HDFS和MapReduce核心思想

来源:互联网 发布:java crm 开源 编辑:程序博客网 时间:2024/05/17 21:50

Hadoop是Apache下的一个开源分布式计算平台,以HDFS(Hadoop Distributed Filesystem)和MapReduce为其核心。为什么会出现这么个东西呢,“需求是最强大的驱动力”,在这个"big data"的时代,比如Facebook每天处理的新数据良就达到20TB,要处理海量数据就不能局限于传统数据库时代的做法了,我们可以把处理数据的任务分散到各节点(普通硬件设备),再把任务结果汇总返回到客户端——其核心思想也就是“分而治之”。做个比喻:要做全国的人口统计,只要把通知一层层传递下去,各区的相关部门就会把自己区域的人口统计好,再统一上报到国家统计局,统计局再把总数向全国公布。

Hadoop的设计思想来源于google发布的两篇论文:google-GFS(中文),google-mapreduce(中文),理解了这两篇文章,也就大致明白hadoop是个什么玩意儿了。

一个HDFS集群由一个NameNode和若干个DataNode组成,Namenode是主服务器,管理文件系统的命名空间和客户端对文件系统的访问操作;集群中的datanode管理存储的数据。其读数据如图:



1.首先调用FileSystem对象的open方法,其实是一个DistributedFileSystem的实例
2.DistributedFileSystem通过rpc(远程过程调用协议)获得文件的第一批个block的locations,同一block按照重复数会返回多个locations,这些locations按照hadoop拓扑结构排序,距离客户端近的排在前面.
3.前两步会返回一个FSDataInputStream对象,该对象会被封装成DFSInputStream对象,DFSInputStream可以方便的管理datanode和namenode数据流。客户端调用read方法,DFSInputStream最会找出离客户端最近的datanode并连接(hadoop的机架感知得到拓扑结构,并在该拓扑结构下进行自己的副本存放)。
4.数据从datanode源源不断的流向客户端。
5.如果第一块的数据读完了,就会关闭指向第一块的datanode连接,接着读取下一块。这些操作对客户端来说是透明的,客户端的角度看来只是读一个持续不断的流。
6.如果第一批block都读完了,DFSInputStream就会去namenode拿下一批blocks的location,然后继续读,如果所有的块都读完,这时就会关闭掉所有的流。

如果在读数据的时候,DFSInputStream和datanode的通讯发生异常,就会尝试正在读的block的排第二近的datanode,并且会记录哪个datanode发生错误,剩余的blocks读的时候就会直接跳过该datanode。DFSInputStream也会检查block数据校验和,如果发现一个坏的block,就会先报告到namenode节点,然后DFSInputStream在其他的datanode上读该block的副本

该设计的方向就是客户端直接连接datanode来检索数据并且namenode来负责为每一个block提供最优的datanode,namenode仅仅处理block location的请求,负责告诉client离它最近的数据在哪,而这些信息都加载在namenode的内存中,hdfs通过datanode集群可以承受大量客户端的并发访问。

写数据流程:


1.客户端通过调用DistributedFileSystem的create方法创建新文件
2.DistributedFileSystem通过RPC调用namenode去创建一个没有blocks关联的新文件,创建前,namenode会校验文件是否存在,客户端有无权限去创建等。如果校验通过,namenode就会记录下新文件,否则就会抛出IO异常.
3.前两步结束后会返回FSDataOutputStream的对象,象读文件的时候相似,FSDataOutputStream被封装成DFSOutputStream.DFSOutputStream可以协调namenode和datanode。客户端开始写数据到DFSOutputStream,DFSOutputStream把数据切成一个个小packet,然后排成队列data quene。
4.DataStreamer会去处理接受data quene,他先问询namenode这个新的block最适合存储的在哪几个datanode里,比如重复数是3,那么就找到3个最适合的datanode,把他们排成一个pipeline.DataStreamer把packet按队列输出到管道的第一个datanode中,第一个datanode又把packet输出到第二个datanode中,以此类推(流式写入,给datanode1的packet1刚传完,datanode1就会把这packet1传给datanode2,)。
5.DFSOutputStream还有一个对列叫ack quene,也是有packet组成,等待datanode的收到响应,当pipeline中的所有datanode都表示已经收到的时候,这时akc quene才会把对应的packet包移除掉。如果在写的过程中某个datanode发生错误,会采取以下几步:1) pipeline被关闭掉;2)为了防止丢包ack quene里的packet会同步到data quene里;3)把产生错误的datanode上当前在写但未完成的block删掉;4)block剩下的部分被写到剩下的两个正常的datanode中;5)namenode找到另外的datanode去创建这个块的复制。当然,这些操作对客户端来说是无感知的。
6.客户端完成写数据后调用close方法关闭写入流
7.DataStreamer把剩余的包都刷到pipeline里然后等待ack信息,收到最后一个ack后,通知datanode把文件标示为已完成。

另外要注意得一点,对于文件的处理,不到完成客户端是无法访问的,只有调用sync方法,客户端才确保该文件被写操作已经全部完成,当客户端调用close方法时会默认调用sync方法。是否需要手动调用取决你根据程序需要在数据健壮性和吞吐率之间的权衡。

注:以上根据hdfs-数据流blog整理补充,感谢他的分享!

而Mapreduce框架是由一个单独运行在主节点上的Jobtracker和运行在各从节点上的Tasktracker共同组成的,主节点负责调度构成一个作业的所有任务,这些任务就近分布在不同的从节点上(靠近数据源分布,网络传输受限与带宽等限制,少传数据好)。主节点监控各从节点的执行情况,如果任务失败,则重新执行;从节点仅仅负责干活,完成主节点指派的任务。当一个Job被提交,Jobtracker接受到提交作业和配置信息后,就将配置信息等发送给各从节点,同时调度任务并监控tasktracker的执行,如此一来就形成了一个树形结构,每个叶子节点处理小任务,再把结果返回给父节点。

MapReduce运行框架:



流程分析:

1.在客户端启动一个作业。
2.向JobTracker请求一个Job ID。
3.将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的JAR文件、配置文件和客户端计算所得的输入划分信息。这些文件都存放在JobTracker专门为该作业创建的文件夹中。文件夹名为该作业的JobID。JAR文件默认会有10个副本(mapred.submit.replication属性控制);输入划分信息告诉了JobTracker应该为这个作业启动多少个map任务等信息。
4.JobTracker接收到作业后,将其放在一个作业队列里,等待作业调度器对其进行调度,当作业调度器调度到该作业时,会根据输入划分信息为每个划分创建一个map任务,并将map任务分配给TaskTracker执行。对于map和reduce任务,TaskTracker根据主机核的数量和内存的大小有固定数量的map槽和reduce槽。这里需要强调的是:map任务不是随随便便地分配给某个TaskTracker的,这里有个概念叫:数据本地化(Data-Local)。意思是:将map任务分配给含有该map处理的数据块的TaskTracker上,同时将程序JAR包复制到该TaskTracker上来运行,这叫“运算移动,数据不移动”。而分配reduce任务时并不考虑数据本地化。
5.TaskTracker每隔一段时间会给JobTracker发送一个心跳,告诉JobTracker它依然在运行,同时心跳中还携带着很多的信息,比如当前map任务完成的进度等信息。当JobTracker收到作业的最后一个任务完成信息时,便把该作业设置成“成功”。当JobClient查询状态时,它将得知任务已完成,便显示一条消息给用户。
以上是在客户端、JobTracker、TaskTracker的层次来分析MapReduce的工作原理的,下面我们再细致一点,从map任务和reduce任务的层次来分析分析吧:



Map端:

1.每个输入分片会让一个map任务来处理,默认情况下,以HDFS的一个块的大小(默认为64M)为一个分片,当然我们也可以设置块的大小。map输出的结果会暂且放在一个环形内存缓冲区中(该缓冲区的大小默认为100M,由io.sort.mb属性控制),当该缓冲区快要溢出时(默认为缓冲区大小的80%,由io.sort.spill.percent属性控制),会在本地文件系统中创建一个溢出文件,将该缓冲区中的数据写入这个文件。

2.在写入磁盘之前,线程首先根据reduce任务的数目将数据划分为相同数目的分区,也就是一个reduce任务对应一个分区的数据。这样做是为了避免有些reduce任务分配到大量数据,而有些reduce任务却分到很少数据,甚至没有分到数据的尴尬局面。其实分区就是对数据进行hash的过程。然后对每个分区中的数据进行排序,如果此时设置了Combiner,将排序后的结果进行Combia操作,这样做的目的是让尽可能少的数据写入到磁盘。

3.当map任务输出最后一个记录时,可能会有很多的溢出文件,这时需要将这些文件合并。合并的过程中会不断地进行排序和combia操作,目的有两个:1.尽量减少每次写入磁盘的数据量;2.尽量减少下一复制阶段网络传输的数据量。最后合并成了一个已分区且已排序的文件。为了减少网络传输的数据量,这里可以将数据压缩,只要将mapred.compress.map.out设置为true就可以了。

4.将分区中的数据拷贝给相对应的reduce任务。有人可能会问:分区中的数据怎么知道它对应的reduce是哪个呢?其实map任务一直和其父TaskTracker保持联系,而TaskTracker又一直和JobTracker保持心跳。所以JobTracker中保存了整个集群中的宏观信息。只要reduce任务向JobTracker获取对应的map输出位置就ok了。(有的资料称为shuffle过程,主要是筛选排序,将Map的输入Hash处理后分到对应的reduce上。Hash处理:对应的字符生成对应字符串,可以用来分配不同地址,达到筛选的效果)

Reduce端:

1.Reduce会接收到不同map任务传来的数据,并且每个map传来的数据都是有序的。如果reduce端接受的数据量相当小,则直接存储在内存中(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制,表示用作此用途的堆空间的百分比),如果数据量超过了该缓冲区大小的一定比例(由mapred.job.shuffle.merge.percent决定),则对数据合并后溢写到磁盘中。

2.随着溢写文件的增多,后台线程会将它们合并成一个更大的有序的文件,这样做是为了给后面的合并节省时间。其实不管在map端还是reduce端,MapReduce都是反复地执行排序,合并操作,现在终于明白了有些人为什么会说:排序是hadoop的灵魂。

3.合并的过程中会产生许多的中间文件(写入磁盘了),但MapReduce会让写入磁盘的数据尽可能地少,并且最后一次合并的结果并没有写入磁盘,而是直接输入到reduce函数。

从上面的介绍可以看出,HDFS和MapReduce共同组成了Hadoop分布式系统体系结构的核心。HDFS在集群上实现分布式文件系统,MapReduce在集群上实现了分布式计算和任务处理。HDFS在MapReduce任务处理过程中提供了文件操作和存储等支持,MapReduce在HDFS的基础上实现了任务的分发、跟踪、执行等工作,并收集结果,二者相互作用,完成了Hadoop分布式集群的主要任务。


至此,HDFS和MapReduce的核心思想大致整理完毕了,不对的地方希望能得到指正,不懂的希望能一起讨论,共同进步~






0 0
原创粉丝点击