指针和引用

来源:互联网 发布:matlab字符串数组赋值 编辑:程序博客网 时间:2024/04/30 15:16

<pre name="code" class="cpp">#include <iostream>
using namespace std;int main(int argc, char** argv){int i=1;int& ref=i;int x=ref;cout<<"x is "<<x<<endl;ref=2;int* p=&i;cout<<"ref = "<<ref<<", i = "<<i<<endl;}


上面的代码用g++ test.c编译之后,然后反汇编objdump -d a.out,得到main函数的一段汇编代码如下:

08048714 <main>:

8048714: 55    push %ebp

8048715: 89 e5   mov %esp,%ebp

8048717: 83 e4 f0        and $0xfffffff0,%esp//为main函数的参数argc、argv保留位置

804871a: 56            push %esi

804871b: 53            push %ebx

804871c: 83 ec 28        sub $0x28,%esp

804871f: c7 44 24 1c 01 00 00 movl $0x1,0x1c(%esp) //将0x1存到esp寄存器中,即int i=1

8048726: 00

8048727: 8d 44 24 1c  lea 0x1c(%esp),%eax// esp寄存器里的变量i的地址传给eax

804872b: 89 44 24 18    mov %eax,0x18(%esp)//将寄存器eax中的内容(i的地址)传给寄存器中的变量ref,即int& ref=i

804872f: 8b 44 24 18        mov 0x18(%esp),%eax//将寄存器esp中的ref传给eax,即i的地址

8048733: 8b 00        mov (%eax),%eax//以寄存器eax中的值作为地址,取出值给eax 8048735: 89 44 24 14        mov %eax,0x14(%esp) //将寄存器eax中的值传给寄存器esp中的x,即x=ref

8048739: c7 44 24 04 00 89 04     movl $0x8048900,0x4(%esp)

8048740: 08

8048741: c7 04 24 40 a0 04 08    movl $0x804a040,(%esp)

8048748: e8 cb fe ff ff    call 8048618 <_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc@plt>

804874d: 8b 54 24 14    mov 0x14(%esp),%edx

8048751: 89 54 24 04        mov %edx,0x4(%esp)

8048755: 89 04 24        mov %eax,(%esp)

8048758: e8 5b fe ff ff    call 80485b8 <_ZNSolsEi@plt>

804875d: c7 44 24 04 38 86 04    movl $0x8048638,0x4(%esp)

8048764: 08

8048765: 89 04 24        mov %eax,(%esp)

8048768: e8 bb fe ff ff    call 8048628 <_ZNSolsEPFRSoS_E@plt>//从8048739~8048768这些行就是执行"cout<<"x is "<<x<<endl;"

804876d: 8b 44 24 18    mov 0x18(%esp),%eax//将寄存器esp中的ref传到eax中

8048771: c7 00 02 00 00 00    movl $0x2,(%eax) //将0x2存到eax寄存器中

8048777: 8d 44 24 1c        lea 0x1c(%esp),%eax// esp寄存器里的变量i的地址传给eax

804877b: 89 44 24 10    mov %eax,0x10(%esp) //将寄存器eax中的内容(即i的地址)传到寄存器esp中的p

804877f: 8b 5c 24 1c        mov 0x1c(%esp),%ebx

8048783: 8b 44 24 18    mov 0x18(%esp),%eax

8048787: 8b 30        mov (%eax),%esi

8048789: c7 44 24 04 06 89 04    movl $0x8048906,0x4(%esp)

8048790: 08

8048791: c7 04 24 40 a0 04 08    movl $0x804a040,(%esp)

8048798: e8 7b fe ff ff    call 8048618 <_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc@plt>

804879d: 89 74 24 04    mov %esi,0x4(%esp)

80487a1: 89 04 24        mov %eax,(%esp)

80487a4: e8 0f fe ff ff    call 80485b8 <_ZNSolsEi@plt>

80487a9: c7 44 24 04 0d 89 04    movl $0x804890d,0x4(%esp)

80487b0: 08

80487b1: 89 04 24        mov %eax,(%esp)

80487b4: e8 5f fe ff ff     call 8048618 <_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc@plt>

80487b9: 89 5c 24 04        mov %ebx,0x4(%esp)

80487bd: 89 04 24        mov %eax,(%esp)

80487c0: e8 f3 fd ff ff    call 80485b8 <_ZNSolsEi@plt>

80487c5: c7 44 24 04 38 86 04    movl $0x8048638,0x4(%esp)

80487cc: 08

80487cd: 89 04 24        mov %eax,(%esp)

80487d0: e8 53 fe ff ff    call 8048628 <_ZNSolsEPFRSoS_E@plt>//这些行就是执行"cout<<"ref = "<<ref<<", i = "<<i<<endl;"

80487d5: b8 00 00 00 00    mov $0x0,%eax

80487da: 83 c4 28        add $0x28,%esp

80487dd: 5b            pop %ebx

80487de: 5e            pop %esi

80487df: 89 ec        mov %ebp,%esp

80487e1: 5d            pop %ebp

80487e2: c3            ret

从汇编代码可以看出实际上指针和引用在编译器中的实现是一样的:

  • 引用int& ref=i; 

8048727: 8d 44 24 1c        lea 0x1c(%esp),%eax// esp寄存器里的变量i的地址传给eax

804872b: 89 44 24 18    mov %eax,0x18(%esp)//将寄存器eax中的内容(i的地址)传给寄存器中的变量ref,即int& ref=i

  • 指针int* p=&i;

8048777: 8d 44 24 1c        lea 0x1c(%esp),%eax// esp寄存器里的变量i的地址传给eax

804877b: 89 44 24 10    mov %eax,0x10(%esp) //将寄存器eax中的内容(即i的地址)传到寄存器esp中的p

虽然指针和引用最终在编译中的实现是一样的,但是引用的形式大大方便了使用也更安全。有人说:"引用只是一个别名,不会占内存空间?"通过这个事实我们可以揭穿这个谎言!实际上引用也是占内存空间的。

指针传递和引用传递

为了更好的理解指针和引用,我们下面来介绍一下指针传递和引用传递。当指针和引用作为函数的函数是如何传值的呢?(下面这一段引用了C++中引用传递与指针传递区别(进一步整理)

  • 指针传递参数本质上是值传递的方式,它所传递的是一个地址值。值传递过程中,被调函数的形式参数作为被调函数的局部变量处理,即在栈中开辟了内存空间以存放由主调函数放进来的实参的值,从而成为了实参的一个副本。值传递的特点是被调函数对形式参数的任何操作都是作为局部变量进行,不会影响主调函数的实参变量的值。
  • 引用传递过程中,被调函数的形式参数也作为局部变量在栈中开辟了内存空间,但是这时存放的是由主调函数放进来的实参变量的地址。被调函数对形参的任何操作都被处理成间接寻址,即通过栈中存放的地址访问主调函数中的实参变量。正因为如此,被调函数对形参做的任何操作都影响了主调函数中的实参变量。

引用传递和指针传递是不同的,虽然它们都是在被调函数栈空间上的一个局部变量,但是任何对于引用参数的处理都会通过一个间接寻址的方式操作到主调函数中的相关变量。而对于指针传递的参数,如果改变被调函数中的指针地址,它将影响不到主调函数的相关变量。如果想通过指针参数传递来改变主调函数中的相关变量,那就得使用指向指针的指针,或者指针引用。

从概念上讲。指针从本质上讲就是存放变量地址的一个变量,在逻辑上是独立的,它可以被改变,包括其所指向的地址的改变和其指向的地址中所存放的数据的改变。

而引用是一个别名,它在逻辑上不是独立的,它的存在具有依附性,所以引用必须在一开始就被初始化,而且其引用的对象在其整个生命周期中是不能被改变的(自始至终只能依附于同一个变量)。

C++中,指针和引用经常用于函数的参数传递,然而,指针传递参数和引用传递参数是有本质上的不同的:

指针传递参数本质上是值传递的方式,它所传递的是一个地址值。值传递过程中,被调函数的形式参数作为被调函数的局部变量处理,即在栈中开辟了内存空间以存放由主调函数放进来的实参的值,从而成为了实参的一个副本。值传递的特点是被调函数对形式参数的任何操作都是作为局部变量进行,不会影响主调函数的实参变量的值。(这里是在说实参指针本身的地址值不会变)

而在引用传递过程中,被调函数的形式参数虽然也作为局部变量在栈中开辟了内存空间,但是这时存放的是由主调函数放进来的实参变量的地址。被调函数对形参的任何操作都被处理成间接寻址,即通过栈中存放的地址访问主调函数中的实参变量。正因为如此,被调函数对形参做的任何操作都影响了主调函数中的实参变量。

引用传递和指针传递是不同的,虽然它们都是在被调函数栈空间上的一个局部变量,但是任何对于引用参数的处理都会通过一个间接寻址的方式操作到主调函数中的相关变量。而对于指针传递的参数,如果改变被调函数中的指针地址,它将影响不到主调函数的相关变量。如果想通过指针参数传递来改变主调函数中的相关变量,那就得使用指向指针的指针,或者指针引用。

为了进一步加深大家对指针和引用的区别,下面我从编译的角度来阐述它们之间的区别:

程序在编译时分别将指针和引用添加到符号表上,符号表上记录的是变量名及变量所对应地址。指针变量在符号表上对应的地址值为指针变量的地址值,而引用在符号表上对应的地址值为引用对象的地址值。符号表生成后就不会再改,因此指针可以改变其指向的对象(指针变量中的值可以改),而引用对象则不能修改。

最后,总结一下指针和引用的相同点和不同点:

★相同点:

●都是地址的概念;

指针指向一块内存,它的内容是所指内存的地址;而引用则是某块内存的别名。

★不同点:

●指针是一个实体,而引用仅是个别名;

●引用只能在定义时被初始化一次,之后不可变;指针可变;引用“从一而终”,指针可以“见异思迁”;

●引用没有const,指针有constconst的指针不可变;(具体指没有int& const a这种形式,而const int& a是有     的,  前者指引用本身即别名不可以改变,这是当然的,所以不需要这种形式,后者指引用所指的值不可以改变

●引用不能为空,指针可以为空;

●“sizeof 引用”得到的是所指向的变量(对象)的大小,而“sizeof 指针”得到的是指针本身的大小;

●指针和引用的自增(++)运算意义不一样;

●引用是类型安全的,而指针不是 (引用比指针多了类型检查

0 0