IIC和SPI总线

来源:互联网 发布:农业供给侧 知乎 编辑:程序博客网 时间:2024/05/16 19:28

IIC VS SPI

         现今,在低端数字通信应用领域,我们随处可见IIC (Inter-Integrated Circuit) 和 SPI (Serial Peripheral Interface)的身影。原因是这两种通信协议非常适合近距离低速芯片间通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市场需求制定了这两种标准通信协议。

         IIC 开发于1982年,当时是为了给电视机内的CPU和外围芯片提供更简易的互联方式。电视机是最早的嵌入式系统之一,而最初的嵌入系统是使用内存映射(memory-mapped I/O)的方式来互联微控制器和外围设备的。要实现内存映射,设备必须并联入微控制器的数据线和地址线,这种方式在连接多个外设时需大量线路和额外地址解码芯片,很不方便并且成本高。

         为了节省微控制器的引脚和和额外的逻辑芯片,使印刷电路板更简单,成本更低,位于荷兰的Philips实验室开发了 ‘Inter-Integrated Circuit’,IIC 或 IIC ,一种只使用二根线接连所有外围芯片的总线协议。最初的标准定义总线速度为100kbps。经历几次修订,主要是1995年的400kbps,1998的3.4Mbps。

         有迹象表明,SPI总线首次推出是在1979年,Motorola公司将SPI总线集成在他们第一支改自68000微处理器的微控制器芯片上。SPI总线是微控制器四线的外部总线(相对于内部总线)。与IIC不同,SPI没有明文标准,只是一种事实标准,对通信操作的实现只作一般的抽象描述,芯片厂商与驱动开发者通过data sheets和application notes沟通实现上的细节。

SPI

     对于有经验的数字电子工程师来说,用SPI互联两支数字设备是相当直观的。SPI是种四根信号线协议(如图):


§ SCLK: Serial Clock (output from master);

§ MOSI; SIMO: Master Output, Slave Input(output from master);

§ MISO; SOMI: Master Input, Slave Output(output from slave);

§ SS: Slave Select (active low, outputfrom master).

        SPI是[单主设备( single-master )]通信协议,这意味着总线中的只有一支中心设备能发起通信。当SPI主设备想读/写[从设备]时,它首先拉低[从设备]对应的SS线(SS是低电平有效),接着开始发送工作脉冲到时钟线上,在相应的脉冲时间上,[主设备]把信号发到MOSI实现“写”,同时可对MISO采样而实现“读”,如下图:


         SPI有四种操作模式——模式0、模式1、模式2和模式3,它们的区别是定义了在时钟脉冲的哪条边沿转换(toggles)输出信号,哪条边沿采样输入信号,还有时钟脉冲的稳定电平值(就是时钟信号无效时是高还是低)。每种模式由一对参数刻画,它们称为时钟极(clock polarity)CPOL与时钟期(clock phase)CPHA。

[主从设备]必须使用相同的工作参数——SCLK、CPOL 和 CPHA,才能正常工作。如果有多个[从设备],并且它们使用了不同的工作参数,那么[主设备]必须在读写不同[从设备]间重新配置这些参数。以上SPI总线协议的主要内容。SPI不规定最大传输速率,没有地址方案;SPI也没规定通信应答机制,没有规定流控制规则。事实上,SPI[主设备]甚至并不知道指定的[从设备]是否存在。这些通信控制都得通过SPI协议以外自行实现。例如,要用SPI连接一支[命令-响应控制型]解码芯片,则必须在SPI的基础上实现更高级的通信协议。SPI并不关心物理接口的电气特性,例如信号的标准电压。在最初,大多数SPI应用都是使用间断性时钟脉冲和以字节为单位传输数据的,但现在有很多变种实现了连续性时间脉冲和任意长度的数据帧。

IIC

         与SPI的单主设备不同,IIC 是多主设备的总线,IIC没有物理的芯片选择信号线,没有仲裁逻辑电路,只使用两条信号线—— ‘serial data’ (SDA) 和 ‘serial clock’ (SCL)。IIC协议规定:

§ 第一,每一支IIC设备都有一个唯一的七位设备地址;

§ 第二,数据帧大小为8位的字节;

§ 第三,数据(帧)中的某些数据位用于控制通信的开始、停止、方向(读写)和应答机制。

IIC 数据传输速率有标准模式(100 kbps)、快速模式(400 kbps)和高速模式(3.4 Mbps),另外一些变种实现了低速模式(10 kbps)和快速+模式(1 Mbps)。

物理实现上,IIC 总线由两根信号线和一根地线组成。两根信号线都是双向传输的,参考下图。IIC协议标准规定发起通信的设备称为主设备,主设备发起一次通信后,其它设备均为从设备。


IIC 通信过程大概如下。首先,主设备发一个START信号,这个信号就像对所有其它设备喊:请大家注意!然后其它设备开始监听总线以准备接收数据。接着,主设备发送一个7位设备地址加一位的读写操作的数据帧。当所设备接收数据后,比对地址自己是否目标设备。如果比对不符,设备进入等待状态,等待STOP信号的来临;如果比对相符,设备会发送一个应答信号——ACKNOWLEDGE作回应。

当主设备收到应答后便开始传送或接收数据。数据帧大小为8位,尾随一位的应答信号。主设备发送数据,从设备应答;相反主设备接数据,主设备应答。当数据传送完毕,主设备发送一个STOP信号,向其它设备宣告释放总线,其它设备回到初始状态。


基于IIC总线的物理结构,总线上的START和STOP信号必定是唯一的。另外,IIC总线标准规定SDA线的数据转换必须在SCL线的低电平期,在SCL线的高电平期,SDA线的上数据是稳定的。


在物理实现上,SCL线和SDA线都是漏极开路(open-drain),通过上拉电阻外加一个电压源。当把线路接地时,线路为逻辑0,当释放线路,线路空闲时,线路为逻辑1。基于这些特性,IIC设备对总线的操作仅有“把线路接地”——输出逻辑0。

IIC总线设计只使用了两条线,但相当优雅地实现任意数目设备间无缝通信,堪称完美。我们设想一下,如果有两支设备同时向SCL线和SDA线发送信息会出现什么情况。

基于IIC总线的设计,线路上不可能出现电平冲突现象。如果一支设备发送逻辑0,其它发送逻辑1,那么线路看到的只有逻辑0。也就是说,如果出现电平冲突,发送逻辑0的始终是“赢家”。

总线的物理结构亦允许主设备在往总线写数据的同时读取数据。这样,任何设备都可以检测冲突的发生。当两支主设备竞争总线的时候,“赢家”并不知道竞争的发生,只有“输家”发现了冲突——当它写一个逻辑1,却读到0时——而退出竞争。

10位设备地址

         任何IIC设备都有一个7位地址,理论上,现实中只能有127种不同的IIC设备。实际上,已有IIC的设备种类远远多于这个限制,在一条总线上出现相同的地址的IIC设备的概率相当高。为了突破这个限制,很多设备使用了双重地址——7位地址加引脚地址(external configuration pins)。IIC 标准也预知了这种限制,提出10位的地址方案。

10位的地址方案对 IIC协议的影响有两点:

§ 第一,地址帧为两个字节长,原来的是一个字节;

§ 第二,第一个字节前五位最高有效位用作10位地址标识,约定是“11110”。


除了10位地址标识,标准还预留了一些地址码用作其它用途,如下表:


时钟拉伸

        在 IIC 通信中,主设备决定了时钟速度。因为时钟脉冲信号是由主设备显式发出的。但是,当从设备没办法跟上主设备的速度时,从设备需要一种机制来请求主设备慢一点。这种机制称为时钟拉伸,而基于I²C结构的特殊性,这种机制得到实现。当从设备需要降低传输的速度的时候,它可以按下时钟线,逼迫主设备进入等待状态,直到从设备释放时钟线,通信才继续。

高速模式

       原理上讲,使用上拉电阻来设置逻辑1会限制总线的最大传输速度。而速度是限制总线应用的因素之一。这也说明为什么要引入高速模式(3.4 Mbps)。在发起一次高速模式传输前,主设备必须先在低速的模式下(例如快速模式)发出特定的“High Speed Master”信号。为缩短信号的周期和提高总线速度,高速模式必须使用额外的I/O缓冲区。另外,总线仲裁在高速模式下可屏蔽掉。更多的信息请参与总线标准文档。

IIC vs SPI: 哪位是赢家?

         我们来对比一下IIC 和 SPI的一些关键点:

第一,总线拓扑结构/信号路由/硬件资源耗费

       IIC 只需两根信号线,而标准SPI至少四根信号,如果有多个从设备,信号需要更多。一些SPI变种虽然只使用三根线——SCLK, SS和双向的MISO/MOSI,但SS线还是要和从设备一对一根。另外,如果SPI要实现多主设备结构,总线系统需额外的逻辑和线路。用IIC 构建系统总线唯一的问题是有限的7位地址空间,但这个问题新标准已经解决——使用10位地址。从第一点上看,IIC是明显的大赢家。

第二,数据吞吐/传输速度

          如果应用中必须使用高速数据传输,那么SPI是必然的选择。因为SPI是全双工,IIC 的不是。SPI没有定义速度限制,一般的实现通常能达到甚至超过10 Mbps。IIC 最高的速度也就快速+模式(1 Mbps)和高速模式(3.4 Mbps),后面的模式还需要额外的I/O缓冲区,还并不是总是容易实现的。

第三,优雅性

         IIC 常被称更优雅于SPI。公正的说,我们更倾向于认为两者同等优雅和健壮。IIC的优雅在于它的特色——用很轻盈的架构实现了多主设备仲裁和设备路由。但是对使用的工程师来讲,理解总线结构更费劲,而且总线的性能不高。

SPI的优点在于它的结构相当的直观简单,容易实现,并且有很好扩展性。SPI的简单性不足称其优雅,因为要用SPI搭建一个有用的通信平台,还需要在SPI之上构建特定的通信协议软件。也就是说要想获得SPI特有而IIC没有的特性——高速性能,工程师们需要付出更多的劳动。另外,这种自定的工作是完全自由的,这也说明为什么SPI没有官方标准。IIC和SPI都对低速设备通信提供了很好的支持,不过,SPI适合数据流应用,而IIC更适合“字节设备”的多主设备应用。

小结

       在数字通信协议簇中,IIC和SPI常称为“小”协议,相对Ethernet, USB, SATA, PCI-Express等传输速度达数百上千兆字节每秒的总线。但是,我们不能忘记的是各种总线的用途是什么。“大”协议是用于系统外的整个系统之间通信的,“小”协议是用于系统内各芯片间的通信,没有迹象表明“大”协议有必要取代“小”协议。IIC和SPI的存在和流行体现了“够用就好”的哲学。回应文首,IIC和SPI如此的流行,它是任何一位嵌入式工程师必备的工具。

一 IIC总线

I2C--INTER-IC串行总线的缩写,是PHILIPS公司推出的芯片间串行传输总线。它以1根串行数据线(SDA)和1根串行时钟线(SCL)实 现了双工的同步数据传输。具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。在主从通信中,可以有多个I2C总线器件同时接到I2C总线 上,通过地址来识别通信对象。

IIC 接口的协议里面包括设备地址信息,可以同一总线上连接多个从设备,通过应答来互通数据及命令。但是传输速率有限,标准模式下可达到100Kbps,快速模式下可达到400Kbps(我们开发板一般在130Kbps),高速模式下达到4Mbps,不能实现全双工,不适合传输很多的数据。

IIC总线是一个真正的多主机总线,总线上多个主机初始化传输,可以通过传输检测和仲裁来防止数据被破坏 。

下来详细了解IIC总线时序:

1.1 总线数据有效性

IIC总线是单工,因此同一时刻数据只有一个流向,因此采样有效时钟也是单一的,是在SCL时钟的高电平采样数据。

IIC总线上SDA数据在SCL时钟低电平是可以发生变化,但是在时钟高电平时必须稳定,以便主从设备根据时钟采样数据,如下图:



1.2 总线空闲条件

IIC总线上设备都释放总线(发出传输停止)后,IIC总线根据上拉电阻变成高电平,SDA SCL都是高电平。


1.3 总线数据传输起始和结束条件

IIC总线SCL高电平时SDA出现由高到低的跳变,标志总线上数据传输的开始条件

IIC总线SCL高电平时SDA出现由低到高的跳变,标志总线上数据传输的结束条件



1.4 总线数据传输顺序以及ACK应答

IIC总线上数据传输室MSB在前,LSB在后,从示波器上看,从左向右依次读出数据即可

IIC总线传输的数据不收限制,但是每次发到SDA上的必须是8位,并且主机发送8位后释放总线,从机收到数据后必须拉低SDA一个时钟,回应ACK表示数据接收成功,我们如果示波器上看到的波形就是每次9位数据,8bit+1bit ack。如下:


从机收到一字节数据后,如果需要一些时间处理,则会拉低SCL,让传输进入等待状态,处理完成,释放SCL,继续传输,如下:



1.5 总线读写时序

数据的传输在起始条件之后,发送一个7位的从机地址,紧接着第8位是数据方向(R/ W),0-表示发送数据(写),1-表示接收数据(读)。数据传输一般由主机产生的停止位(P)终止。但是如果主机仍希望在总线上通讯,它可以产生重复起始条件(Sr),和寻址另一个从机,而不是首先产生一个停止条件。在这种传输中,可能有不同的读/写格式结合。

IIC总线主设备读写从设备,一般都是与从设备的寄存器打交道,这个可以通过阅读从设备的datasheet获取。总线写时序如下:

master start + master addr|w + slave ack + master reg|w + slave ack + master data + slave ack + master restart。。master data + slave nack + master stop

总线读时序如下:

master start + master addr|w + slave ack + master reg|w + slave ack + master restart + master addr|r + slave ack + slave data + master nack + master stop

总线读时序与写的不同之处在于读需要2次传输才能完成一次读取,首先要写寄存器地址到从设备,其实是写到了从设备的控制寄存器或者命令寄存器,从设备内部会根据这个地址来寻址所要操作的寄存器。

我在读我们的bios和内核时发现,2者在总线读时序上的实现不太一样,在于第一次寄存器地址写入后,一个发的是restart,一个发的是stop,然后再start开始读取数据,示波器抓波形发现读取数据都正确,说明这2种时序都是正确的。

IIC总线的读写时序比较固定,设备通信严格遵循协议,因此iIC总线设备驱动程序的编写也就相对简单一些。

主要应用的iIc总线设备有touchscreen rtc 外扩io等

二 SPI总线

SPI--Serial Peripheral Interface,串行外围设备接口,是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。
 SPI通常有SCK时钟,STB片选,DATA数据信号三个信号。 I2C通常有 SDA数据和SCL时钟两个信号。

SPI总线真正实现了全双工数据传输,SPI 有3线跟4线两种,4线的话,就是多了一条叫SDC的线,用来告知从设备现在传输的是数据还是指令。这个接口较快,可以传输较连续的数据。SPI要想连接多个从设备,就需要给每个从设备配备一根片选信号。如果要可以实现全双工,也是需要多加一根数据线(MOSI MISO)。

也就是说SPI总线是通过片选来选择从设备。

spi总线速度要比iic要快,我们开发板最快能达到30MHZ。

spi总线特点:

1. 采用主-从模式(Master-Slave) 的控制方式
       SPI 规定了两个 SPI 设备之间通信必须由主设备 (Master) 来控制次设备 (Slave). 一个 Master 设备可以通过提供 Clock 以及对 Slave 设备进行片选 (Slave Select) 来控制多个 Slave 设备, SPI 协议还规定 Slave 设备的 Clock 由 Master 设备通过 SCK 管脚提供给 Slave 设备, Slave 设备本身不能产生或控制 Clock, 没有 Clock 则 Slave 设备不能正常工作.
2. 采用同步方式(Synchronous)传输数据
       Master 设备会根据将要交换的数据来产生相应的时钟脉冲(Clock Pulse), 时钟脉冲组成了时钟信号(Clock Signal) , 时钟信号通过时钟极性 (CPOL) 和 时钟相位 (CPHA) 控制着两个 SPI 设备间何时数据交换以及何时对接收到的数据进行采样, 来保证数据在两个设备之间是同步传输的.
3. 数据交换(Data Exchanges)
       SPI 设备间的数据传输之所以又被称为数据交换, 是因为 SPI 协议规定一个 SPI 设备不能在数据通信过程中仅仅只充当一个 "发送者(Transmitter)" 或者 "接收者(Receiver)". 也就是说是全双工的,在每个 Clock 周期内, SPI 设备都会发送并接收一个 bit 大小的数据, 相当于该设备有一个 bit 大小的数据被交换了.
       一个 Slave 设备要想能够接收到 Master 发过来的控制信号, 必须在此之前能够被 Master 设备进行访问 (Access). 所以, Master 设备必须首先通过 SS/CS pin 对 Slave 设备进行片选, 把想要访问的 Slave 设备选上.
       在数据传输的过程中,  每次接收到的数据必须在下一次数据传输之前被采样. 如果之前接收到的数据没有被读取, 那么这些已经接收完成的数据将有可能会被丢弃,  导致 SPI 物理模块最终失效. 因此, 在程序中一般都会在 SPI 传输完数据后, 去读取 SPI 设备里的数据, 即使这些数据(Dummy Data)在我们的程序里是无用的.

具体spi工作原理可以看博客另外一篇文章

SPI和IIC是2种不同的通信协议,现在已经广泛的应用在IC之间的通信中。并且不少单片机已经整和了SPI和IIC的借口。但像51这种不支持SPI和IIC的单片机,也可以用模拟时钟的工作方式进行SPI和IIC的通信的。

下面主要总结一下2种总线的异同点:

1 iic总线不是全双工,2根线SCL SDA。spi总线实现全双工,4根线SCK CS MOSI MISO

2 iic总线是多主机总线,通过SDA上的地址信息来锁定从设备。spi总线只有一个主设备,主设备通过CS片选来确定从设备

3 iic总线传输速度在100kbps-4Mbps。spi总线传输速度更快,可以达到30MHZ以上。

4 iic总线空闲状态下SDA SCL都是高电平。spi总线空闲状态MOSI MISO也都是 SCK是有CPOL决定的

5 iic总线scl高电平时sda下降沿标志传输开始,上升沿标志传输结束。spi总线cs拉低标志传输开始,cs拉高标志传输结束

6 iic总线是SCL高电平采样。spi总线因为是全双工,因此是沿采样,具体要根据CPHA决定。一般情况下master device是SCK的上升沿发送,下降沿采集

7 iic总线和spi总线数据传输都是MSB在前,LSB在后(串口是LSB在前)

8 iic总线和spi总线时钟都是由主设备产生,并且只在数据传输时发出时钟

9 iic总线读写时序比较固定统一,设备驱动编写方便。spi总线不同从设备读写时序差别比较大,因此必须根据具体的设备datasheet来实现读写,相对复杂一些。


1 0