Linux 线程同步的三种方法

来源:互联网 发布:wifi定位算法研究 编辑:程序博客网 时间:2024/05/22 10:28

线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点。linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。

一、互斥锁(mutex)

通过锁机制实现线程间的同步。

  1. 初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。
    静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
    动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
  2. 加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。
    int pthread_mutex_lock(pthread_mutex *mutex);
    int pthread_mutex_trylock(pthread_mutex_t *mutex);
  3. 解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。
    int pthread_mutex_unlock(pthread_mutex_t *mutex);
  4. 销毁锁。锁在是使用完成后,需要进行销毁以释放资源。

  1. int pthread_mutex_destroy(pthread_mutex *mutex);
  2. #include <cstdio>#include <cstdlib>#include <unistd.h>#include <pthread.h>#include "iostream"using namespace std;pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;int tmp;void* thread(void *arg){    cout << "thread id is " << pthread_self() << endl;    pthread_mutex_lock(&mutex);    tmp = 12;    cout << "Now a is " << tmp << endl;    pthread_mutex_unlock(&mutex);    return NULL;}int main(){    pthread_t id;    cout << "main thread id is " << pthread_self() << endl;    tmp = 3;    cout << "In main func tmp = " << tmp << endl;    if (!pthread_create(&id, NULL, thread, NULL))    {        cout << "Create thread success!" << endl;    }    else    {        cout << "Create thread failed!" << endl;    }    pthread_join(id, NULL);    pthread_mutex_destroy(&mutex);    return 0;}//编译:g++ -o thread testthread.cpp -lpthread

    二、条件变量(cond)

    互斥锁不同,条件变量是用来等待而不是用来上锁的。条件变量用来自动阻塞一个线程,直到某特殊情况发生为止。通常条件变量和互斥锁同时使用。条件变量分为两部分: 条件和变量。条件本身是由互斥量保护的。线程在改变条件状态前先要锁住互斥量。条件变量使我们可以睡眠等待某种条件出现。条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。条件的检测是在互斥锁的保护下进行的。如果一个条件为假,一个线程自动阻塞,并释放等待状态改变的互斥锁。如果另一个线程改变了条件,它发信号给关联的条件变量,唤醒一个或多个等待它的线程,重新获得互斥锁,重新评价条件。如果两进程共享可读写的内存,条件变量可以被用来实现这两进程间的线程同步。

    1. 初始化条件变量。
      静态态初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
      动态初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
    2. 等待条件成立。释放锁,同时阻塞等待条件变量为真才行。timewait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)
      int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
      int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
    3. 激活条件变量。pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)
      int pthread_cond_signal(pthread_cond_t *cond);
      int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有线程的阻塞
    4. 清除条件变量。无线程等待,否则返回EBUSY
      int pthread_cond_destroy(pthread_cond_t *cond);
    #include <stdio.h>#include <pthread.h>#include "stdlib.h"#include "unistd.h"pthread_mutex_t mutex;pthread_cond_t cond;void hander(void *arg){    free(arg);    (void)pthread_mutex_unlock(&mutex);}void *thread1(void *arg){    pthread_cleanup_push(hander, &mutex);    while(1)    {        printf("thread1 is running\n");        pthread_mutex_lock(&mutex);        pthread_cond_wait(&cond, &mutex);        printf("thread1 applied the condition\n");        pthread_mutex_unlock(&mutex);        sleep(4);    }    pthread_cleanup_pop(0);}void *thread2(void *arg){    while(1)    {        printf("thread2 is running\n");        pthread_mutex_lock(&mutex);        pthread_cond_wait(&cond, &mutex);        printf("thread2 applied the condition\n");        pthread_mutex_unlock(&mutex);        sleep(1);    }}int main(){    pthread_t thid1,thid2;    printf("condition variable study!\n");    pthread_mutex_init(&mutex, NULL);    pthread_cond_init(&cond, NULL);    pthread_create(&thid1, NULL, thread1, NULL);    pthread_create(&thid2, NULL, thread2, NULL);    sleep(1);    do    {        pthread_cond_signal(&cond);    }while(1);    sleep(20);    pthread_exit(0);    return 0;}
    #include <pthread.h>#include <unistd.h>#include "stdio.h"#include "stdlib.h"static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;struct node{    int n_number;    struct node *n_next;}*head = NULL;static void cleanup_handler(void *arg){    printf("Cleanup handler of second thread./n");    free(arg);    (void)pthread_mutex_unlock(&mtx);}static void *thread_func(void *arg){    struct node *p = NULL;    pthread_cleanup_push(cleanup_handler, p);    while (1)    {        //这个mutex主要是用来保证pthread_cond_wait的并发性        pthread_mutex_lock(&mtx);        while (head == NULL)        {            //这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何            //这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线            //程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。            //这个时候,应该让线程继续进入pthread_cond_wait            // pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,            //然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立            //而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源            //用这个流程是比较清楚的            pthread_cond_wait(&cond, &mtx);            p = head;            head = head->n_next;            printf("Got %d from front of queue/n", p->n_number);            free(p);        }        pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁    }    pthread_cleanup_pop(0);    return 0;}int main(void){    pthread_t tid;    int i;    struct node *p;    //子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而    //不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大    pthread_create(&tid, NULL, thread_func, NULL);    sleep(1);    for (i = 0; i < 10; i++)    {        p = (struct node*)malloc(sizeof(struct node));        p->n_number = i;        pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁,        p->n_next = head;        head = p;        pthread_cond_signal(&cond);        pthread_mutex_unlock(&mtx); //解锁        sleep(1);    }    printf("thread 1 wanna end the line.So cancel thread 2./n");    //关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出    //线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。    pthread_cancel(tid);    pthread_join(tid, NULL);    printf("All done -- exiting/n");    return 0;}

    三、信号量(sem)

    如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。

    1. 信号量初始化。
      int sem_init (sem_t *sem , int pshared, unsigned int value);
      这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。
    2. 等待信号量。给信号量减1,然后等待直到信号量的值大于0。
      int sem_wait(sem_t *sem);
    3. 释放信号量。信号量值加1。并通知其他等待线程。
      int sem_post(sem_t *sem);
    4. 销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。
      int sem_destroy(sem_t *sem);
    #include <stdlib.h>#include <stdio.h>#include <unistd.h>#include <pthread.h>#include <semaphore.h>#include <errno.h>#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}typedef struct _PrivInfo{    sem_t s1;    sem_t s2;    time_t end_time;}PrivInfo;static void info_init (PrivInfo* thiz);static void info_destroy (PrivInfo* thiz);static void* pthread_func_1 (PrivInfo* thiz);static void* pthread_func_2 (PrivInfo* thiz);int main (int argc, char** argv){    pthread_t pt_1 = 0;    pthread_t pt_2 = 0;    int ret = 0;    PrivInfo* thiz = NULL;    thiz = (PrivInfo* )malloc (sizeof (PrivInfo));    if (thiz == NULL)    {        printf ("[%s]: Failed to malloc priv./n");        return -1;    }    info_init (thiz);    ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);    if (ret != 0)    {        perror ("pthread_1_create:");    }    ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);    if (ret != 0)    {        perror ("pthread_2_create:");    }    pthread_join (pt_1, NULL);    pthread_join (pt_2, NULL);    info_destroy (thiz);    return 0;}static void info_init (PrivInfo* thiz){    return_if_fail (thiz != NULL);    thiz->end_time = time(NULL) + 10;    sem_init (&thiz->s1, 0, 1);    sem_init (&thiz->s2, 0, 0);    return;}static void info_destroy (PrivInfo* thiz){    return_if_fail (thiz != NULL);    sem_destroy (&thiz->s1);    sem_destroy (&thiz->s2);    free (thiz);    thiz = NULL;    return;}static void* pthread_func_1 (PrivInfo* thiz){    return_if_fail(thiz != NULL);    while (time(NULL) < thiz->end_time)    {        sem_wait (&thiz->s2);        printf ("pthread1: pthread1 get the lock./n");        sem_post (&thiz->s1);        printf ("pthread1: pthread1 unlock/n");        sleep (1);    }    return;}static void* pthread_func_2 (PrivInfo* thiz){    return_if_fail (thiz != NULL);    while (time (NULL) < thiz->end_time)    {        sem_wait (&thiz->s1);        printf ("pthread2: pthread2 get the unlock./n");        sem_post (&thiz->s2);        printf ("pthread2: pthread2 unlock./n");        sleep (1);    }    return;}





0 0