cpu 如何合理地估算线程池大小?

来源:互联网 发布:单词记忆方法知乎 编辑:程序博客网 时间:2024/05/13 11:53

如何合理地估算线程池大小?

这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:

如何设计线程池大小,使得可以在1s内处理完20个Transaction?

计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。

很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。

再来第二种简单的但不知是否可行的方法(N为CPU总核数):

  • 如果是CPU密集型应用,则线程池大小设置为N+1
  • 如果是IO密集型应用,则线程池大小设置为2N+1

如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。

接下来在这个文档:服务器性能IO优化 中发现一个估算公式:

最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

可以得出一个结论:

线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

上一种估算方法也和这个结论相合。

一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:

  • 尽量提高短板操作的并行化比率,比如多线程下载技术
  • 增强短板能力,比如用NIO替代IO

第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:

加速比=优化前系统耗时 / 优化后系统耗时

加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:

Speedup <= 1 / (F + (1-F)/N)

当N足够大时,串行化比率F越小,加速比Speedup越大。

写到这里,我突然冒出一个问题。

是否使用线程池就一定比使用单线程高效呢?

答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:

  • 多线程带来线程上下文切换开销,单线程就没有这种开销

当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。

所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。

最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:

package pool_size_calculate;import java.math.BigDecimal;import java.math.RoundingMode;import java.util.Timer;import java.util.TimerTask;import java.util.concurrent.BlockingQueue;/** *  * A class that calculates the optimal thread pool boundaries. It takes the *  * desired target utilization and the desired work queue memory consumption as *  * input and retuns thread count and work queue capacity. *  * *  * @author Niklas Schlimm *  * */public abstract class PoolSizeCalculator {/** *  * The sample queue size to calculate the size of a single {@link Runnable} *  * element. */private final int SAMPLE_QUEUE_SIZE = 1000;/** *  * Accuracy of test run. It must finish within 20ms of the testTime *  * otherwise we retry the test. This could be configurable. */private final int EPSYLON = 20;/** *  * Control variable for the CPU time investigation. */private volatile boolean expired;/** *  * Time (millis) of the test run in the CPU time calculation. */private final long testtime = 3000;/** *  * Calculates the boundaries of a thread pool for a given {@link Runnable}. *  * *  * @param targetUtilization *  *            the desired utilization of the CPUs (0 <= targetUtilization <= *            1) * @param targetQueueSizeBytes *            the desired maximum work queue size of the thread pool (bytes) * */protected void calculateBoundaries(BigDecimal targetUtilization,BigDecimal targetQueueSizeBytes) {calculateOptimalCapacity(targetQueueSizeBytes);Runnable task = creatTask();start(task);start(task); // warm up phaselong cputime = getCurrentThreadCPUTime();start(task); // test intervallcputime = getCurrentThreadCPUTime() - cputime;long waittime = (testtime * 1000000) - cputime;calculateOptimalThreadCount(cputime, waittime, targetUtilization);}private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {long mem = calculateMemoryUsage();BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem), RoundingMode.HALF_UP);System.out.println("Target queue memory usage (bytes): "+ targetQueueSizeBytes);System.out.println("createTask() produced "+ creatTask().getClass().getName() + " which took " + mem+ " bytes in a queue");System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);System.out.println("* Recommended queue capacity (bytes): "+ queueCapacity);}/** * * Brian Goetz' optimal thread count formula, see 'Java Concurrency in * * Practice' (chapter 8.2) * * @param cpu * cpu time consumed by considered * task * @param wait * wait time of considered task * @param * targetUtilization * target utilization of the system */private void calculateOptimalThreadCount(long cpu, long wait,BigDecimal targetUtilization) {BigDecimal waitTime = new BigDecimal(wait);BigDecimal computeTime = new BigDecimal(cpu);BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime().availableProcessors());BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization).multiply(new BigDecimal(1).add(waitTime.divide(computeTime,RoundingMode.HALF_UP)));System.out.println("Number of CPU: " + numberOfCPU);System.out.println("Target utilization: " + targetUtilization);System.out.println("Elapsed time (nanos): " + (testtime * 1000000));System.out.println("Compute time (nanos): " + cpu);System.out.println("Wait time (nanos): " + wait);System.out.println("Formula: " + numberOfCPU + " * "+ targetUtilization + " * (1 + " + waitTime + " / "+ computeTime + ")");System.out.println("* Optimal thread count: " + optimalthreadcount);}/** * * Runs the {@link Runnable} over a period defined in {@link #testtime}. * * Based on Heinz Kabbutz' ideas * * (http://www.javaspecialists.eu/archive/Issue124.html). * * @param task * * the runnable under investigation */public void start(Runnable task) {long start = 0;int runs = 0;do {if (++runs > 5) {throw new IllegalStateException("Test not accurate");}expired = false;start = System.currentTimeMillis();Timer timer = new Timer();timer.schedule(new TimerTask() {public void run() {expired = true;}}, testtime);while (!expired) {task.run();}start = System.currentTimeMillis() - start;timer.cancel();} while (Math.abs(start - testtime) > EPSYLON);collectGarbage(3);}private void collectGarbage(int times) {for (int i = 0; i < times; i++) {System.gc();try {Thread.sleep(10);} catch (InterruptedException e) {Thread.currentThread().interrupt();break;}}}/** *  * Calculates the memory usage of a single element in a work queue. Based on *  * Heinz Kabbutz' ideas *  * (http://www.javaspecialists.eu/archive/Issue029.html). *  * *  * @return memory usage of a single {@link Runnable} element in the thread *  *         pools work queue */public long calculateMemoryUsage() {BlockingQueue queue = createWorkQueue();for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {queue.add(creatTask());}long mem0 = Runtime.getRuntime().totalMemory()- Runtime.getRuntime().freeMemory();long mem1 = Runtime.getRuntime().totalMemory()- Runtime.getRuntime().freeMemory();queue = null;collectGarbage(15);mem0 = Runtime.getRuntime().totalMemory()- Runtime.getRuntime().freeMemory();queue = createWorkQueue();for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {queue.add(creatTask());}collectGarbage(15);mem1 = Runtime.getRuntime().totalMemory()- Runtime.getRuntime().freeMemory();return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;}/** *  * Create your runnable task here. *  * *  * @return an instance of your runnable task under investigation */protected abstract Runnable creatTask();/** *  * Return an instance of the queue used in the thread pool. *  * *  * @return queue instance */protected abstract BlockingQueue createWorkQueue();/** *  * Calculate current cpu time. Various frameworks may be used here, *  * depending on the operating system in use. (e.g. *  * http://www.hyperic.com/products/sigar). The more accurate the CPU time *  * measurement, the more accurate the results for thread count boundaries. *  * *  * @return current cpu time of current thread */protected abstract long getCurrentThreadCPUTime();}

然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:

package pool_size_calculate;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;import java.lang.management.ManagementFactory;import java.math.BigDecimal;import java.net.HttpURLConnection;import java.net.URL;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {@Overrideprotected Runnable creatTask() {return new AsyncIOTask();}@Overrideprotected BlockingQueue createWorkQueue() {return new LinkedBlockingQueue(1000);}@Overrideprotected long getCurrentThreadCPUTime() {return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();}public static void main(String[] args) {PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0),new BigDecimal(100000));}}/** * 自定义的异步IO任务 *  * @author Will * */class AsyncIOTask implements Runnable {@Overridepublic void run() {HttpURLConnection connection = null;BufferedReader reader = null;try {String getURL = "http://baidu.com";URL getUrl = new URL(getURL);connection = (HttpURLConnection) getUrl.openConnection();connection.connect();reader = new BufferedReader(new InputStreamReader(connection.getInputStream()));String line;while ((line = reader.readLine()) != null) {// empty loop}}catch (IOException e) {} finally {if (reader != null) {try {reader.close();} catch (Exception e) {}}connection.disconnect();}}}

得到的输出如下:

Target queue memory usage (bytes): 100000createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queueFormula: 100000 / 40* Recommended queue capacity (bytes): 2500Number of CPU: 4Target utilization: 1Elapsed time (nanos): 3000000000Compute time (nanos): 47181000Wait time (nanos): 2952819000Formula: 4 * 1 * (1 + 2952819000 / 47181000)* Optimal thread count: 256

推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:

ThreadPoolExecutor pool = new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));

转载自:http://ifeve.com/how-to-calculate-threadpool-size/


0 0
原创粉丝点击