm__ __volatile__("mrs %0, cpsr\n"
"bic %0, %0, #0x80\n"
"msr cpsr_c, %0"
: "=r" (temp)
:
: "memory");
}
#else
void enable_interrupts (void)
{ ?
} ?
19)设置CS8900的MAC地址。
cs8900_get_enetaddr(gd->bd->bi_enetaddr); ?
20)初始化以太网。
eth_initialize(gd->bd);//bd中已经IP,MAC已经初始化
21)main_loop ();定义于common/main.c
至此所有初始化工作已经完毕。main_loop在标准转入设备中接受命令行,然后分析,查找,执行。

关于U-boot中命令相关的编程:

1、命令相关的函数和定义
@main_loop:这个函数里有太多编译选项,对于smdk2410,去掉所有选项后等效下面的程序
void main_loop()
{
static char lastcommand[CFG_CBSIZE] = { 0, };
int len;
int rc = 1;
int flag;
char *s;
int bootdelay;
s = getenv ("bootdelay");?? //自动启动内核等待延时
bootdelay = s ? (int)simple_strtol(s, NULL, 10) :CONFIG_BOOTDELAY;

debug ("### main_loop entered: bootdelay=%d\n\n", bootdelay);
s = getenv ("bootcmd");?//取得环境中设置的启动命令行
debug ("### main_loop: bootcmd=\"%s\"\n", s ? s : "");

if (bootdelay >= 0&& s&& !abortboot (bootdelay))
{
run_command (s,0);//执行启动命令行,smdk2410.h中没有定义CONFIG_BOOTCOMMAND,所以没有命令执行。
}

for (;;) {
len =readline(CFG_PROMPT);//读取键入的命令行到console_buffer

flag = 0;
if (len > 0)
strcpy (lastcommand,console_buffer);//拷贝命令行到lastcommand.
else if (len == 0)
flag |= CMD_FLAG_REPEAT;
if (len == -1)
puts ("\n");
else
rc = run_command (lastcommand,flag); //执行这个命令行。

if (rc <= 0) {

lastcommand[0] = 0;
}
}
@run_comman();在命令table中查找匹配的命令名称,得到对应命令结构体变量指针,以解析得到的参数调用其处理函数执行命令。
@命令结构构体类型定义:command.h中,
struct cmd_tbl_s {
char? *name;????????????????????????
int? maxargs;????????????????????????
int? repeatable;

int? (*cmd)(struct cmd_tbl_s *, int, int, char *[]);
char? *usage;???????????????????????
#ifdef CFG_LONGHELP
char? *help;?????????????????????????
#endif
#ifdef CONFIG_AUTO_COMPLETE

int? (*complete)(int argc, char *argv[], char last_char, int maxv,char *cmdv[]);
#endif
};
typedef struct cmd_tbl_s cmd_tbl_t;


//定义section属性的结构体。编译的时候会单独生成一个名为.u_boot_cmd的section段。
#define Struct_Section? __attribute__ ((unused,section(".u_boot_cmd")))


//这个宏定义一个命令结构体变量。并用name,maxargs,rep,cmd,usage,help初始化各个域。
#define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \
cmd_tbl_t __u_boot_cmd_##name Struct_Section = {#name, maxargs,rep, cmd, usage, help}

2、在u-boot中,如何添加一个命令:
1)CFG_CMD_*?命令选项位标志。在include/cmd_confdefs.h 中定义。
每个板子的配置文件(如include/config/smdk2410.h)中都可以定义u-boot
需要的命令,如果要添加一个命令,必须添加相应的命令选项。如下:
#define CONFIG_COMMANDS \
(CONFIG_CMD_DFL? | \
CFG_CMD_CACHE? | \
\
\
\
\
CFG_CMD_REGINFO? | \
CFG_CMD_DATE? | \
CFG_CMD_ELF)
定义这个选项主要是为了编译命令需要的源文件,大部分命令都在common文件夹下对应一个源文件
cmd_*.c ,如cmd_cache.c实现cache命令。 文件开头就有一行编译条件:
#if(CONFIG_COMMANDS&CFG_CMD_CACHE)
也就是说,如果配置头文件中CONFIG_COMMANDS不或上相应命令的选项,这里就不会被编译。
2)定义命令结构体变量,如:
U_BOOT_CMD(
dcache,?? 2,?? 1,???? do_dcache,
"dcache? - enable or disable data cache\n",
"[on, off]\n"
"??? - enable or disable data (writethrough) cache\n"
);
其实就是定义了一个cmd_tbl_t类型的结构体变量,这个结构体变量名为__u_boot_cmd_dcache。
其中变量的五个域初始化为括号的内容。分别指明了命令名,参数个数,重复数,执行命令的函数,命令提示。
每个命令都对应这样一个变量,同时这个结构体变量的section属性为.u_boot_cmd.也就是说每个变量编译结束
在目标文件中都会有一个.u_boot_cmd的section.一个section是连接时的一个输入段,如.text,.bss,.data等都是section名。
最后由链接程序把所有的.u_boot_cmd段连接在一起,这样就组成了一个命令结构体数组。
u-boot.lds中相应脚本如下:
. = .;
__u_boot_cmd_start = .;
.u_boot_cmd : { *(.u_boot_cmd) }
__u_boot_cmd_end = .;
可以看到所有的命令结构体变量集中在__u_boot_cmd_start开始到__u_boot_cmd_end结束的连续地址范围内,
这样形成一个cmd_tbl_t类型的数组,run_command函数就是在这个数组中查找命令的。
3)实现命令处理函数。命令处理函数的格式:
void function (cmd_tbl_t *cmdtp, int flag, int argc, char*argv[])

总体来说,如果要实现自己的命令,应该在include/com_confdefs.h中定义一个命令选项标志位。
在板子的配置文件中添加命令自己的选项。按照u-boot的风格,可以在common/下面添加自己的cmd_*.c,并且定义自己的命令结构体变量,如U_BOOT_CMD(
mycommand,?? 2,?? 1,???? do_mycommand,
"my command!\n",
"...\n"
" ..\n"
);

然后实现自己的命令处理函数do_mycommand(cmd_tbl_t*cmdtp, int flag, int argc, char *argv[])。

0 0
原创粉丝点击