博弈论基础知识

来源:互联网 发布:小学语文教学软件 编辑:程序博客网 时间:2024/06/01 08:27
巴什博奕(Bash Game):
只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。

   显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。


威佐夫博奕
问题:首先有两堆石子,博弈双方每次可以取一堆石子中的任意个,不能不取,或者取两堆石子中的相同个。先取完者赢。
分析:首先我们根据条件来分析博弈中的奇异局势
第一个(0 , 0),先手输,当游戏某一方面对( 0 , 0)时,他没有办法取了,那么肯定是先手在上一局取完了,那么输。
第二个 ( 1 , 2 ),先手输,先手只有四种取法,
1)取 1 中的一个,那么后手取第二堆中两个。
2)取 2 中一个,那么后手在两堆中各取一个。
3)在 2 中取两个,那么后手在第一堆中取一个。
4)两堆中各取一个,那么后手在第二堆中取一个。
可以看出,不论先手怎么取,后说总是能赢。所以先手必输!
第三个 ( 3 , 5 ),先手必输。首先先手必定不能把任意一堆取完,如果取完了很明显后手取完另一堆先手必输,那么
假如看取一堆的情况,假设先手先在第一堆中取。 取 1 个,后手第二堆中取4个,变成(1 ,2)了,上面分析了是先手的必输局。
取 2 个,后手第二堆中取3个,也变成( 1 , 2)局面了。
假设先手在第二堆中取,取 1 个,那么后手在两堆中各取 2 个,也变成 ( 1 , 2 )局面了。
取 2 个 ,那么后手可以两堆中都去三个, 变成 ( 0 , 0)局面,上面分析其必输。
取 3 个,后手两堆各取 1 个 ,变成( 1 , 2)局面了。
取 4 个,后手在第一堆中取一个,变成( 1 , 2)局面了。
可见不论先手怎么取,其必输!
第四个(4 , 7),先手必输。
自己推理可以发现不论第一次先手如何取,那么后手总是会变成前面分析过的先手的必输局面。
那么到底有什么规律没有呢,我们继续往下写。
第四个 ( 6 ,10 )
第五个 ( 8 ,13)
第六个 ( 9 , 15)
第七个 ( 11 ,18)
会发现他们的差值是递增的,为 0 , 1 , 2, 3, 4 , 5 , 6, 7.....n
而用数学方法分析发现局面中第一个值为前面局面中没有出现过的第一个值,比如第三个局面,前面出现了 0 1 2,那么第三个局面的第一个值为 3 ,比如第五个局面,前
面出现了 0 1 2 3 4 5 ,那么第五个局面第一个值为6。
再找规律的话我们会发现,第一个值 = 差值 * 1.618
而1.618 = (sqrt(5)+ 1) / 2 。
大家都知道0.618是黄金分割率。而威佐夫博弈正好是1.618,这就是博弈的奇妙之处!


下面来看看威佐夫博弈常见的三类问题:

1)给你一个局面,让你求是先手输赢。
有了上面的分析,那么这个问题应该不难解决。首先求出差值,差值 * 1.618 == 最小值 的话后手赢,否则先手赢。(注意这里的1.618最好是用上面式子计算出来的,否则精
度要求高的题目会错)

2)给你一个局面,让你求先手输赢,假设先手赢的话输出他第一次的取法。
首先讨论在两边同时取的情况,很明显两边同时取的话,不论怎样取他的差值是不会变的,那么我们可以根据差值计算出其中的小的值,然后加上差值就是大的一个值,当
然能取的条件是求出的最小的值不能大于其中小的一堆的石子数目。
加入在一堆中取的话,可以取任意一堆,那么其差值也是不定的,但是我们可以枚举差值,差值范围是0 --- 大的石子数目,然后根据上面的理论判断满足条件的话就是一种合理的取法


尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的
物品,规定每次至少取一个,多者不限,最后取光者得胜。

    这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是
(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情
形。

    计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结
果:

1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)

    对于奇异局势(0,n,n)也一样,结果也是0。

    任何奇异局势(a,b,c)都有a(+)b(+)c =0。

如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)
b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。

    例1。(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达
到奇异局势(14,21,27)。

    例2。(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品
就形成了奇异局势(55,81,102)。

    例3。(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,4
5,48)。

    例4。我们来实际进行一盘比赛看看:
        甲:(7,8,9)->(1,8,9)奇异局势
        乙:(1,8,9)->(1,8,4)
        甲:(1,8,4)->(1,5,4)奇异局势
        乙:(1,5,4)->(1,4,4)
        甲:(1,4,4)->(0,4,4)奇异局势
        乙:(0,4,4)->(0,4,2)
        甲:(0.4,2)->(0,2,2)奇异局势
        乙:(0,2,2)->(0,2,1)
        甲:(0,2,1)->(0,1,1)奇异局势
        乙:(0,1,1)->(0,1,0)
        甲:(0,1,0)->(0,0,0)奇异局势
        甲胜。

 

题目1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根,  
可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。  
题目2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根,  
可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。
嘿嘿,这个游戏我早就见识过了。小时候用珠算玩这个游戏:第一档拨一个,第二档拨两个,依次直到第五档拨五个。然后两个人就轮流再把棋子拨下来,谁要是最后一个拨谁就赢。有一次暑假看见两个小孩子在玩这个游戏,我就在想有没有一个定论呢。下面就来试着证明一下吧
先解决第一个问题吧。
定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则,  
为利己态,用S表示。
[定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。
证明:
    若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态,
       c = A(1) xor A(2) xor … xor A(n) > 0;
    把c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。
    那么我们把x = A(t) xor c,则得到x < A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).而
     A(1) xor A(2) xor … xor x xor … xor A(n)
   = A(1) xor A(2) xor … xor A(t) xor c xor … xor A(n)
   = A(1) xor A(2) xor… xor A(n) xor A(1) xor A(2) xor … xor A(n)
   = 0
这就是说从A(t)堆中取出 A(t) - x 根火柴后状态就会从S态变为T态。证毕
[定理2]:T态,取任何一堆的若干根,都将成为S态。
证明:用反证法试试。
      若
       c = A(1) xor A(2) xor … xor A(i) xor … xor A(n) = 0;
       c' = A(1) xor A(2) xor … xor A(i') xor c xor … xor A(n) = 0;
      则有
c xor c' = A(1) xor A(2) xor … xor A(i) xor … xor A(n) xor A(1) xor A(2) xor … xor A(i') xor c xor … xor A(n) = A(i) xor A(i') =0
      进而推出A(i) = A(i'),这与已知矛盾。所以命题得证。
[定理 3]:S态,只要方法正确,必赢。  
   最终胜利即由S态转变为T态,任何一个S态,只要把它变为T态,(由定理1,可以把它变成T态。)对方只能把T态转变为S态(定理2)。这样,所有S态向T态的转变都可以有己方控制,对方只能被动地实现由T态转变为S态。故S态必赢。
[定理4]:T态,只要对方法正确,必败。  
   由定理3易得。  
接着来解决第二个问题。
定义:若一堆中仅有1根火柴,则被称为孤单堆。若大于1根,则称为充裕堆。
定义:T态中,若充裕堆的堆数大于等于2,则称为完全利他态,用T2表示;若充裕堆的堆数等于0,则称为部分利他态,用T0表示。
  
孤单堆的根数异或只会影响二进制的最后一位,但充裕堆会影响高位(非最后一位)。一个充裕堆,高位必有一位不为0,则所有根数异或不为0。故不会是T态。
[定理5]:S0态,即仅有奇数个孤单堆,必败。T0态必胜。  
证明:
S0态,其实就是每次只能取一根。每次第奇数根都由己取,第偶数根都由对  
方取,所以最后一根必己取。败。同理,   T0态必胜#
[定理6]:S1态,只要方法正确,必胜。  
证明:
若此时孤单堆堆数为奇数,把充裕堆取完;否则,取成一根。这样,就变成奇数个孤单堆,由对方取。由定理5,对方必输。己必胜。   #  
[定理7]:S2态不可转一次变为T0态。  
证明:
充裕堆数不可能一次由2变为0。得证。   #  

[定理8]:S2态可一次转变为T2态。  
证明:
由定理1,S态可转变为T态,态可一次转变为T态,又由定理6,S2态不可转一次变为T0态,所以转变的T态为T2态。   #  
[定理9]:T2态,只能转变为S2态或S1态。  
证明:
由定理2,T态必然变为S态。由于充裕堆数不可能一次由2变为0,所以此时的S态不可能为S0态。命题得证。  
[定理10]:S2态,只要方法正确,必胜.  
证明:
方法如下:  
      1)   S2态,就把它变为T2态。(由定理8)  
      2)   对方只能T2转变成S2态或S1态(定理9)
    若转变为S2,   转向1)  
    若转变为S1,   这己必胜。(定理5)  
[定理11]:T2态必输。  
证明:同10。  
综上所述,必输态有:   T2,S0  
           必胜态:    S2,S1,T0.  
两题比较:  
第一题的全过程其实如下:  
S2->T2->S2->T2->   ……   ->T2->S1->T0->S0->T0->……->S0->T0(全0)  
第二题的全过程其实如下:  
S2->T2->S2->T2->   ……   ->T2->S1->S0->T0->S0->……->S0->T0(全0)  
下划线表示胜利一方的取法。   是否发现了他们的惊人相似之处。  
我们不难发现(见加黑部分),S1态可以转变为S0态(第二题做法),也可以转变为  
T0(第一题做法)。哪一方控制了S1态,他即可以有办法使自己得到最后一根(转变为  
T0),也可以使对方得到最后一根(转变为S0)。  
   所以,抢夺S1是制胜的关键!  
   为此,始终把T2态让给对方,将使对方处于被动状态,他早晚将把状态变为S1.


0 0
原创粉丝点击