Triangle源程序

来源:互联网 发布:最新淘宝优惠券 编辑:程序博客网 时间:2024/06/05 15:49
        <pre name="code" class="cpp">/*****************************************************************************//*                                                                           *//*      888888888        ,o,                          / 888                  *//*         888    88o88o  "    o8888o  88o8888o o88888o 888  o88888o         *//*         888    888    888       88b 888  888 888 888 888 d888  88b        *//*         888    888    888  o88^o888 888  888 "88888" 888 8888oo888        *//*         888    888    888 C888  888 888  888  /      888 q888             *//*         888    888    888  "88o^888 888  888 Cb      888  "88oooo"        *//*                                              "8oo8D                       *//*                                                                           *//*  A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.      *//*  (triangle.c)                                                             *//*                                                                           *//*  Version 1.6                                                              *//*  July 28, 2005                                                            *//*                                                                           *//*  Copyright 1993, 1995, 1997, 1998, 2002, 2005                             *//*  Jonathan Richard Shewchuk                                                *//*  2360 Woolsey #H                                                          *//*  Berkeley, California  94705-1927                                         *//*  jrs@cs.berkeley.edu                                                      *//*                                                                           *//*  This program may be freely redistributed under the condition that the    *//*    copyright notices (including this entire header and the copyright      *//*    notice printed when the `-h' switch is selected) are not removed, and  *//*    no compensation is received.  Private, research, and institutional     *//*    use is free.  You may distribute modified versions of this code UNDER  *//*    THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE   *//*    SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE   *//*    AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR    *//*    NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as    *//*    part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT  *//*    WITH THE AUTHOR.  (If you are not directly supplying this code to a    *//*    customer, and you are instead telling them how they can obtain it for  *//*    free, then you are not required to make any arrangement with me.)      *//*                                                                           *//*  Hypertext instructions for Triangle are available on the Web at          *//*                                                                           *//*      http://www.cs.cmu.edu/~quake/triangle.html                           *//*                                                                           *//*  Disclaimer:  Neither I nor Carnegie Mellon warrant this code in any way  *//*    whatsoever.  This code is provided "as-is".  Use at your own risk.     *//*                                                                           *//*  Some of the references listed below are marked with an asterisk.  [*]    *//*    These references are available for downloading from the Web page       *//*                                                                           *//*      http://www.cs.cmu.edu/~quake/triangle.research.html                  *//*                                                                           *//*  Three papers discussing aspects of Triangle are available.  A short      *//*    overview appears in "Triangle:  Engineering a 2D Quality Mesh          *//*    Generator and Delaunay Triangulator," in Applied Computational         *//*    Geometry:  Towards Geometric Engineering, Ming C. Lin and Dinesh       *//*    Manocha, editors, Lecture Notes in Computer Science volume 1148,       *//*    pages 203-222, Springer-Verlag, Berlin, May 1996 (from the First ACM   *//*    Workshop on Applied Computational Geometry).  [*]                      *//*                                                                           *//*    The algorithms are discussed in the greatest detail in "Delaunay       *//*    Refinement Algorithms for Triangular Mesh Generation," Computational   *//*    Geometry:  Theory and Applications 22(1-3):21-74, May 2002.  [*]       *//*                                                                           *//*    More detail about the data structures may be found in my dissertation: *//*    "Delaunay Refinement Mesh Generation," Ph.D. thesis, Technical Report  *//*    CMU-CS-97-137, School of Computer Science, Carnegie Mellon University, *//*    Pittsburgh, Pennsylvania, 18 May 1997.  [*]                            *//*                                                                           *//*  Triangle was created as part of the Quake Project in the School of       *//*    Computer Science at Carnegie Mellon University.  For further           *//*    information, see Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F.   *//*    Kallivokas, David R. O'Hallaron, Jonathan R. Shewchuk, and Jifeng Xu,  *//*    "Large-scale Simulation of Elastic Wave Propagation in Heterogeneous   *//*    Media on Parallel Computers," Computer Methods in Applied Mechanics    *//*    and Engineering 152(1-2):85-102, 22 January 1998.                      *//*                                                                           *//*  Triangle's Delaunay refinement algorithm for quality mesh generation is  *//*    a hybrid of one due to Jim Ruppert, "A Delaunay Refinement Algorithm   *//*    for Quality 2-Dimensional Mesh Generation," Journal of Algorithms      *//*    18(3):548-585, May 1995 [*], and one due to L. Paul Chew, "Guaranteed- *//*    Quality Mesh Generation for Curved Surfaces," Proceedings of the Ninth *//*    Annual Symposium on Computational Geometry (San Diego, California),    *//*    pages 274-280, Association for Computing Machinery, May 1993,          *//*    http://portal.acm.org/citation.cfm?id=161150 .                         *//*                                                                           *//*  The Delaunay refinement algorithm has been modified so that it meshes    *//*    domains with small input angles well, as described in Gary L. Miller,  *//*    Steven E. Pav, and Noel J. Walkington, "When and Why Ruppert's         *//*    Algorithm Works," Twelfth International Meshing Roundtable, pages      *//*    91-102, Sandia National Laboratories, September 2003.  [*]             *//*                                                                           *//*  My implementation of the divide-and-conquer and incremental Delaunay     *//*    triangulation algorithms follows closely the presentation of Guibas    *//*    and Stolfi, even though I use a triangle-based data structure instead  *//*    of their quad-edge data structure.  (In fact, I originally implemented *//*    Triangle using the quad-edge data structure, but the switch to a       *//*    triangle-based data structure sped Triangle by a factor of two.)  The  *//*    mesh manipulation primitives and the two aforementioned Delaunay       *//*    triangulation algorithms are described by Leonidas J. Guibas and Jorge *//*    Stolfi, "Primitives for the Manipulation of General Subdivisions and   *//*    the Computation of Voronoi Diagrams," ACM Transactions on Graphics     *//*    4(2):74-123, April 1985, http://portal.acm.org/citation.cfm?id=282923 .*//*                                                                           *//*  Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai   *//*    Lee and Bruce J. Schachter, "Two Algorithms for Constructing the       *//*    Delaunay Triangulation," International Journal of Computer and         *//*    Information Science 9(3):219-242, 1980.  Triangle's improvement of the *//*    divide-and-conquer algorithm by alternating between vertical and       *//*    horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and-  *//*    Conquer Algorithm for Constructing Delaunay Triangulations,"           *//*    Algorithmica 2(2):137-151, 1987.                                       *//*                                                                           *//*  The incremental insertion algorithm was first proposed by C. L. Lawson,  *//*    "Software for C1 Surface Interpolation," in Mathematical Software III, *//*    John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977.     *//*    For point location, I use the algorithm of Ernst P. Mucke, Isaac       *//*    Saias, and Binhai Zhu, "Fast Randomized Point Location Without         *//*    Preprocessing in Two- and Three-Dimensional Delaunay Triangulations,"  *//*    Proceedings of the Twelfth Annual Symposium on Computational Geometry, *//*    ACM, May 1996.  [*]  If I were to randomize the order of vertex        *//*    insertion (I currently don't bother), their result combined with the   *//*    result of Kenneth L. Clarkson and Peter W. Shor, "Applications of      *//*    Random Sampling in Computational Geometry II," Discrete &              *//*    Computational Geometry 4(1):387-421, 1989, would yield an expected     *//*    O(n^{4/3}) bound on running time.                                      *//*                                                                           *//*  The O(n log n) sweepline Delaunay triangulation algorithm is taken from  *//*    Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams",          *//*    Algorithmica 2(2):153-174, 1987.  A random sample of edges on the      *//*    boundary of the triangulation are maintained in a splay tree for the   *//*    purpose of point location.  Splay trees are described by Daniel        *//*    Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search *//*    Trees," Journal of the ACM 32(3):652-686, July 1985,                   *//*    http://portal.acm.org/citation.cfm?id=3835 .                           *//*                                                                           *//*  The algorithms for exact computation of the signs of determinants are    *//*    described in Jonathan Richard Shewchuk, "Adaptive Precision Floating-  *//*    Point Arithmetic and Fast Robust Geometric Predicates," Discrete &     *//*    Computational Geometry 18(3):305-363, October 1997.  (Also available   *//*    as Technical Report CMU-CS-96-140, School of Computer Science,         *//*    Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996.)  [*]  *//*    An abbreviated version appears as Jonathan Richard Shewchuk, "Robust   *//*    Adaptive Floating-Point Geometric Predicates," Proceedings of the      *//*    Twelfth Annual Symposium on Computational Geometry, ACM, May 1996. [*] *//*    Many of the ideas for my exact arithmetic routines originate with      *//*    Douglas M. Priest, "Algorithms for Arbitrary Precision Floating Point  *//*    Arithmetic," Tenth Symposium on Computer Arithmetic, pp. 132-143, IEEE *//*    Computer Society Press, 1991.  [*]  Many of the ideas for the correct  *//*    evaluation of the signs of determinants are taken from Steven Fortune  *//*    and Christopher J. Van Wyk, "Efficient Exact Arithmetic for Computa-   *//*    tional Geometry," Proceedings of the Ninth Annual Symposium on         *//*    Computational Geometry, ACM, pp. 163-172, May 1993, and from Steven    *//*    Fortune, "Numerical Stability of Algorithms for 2D Delaunay Triangu-   *//*    lations," International Journal of Computational Geometry & Applica-   *//*    tions 5(1-2):193-213, March-June 1995.                                 *//*                                                                           *//*  The method of inserting new vertices off-center (not precisely at the    *//*    circumcenter of every poor-quality triangle) is from Alper Ungor,      *//*    "Off-centers:  A New Type of Steiner Points for Computing Size-Optimal *//*    Quality-Guaranteed Delaunay Triangulations," Proceedings of LATIN      *//*    2004 (Buenos Aires, Argentina), April 2004.                            *//*                                                                           *//*  For definitions of and results involving Delaunay triangulations,        *//*    constrained and conforming versions thereof, and other aspects of      *//*    triangular mesh generation, see the excellent survey by Marshall Bern  *//*    and David Eppstein, "Mesh Generation and Optimal Triangulation," in    *//*    Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang,         *//*    editors, World Scientific, Singapore, pp. 23-90, 1992.  [*]            *//*                                                                           *//*  The time for incrementally adding PSLG (planar straight line graph)      *//*    segments to create a constrained Delaunay triangulation is probably    *//*    O(t^2) per segment in the worst case and O(t) per segment in the       *//*    common case, where t is the number of triangles that intersect the     *//*    segment before it is inserted.  This doesn't count point location,     *//*    which can be much more expensive.  I could improve this to O(d log d)  *//*    time, but d is usually quite small, so it's not worth the bother.      *//*    (This note does not apply when the -s switch is used, invoking a       *//*    different method is used to insert segments.)                          *//*                                                                           *//*  The time for deleting a vertex from a Delaunay triangulation is O(d^2)   *//*    in the worst case and O(d) in the common case, where d is the degree   *//*    of the vertex being deleted.  I could improve this to O(d log d) time, *//*    but d is usually quite small, so it's not worth the bother.            *//*                                                                           *//*  Ruppert's Delaunay refinement algorithm typically generates triangles    *//*    at a linear rate (constant time per triangle) after the initial        *//*    triangulation is formed.  There may be pathological cases where        *//*    quadratic time is required, but these never arise in practice.         *//*                                                                           *//*  The geometric predicates (circumcenter calculations, segment             *//*    intersection formulae, etc.) appear in my "Lecture Notes on Geometric  *//*    Robustness" at http://www.cs.berkeley.edu/~jrs/mesh .                  *//*                                                                           *//*  If you make any improvements to this code, please please please let me   *//*    know, so that I may obtain the improvements.  Even if you don't change *//*    the code, I'd still love to hear what it's being used for.             *//*                                                                           *//*****************************************************************************//* For single precision (which will save some memory and reduce paging),     *//*   define the symbol SINGLE by using the -DSINGLE compiler switch or by    *//*   writing "#define SINGLE" below.                                         *//*                                                                           *//* For double precision (which will allow you to refine meshes to a smaller  *//*   edge length), leave SINGLE undefined.                                   *//*                                                                           *//* Double precision uses more memory, but improves the resolution of the     *//*   meshes you can generate with Triangle.  It also reduces the likelihood  *//*   of a floating exception due to overflow.  Finally, it is much faster    *//*   than single precision on 64-bit architectures like the DEC Alpha.  I    *//*   recommend double precision unless you want to generate a mesh for which *//*   you do not have enough memory.                                          *//* #define SINGLE */#ifdef SINGLE#define REAL float#else /* not SINGLE */#define REAL double#endif /* not SINGLE *//* If yours is not a Unix system, define the NO_TIMER compiler switch to     *//*   remove the Unix-specific timing code.                                   *//* #define NO_TIMER *//* To insert lots of self-checks for internal errors, define the SELF_CHECK  *//*   symbol.  This will slow down the program significantly.  It is best to  *//*   define the symbol using the -DSELF_CHECK compiler switch, but you could *//*   write "#define SELF_CHECK" below.  If you are modifying this code, I    *//*   recommend you turn self-checks on until your work is debugged.          *//* #define SELF_CHECK *//* To compile Triangle as a callable object library (triangle.o), define the *//*   TRILIBRARY symbol.  Read the file triangle.h for details on how to call *//*   the procedure triangulate() that results.                               *//* #define TRILIBRARY *//* It is possible to generate a smaller version of Triangle using one or     *//*   both of the following symbols.  Define the REDUCED symbol to eliminate  *//*   all features that are primarily of research interest; specifically, the *//*   -i, -F, -s, and -C switches.  Define the CDT_ONLY symbol to eliminate   *//*   all meshing algorithms above and beyond constrained Delaunay            *//*   triangulation; specifically, the -r, -q, -a, -u, -D, -S, and -s         *//*   switches.  These reductions are most likely to be useful when           *//*   generating an object library (triangle.o) by defining the TRILIBRARY    *//*   symbol.                                                                 *//* #define REDUCED *//* #define CDT_ONLY *//* On some machines, my exact arithmetic routines might be defeated by the   *//*   use of internal extended precision floating-point registers.  The best  *//*   way to solve this problem is to set the floating-point registers to use *//*   single or double precision internally.  On 80x86 processors, this may   *//*   be accomplished by setting the CPU86 symbol for the Microsoft C         *//*   compiler, or the LINUX symbol for the gcc compiler running on Linux.    *//*                                                                           *//* An inferior solution is to declare certain values as `volatile', thus     *//*   forcing them to be stored to memory and rounded off.  Unfortunately,    *//*   this solution might slow Triangle down quite a bit.  To use volatile    *//*   values, write "#define INEXACT volatile" below.  Normally, however,     *//*   INEXACT should be defined to be nothing.  ("#define INEXACT".)          *//*                                                                           *//* For more discussion, see http://www.cs.cmu.edu/~quake/robust.pc.html .    *//*   For yet more discussion, see Section 5 of my paper, "Adaptive Precision *//*   Floating-Point Arithmetic and Fast Robust Geometric Predicates" (also   *//*   available as Section 6.6 of my dissertation).                           *//* #define CPU86 *//* #define LINUX */#define NO_TIMER#define INEXACT /* Nothing *//* #define INEXACT volatile *//* Maximum number of characters in a file name (including the null).         */#define FILENAMESIZE 2048/* Maximum number of characters in a line read from a file (including the    *//*   null).                                                                  */#define INPUTLINESIZE 1024/* For efficiency, a variety of data structures are allocated in bulk.  The  *//*   following constants determine how many of each structure is allocated   *//*   at once.                                                                */#define TRIPERBLOCK 4092           /* Number of triangles allocated at once. */#define SUBSEGPERBLOCK 508       /* Number of subsegments allocated at once. */#define VERTEXPERBLOCK 4092         /* Number of vertices allocated at once. */#define VIRUSPERBLOCK 1020   /* Number of virus triangles allocated at once. *//* Number of encroached subsegments allocated at once. */#define BADSUBSEGPERBLOCK 252/* Number of skinny triangles allocated at once. */#define BADTRIPERBLOCK 4092/* Number of flipped triangles allocated at once. */#define FLIPSTACKERPERBLOCK 252/* Number of splay tree nodes allocated at once. */#define SPLAYNODEPERBLOCK 508/* The vertex types.   A DEADVERTEX has been deleted entirely.  An           *//*   UNDEADVERTEX is not part of the mesh, but is written to the output      *//*   .node file and affects the node indexing in the other output files.     */#define INPUTVERTEX 0#define SEGMENTVERTEX 1#define FREEVERTEX 2#define DEADVERTEX -32768#define UNDEADVERTEX -32767/* The next line is used to outsmart some very stupid compilers.  If your    *//*   compiler is smarter, feel free to replace the "int" with "void".        *//*   Not that it matters.                                                    */#define VOID int/* Two constants for algorithms based on random sampling.  Both constants    *//*   have been chosen empirically to optimize their respective algorithms.   *//* Used for the point location scheme of Mucke, Saias, and Zhu, to decide    *//*   how large a random sample of triangles to inspect.                      */#define SAMPLEFACTOR 11/* Used in Fortune's sweepline Delaunay algorithm to determine what fraction *//*   of boundary edges should be maintained in the splay tree for point      *//*   location on the front.                                                  */#define SAMPLERATE 10/* A number that speaks for itself, every kissable digit.                    */#define PI 3.141592653589793238462643383279502884197169399375105820974944592308/* Another fave.                                                             */#define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732/* And here's one for those of you who are intimidated by math.              */#define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333#include <stdio.h>#include <stdlib.h>#include <string.h>#include <math.h>#ifndef NO_TIMER#include <sys/time.h>#endif /* not NO_TIMER */#ifdef CPU86#include <float.h>#endif /* CPU86 */#ifdef LINUX#include <fpu_control.h>#endif /* LINUX */#ifdef TRILIBRARY#include "triangle.h"#endif /* TRILIBRARY *//* A few forward declarations.                                               */#ifndef TRILIBRARYchar *readline();char *findfield();#endif /* not TRILIBRARY *//* Labels that signify the result of point location.  The result of a        *//*   search indicates that the point falls in the interior of a triangle, on *//*   an edge, on a vertex, or outside the mesh.                              */enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};/* Labels that signify the result of vertex insertion.  The result indicates *//*   that the vertex was inserted with complete success, was inserted but    *//*   encroaches upon a subsegment, was not inserted because it lies on a     *//*   segment, or was not inserted because another vertex occupies the same   *//*   location.                                                               */enum insertvertexresult {SUCCESSFULVERTEX, ENCROACHINGVERTEX, VIOLATINGVERTEX,                         DUPLICATEVERTEX};/* Labels that signify the result of direction finding.  The result          *//*   indicates that a segment connecting the two query points falls within   *//*   the direction triangle, along the left edge of the direction triangle,  *//*   or along the right edge of the direction triangle.                      */enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};/*****************************************************************************//*                                                                           *//*  The basic mesh data structures                                           *//*                                                                           *//*  There are three:  vertices, triangles, and subsegments (abbreviated      *//*  `subseg').  These three data structures, linked by pointers, comprise    *//*  the mesh.  A vertex simply represents a mesh vertex and its properties.  *//*  A triangle is a triangle.  A subsegment is a special data structure used *//*  to represent an impenetrable edge of the mesh (perhaps on the outer      *//*  boundary, on the boundary of a hole, or part of an internal boundary     *//*  separating two triangulated regions).  Subsegments represent boundaries, *//*  defined by the user, that triangles may not lie across.                  *//*                                                                           *//*  A triangle consists of a list of three vertices, a list of three         *//*  adjoining triangles, a list of three adjoining subsegments (when         *//*  segments exist), an arbitrary number of optional user-defined            *//*  floating-point attributes, and an optional area constraint.  The latter  *//*  is an upper bound on the permissible area of each triangle in a region,  *//*  used for mesh refinement.                                                *//*                                                                           *//*  For a triangle on a boundary of the mesh, some or all of the neighboring *//*  triangles may not be present.  For a triangle in the interior of the     *//*  mesh, often no neighboring subsegments are present.  Such absent         *//*  triangles and subsegments are never represented by NULL pointers; they   *//*  are represented by two special records:  `dummytri', the triangle that   *//*  fills "outer space", and `dummysub', the omnipresent subsegment.         *//*  `dummytri' and `dummysub' are used for several reasons; for instance,    *//*  they can be dereferenced and their contents examined without violating   *//*  protected memory.                                                        *//*                                                                           *//*  However, it is important to understand that a triangle includes other    *//*  information as well.  The pointers to adjoining vertices, triangles, and *//*  subsegments are ordered in a way that indicates their geometric relation *//*  to each other.  Furthermore, each of these pointers contains orientation *//*  information.  Each pointer to an adjoining triangle indicates which face *//*  of that triangle is contacted.  Similarly, each pointer to an adjoining  *//*  subsegment indicates which side of that subsegment is contacted, and how *//*  the subsegment is oriented relative to the triangle.                     *//*                                                                           *//*  The data structure representing a subsegment may be thought to be        *//*  abutting the edge of one or two triangle data structures:  either        *//*  sandwiched between two triangles, or resting against one triangle on an  *//*  exterior boundary or hole boundary.                                      *//*                                                                           *//*  A subsegment consists of a list of four vertices--the vertices of the    *//*  subsegment, and the vertices of the segment it is a part of--a list of   *//*  two adjoining subsegments, and a list of two adjoining triangles.  One   *//*  of the two adjoining triangles may not be present (though there should   *//*  always be one), and neighboring subsegments might not be present.        *//*  Subsegments also store a user-defined integer "boundary marker".         *//*  Typically, this integer is used to indicate what boundary conditions are *//*  to be applied at that location in a finite element simulation.           *//*                                                                           *//*  Like triangles, subsegments maintain information about the relative      *//*  orientation of neighboring objects.                                      *//*                                                                           *//*  Vertices are relatively simple.  A vertex is a list of floating-point    *//*  numbers, starting with the x, and y coordinates, followed by an          *//*  arbitrary number of optional user-defined floating-point attributes,     *//*  followed by an integer boundary marker.  During the segment insertion    *//*  phase, there is also a pointer from each vertex to a triangle that may   *//*  contain it.  Each pointer is not always correct, but when one is, it     *//*  speeds up segment insertion.  These pointers are assigned values once    *//*  at the beginning of the segment insertion phase, and are not used or     *//*  updated except during this phase.  Edge flipping during segment          *//*  insertion will render some of them incorrect.  Hence, don't rely upon    *//*  them for anything.                                                       *//*                                                                           *//*  Other than the exception mentioned above, vertices have no information   *//*  about what triangles, subfacets, or subsegments they are linked to.      *//*                                                                           *//*****************************************************************************//*****************************************************************************//*                                                                           *//*  Handles                                                                  *//*                                                                           *//*  The oriented triangle (`otri') and oriented subsegment (`osub') data     *//*  structures defined below do not themselves store any part of the mesh.   *//*  The mesh itself is made of `triangle's, `subseg's, and `vertex's.        *//*                                                                           *//*  Oriented triangles and oriented subsegments will usually be referred to  *//*  as "handles."  A handle is essentially a pointer into the mesh; it       *//*  allows you to "hold" one particular part of the mesh.  Handles are used  *//*  to specify the regions in which one is traversing and modifying the mesh.*//*  A single `triangle' may be held by many handles, or none at all.  (The   *//*  latter case is not a memory leak, because the triangle is still          *//*  connected to other triangles in the mesh.)                               *//*                                                                           *//*  An `otri' is a handle that holds a triangle.  It holds a specific edge   *//*  of the triangle.  An `osub' is a handle that holds a subsegment.  It     *//*  holds either the left or right side of the subsegment.                   *//*                                                                           *//*  Navigation about the mesh is accomplished through a set of mesh          *//*  manipulation primitives, further below.  Many of these primitives take   *//*  a handle and produce a new handle that holds the mesh near the first     *//*  handle.  Other primitives take two handles and glue the corresponding    *//*  parts of the mesh together.  The orientation of the handles is           *//*  important.  For instance, when two triangles are glued together by the   *//*  bond() primitive, they are glued at the edges on which the handles lie.  *//*                                                                           *//*  Because vertices have no information about which triangles they are      *//*  attached to, I commonly represent a vertex by use of a handle whose      *//*  origin is the vertex.  A single handle can simultaneously represent a    *//*  triangle, an edge, and a vertex.                                         *//*                                                                           *//*****************************************************************************//* The triangle data structure.  Each triangle contains three pointers to    *//*   adjoining triangles, plus three pointers to vertices, plus three        *//*   pointers to subsegments (declared below; these pointers are usually     *//*   `dummysub').  It may or may not also contain user-defined attributes    *//*   and/or a floating-point "area constraint."  It may also contain extra   *//*   pointers for nodes, when the user asks for high-order elements.         *//*   Because the size and structure of a `triangle' is not decided until     *//*   runtime, I haven't simply declared the type `triangle' as a struct.     */typedef REAL **triangle;            /* Really:  typedef triangle *triangle   *//* An oriented triangle:  includes a pointer to a triangle and orientation.  *//*   The orientation denotes an edge of the triangle.  Hence, there are      *//*   three possible orientations.  By convention, each edge always points    *//*   counterclockwise about the corresponding triangle.                      */struct otri {  triangle *tri;  int orient;                                         /* Ranges from 0 to 2. */};/* The subsegment data structure.  Each subsegment contains two pointers to  *//*   adjoining subsegments, plus four pointers to vertices, plus two         *//*   pointers to adjoining triangles, plus one boundary marker, plus one     *//*   segment number.                                                         */typedef REAL **subseg;                  /* Really:  typedef subseg *subseg   *//* An oriented subsegment:  includes a pointer to a subsegment and an        *//*   orientation.  The orientation denotes a side of the edge.  Hence, there *//*   are two possible orientations.  By convention, the edge is always       *//*   directed so that the "side" denoted is the right side of the edge.      */struct osub {  subseg *ss;  int ssorient;                                       /* Ranges from 0 to 1. */};/* The vertex data structure.  Each vertex is actually an array of REALs.    *//*   The number of REALs is unknown until runtime.  An integer boundary      *//*   marker, and sometimes a pointer to a triangle, is appended after the    *//*   REALs.                                                                  */typedef REAL *vertex;/* A queue used to store encroached subsegments.  Each subsegment's vertices *//*   are stored so that we can check whether a subsegment is still the same. */struct badsubseg {  subseg encsubseg;                             /* An encroached subsegment. */  vertex subsegorg, subsegdest;                         /* Its two vertices. */};/* A queue used to store bad triangles.  The key is the square of the cosine *//*   of the smallest angle of the triangle.  Each triangle's vertices are    *//*   stored so that one can check whether a triangle is still the same.      */struct badtriang {  triangle poortri;                       /* A skinny or too-large triangle. */  REAL key;                             /* cos^2 of smallest (apical) angle. */  vertex triangorg, triangdest, triangapex;           /* Its three vertices. */  struct badtriang *nexttriang;             /* Pointer to next bad triangle. */};/* A stack of triangles flipped during the most recent vertex insertion.     *//*   The stack is used to undo the vertex insertion if the vertex encroaches *//*   upon a subsegment.                                                      */struct flipstacker {  triangle flippedtri;                       /* A recently flipped triangle. */  struct flipstacker *prevflip;               /* Previous flip in the stack. */};/* A node in a heap used to store events for the sweepline Delaunay          *//*   algorithm.  Nodes do not point directly to their parents or children in *//*   the heap.  Instead, each node knows its position in the heap, and can   *//*   look up its parent and children in a separate array.  The `eventptr'    *//*   points either to a `vertex' or to a triangle (in encoded format, so     *//*   that an orientation is included).  In the latter case, the origin of    *//*   the oriented triangle is the apex of a "circle event" of the sweepline  *//*   algorithm.  To distinguish site events from circle events, all circle   *//*   events are given an invalid (smaller than `xmin') x-coordinate `xkey'.  */struct event {  REAL xkey, ykey;                              /* Coordinates of the event. */  VOID *eventptr;      /* Can be a vertex or the location of a circle event. */  int heapposition;              /* Marks this event's position in the heap. */};/* A node in the splay tree.  Each node holds an oriented ghost triangle     *//*   that represents a boundary edge of the growing triangulation.  When a   *//*   circle event covers two boundary edges with a triangle, so that they    *//*   are no longer boundary edges, those edges are not immediately deleted   *//*   from the tree; rather, they are lazily deleted when they are next       *//*   encountered.  (Since only a random sample of boundary edges are kept    *//*   in the tree, lazy deletion is faster.)  `keydest' is used to verify     *//*   that a triangle is still the same as when it entered the splay tree; if *//*   it has been rotated (due to a circle event), it no longer represents a  *//*   boundary edge and should be deleted.                                    */struct splaynode {  struct otri keyedge;                     /* Lprev of an edge on the front. */  vertex keydest;           /* Used to verify that splay node is still live. */  struct splaynode *lchild, *rchild;              /* Children in splay tree. */}; /* A type used to allocate memory.  firstblock is the first block of items.  *//*   nowblock is the block from which items are currently being allocated.   *//*   nextitem points to the next slab of free memory for an item.            *//*   deaditemstack is the head of a linked list (stack) of deallocated items *//*   that can be recycled.  unallocateditems is the number of items that     *//*   remain to be allocated from nowblock.                                   *//*                                                                           *//* Traversal is the process of walking through the entire list of items, and *//*   is separate from allocation.  Note that a traversal will visit items on *//*   the "deaditemstack" stack as well as live items.  pathblock points to   *//*   the block currently being traversed.  pathitem points to the next item  *//*   to be traversed.  pathitemsleft is the number of items that remain to   *//*   be traversed in pathblock.                                              *//*                                                                           *//* alignbytes determines how new records should be aligned in memory.        *//*   itembytes is the length of a record in bytes (after rounding up).       *//*   itemsperblock is the number of items allocated at once in a single      *//*   block.  itemsfirstblock is the number of items in the first block,      *//*   which can vary from the others.  items is the number of currently       *//*   allocated items.  maxitems is the maximum number of items that have     *//*   been allocated at once; it is the current number of items plus the      *//*   number of records kept on deaditemstack.                                */struct memorypool {  VOID **firstblock, **nowblock;  VOID *nextitem;  VOID *deaditemstack;  VOID **pathblock;  VOID *pathitem;  int alignbytes;  int itembytes;  int itemsperblock;  int itemsfirstblock;  long items, maxitems;  int unallocateditems;  int pathitemsleft;};/* Global constants.                                                         */REAL splitter;       /* Used to split REAL factors for exact multiplication. */REAL epsilon;                             /* Floating-point machine epsilon. */REAL resulterrbound;REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;REAL iccerrboundA, iccerrboundB, iccerrboundC;REAL o3derrboundA, o3derrboundB, o3derrboundC;/* Random number seed is not constant, but I've made it global anyway.       */unsigned long randomseed;                     /* Current random number seed. *//* Mesh data structure.  Triangle operates on only one mesh, but the mesh    *//*   structure is used (instead of global variables) to allow reentrancy.    */struct mesh {/* Variables used to allocate memory for triangles, subsegments, vertices,   *//*   viri (triangles being eaten), encroached segments, bad (skinny or too   *//*   large) triangles, and splay tree nodes.                                 */  struct memorypool triangles;  struct memorypool subsegs;  struct memorypool vertices;  struct memorypool viri;  struct memorypool badsubsegs;  struct memorypool badtriangles;  struct memorypool flipstackers;  struct memorypool splaynodes;/* Variables that maintain the bad triangle queues.  The queues are          *//*   ordered from 4095 (highest priority) to 0 (lowest priority).            */  struct badtriang *queuefront[4096];  struct badtriang *queuetail[4096];  int nextnonemptyq[4096];  int firstnonemptyq;/* Variable that maintains the stack of recently flipped triangles.          */  struct flipstacker *lastflip;/* Other variables. */  REAL xmin, xmax, ymin, ymax;                            /* x and y bounds. */  REAL xminextreme;      /* Nonexistent x value used as a flag in sweepline. */  int invertices;                               /* Number of input vertices. */  int inelements;                              /* Number of input triangles. */  int insegments;                               /* Number of input segments. */  int holes;                                       /* Number of input holes. */  int regions;                                   /* Number of input regions. */  int undeads;    /* Number of input vertices that don't appear in the mesh. */  long edges;                                     /* Number of output edges. */  int mesh_dim;                                /* Dimension (ought to be 2). */  int nextras;                           /* Number of attributes per vertex. */  int eextras;                         /* Number of attributes per triangle. */  long hullsize;                          /* Number of edges in convex hull. */  int steinerleft;                 /* Number of Steiner points not yet used. */  int vertexmarkindex;         /* Index to find boundary marker of a vertex. */  int vertex2triindex;     /* Index to find a triangle adjacent to a vertex. */  int highorderindex;  /* Index to find extra nodes for high-order elements. */  int elemattribindex;            /* Index to find attributes of a triangle. */  int areaboundindex;             /* Index to find area bound of a triangle. */  int checksegments;         /* Are there segments in the triangulation yet? */  int checkquality;                  /* Has quality triangulation begun yet? */  int readnodefile;                           /* Has a .node file been read? */  long samples;              /* Number of random samples for point location. */  long incirclecount;                 /* Number of incircle tests performed. */  long counterclockcount;     /* Number of counterclockwise tests performed. */  long orient3dcount;           /* Number of 3D orientation tests performed. */  long hyperbolacount;      /* Number of right-of-hyperbola tests performed. */  long circumcentercount;  /* Number of circumcenter calculations performed. */  long circletopcount;       /* Number of circle top calculations performed. *//* Triangular bounding box vertices.                                         */  vertex infvertex1, infvertex2, infvertex3;/* Pointer to the `triangle' that occupies all of "outer space."             */  triangle *dummytri;  triangle *dummytribase;    /* Keep base address so we can free() it later. *//* Pointer to the omnipresent subsegment.  Referenced by any triangle or     *//*   subsegment that isn't really connected to a subsegment at that          *//*   location.                                                               */  subseg *dummysub;  subseg *dummysubbase;      /* Keep base address so we can free() it later. *//* Pointer to a recently visited triangle.  Improves point location if       *//*   proximate vertices are inserted sequentially.                           */  struct otri recenttri;};                                                  /* End of `struct mesh'. *//* Data structure for command line switches and file names.  This structure  *//*   is used (instead of global variables) to allow reentrancy.              */struct behavior {/* Switches for the triangulator.                                            *//*   poly: -p switch.  refine: -r switch.                                    *//*   quality: -q switch.                                                     *//*     minangle: minimum angle bound, specified after -q switch.             *//*     goodangle: cosine squared of minangle.                                *//*     offconstant: constant used to place off-center Steiner points.        *//*   vararea: -a switch without number.                                      *//*   fixedarea: -a switch with number.                                       *//*     maxarea: maximum area bound, specified after -a switch.               *//*   usertest: -u switch.                                                    *//*   regionattrib: -A switch.  convex: -c switch.                            *//*   weighted: 1 for -w switch, 2 for -W switch.  jettison: -j switch        *//*   firstnumber: inverse of -z switch.  All items are numbered starting     *//*     from `firstnumber'.                                                   *//*   edgesout: -e switch.  voronoi: -v switch.                               *//*   neighbors: -n switch.  geomview: -g switch.                             *//*   nobound: -B switch.  nopolywritten: -P switch.                          *//*   nonodewritten: -N switch.  noelewritten: -E switch.                     *//*   noiterationnum: -I switch.  noholes: -O switch.                         *//*   noexact: -X switch.                                                     *//*   order: element order, specified after -o switch.                        *//*   nobisect: count of how often -Y switch is selected.                     *//*   steiner: maximum number of Steiner points, specified after -S switch.   *//*   incremental: -i switch.  sweepline: -F switch.                          *//*   dwyer: inverse of -l switch.                                            *//*   splitseg: -s switch.                                                    *//*   conformdel: -D switch.  docheck: -C switch.                             *//*   quiet: -Q switch.  verbose: count of how often -V switch is selected.   *//*   usesegments: -p, -r, -q, or -c switch; determines whether segments are  *//*     used at all.                                                          *//*                                                                           *//* Read the instructions to find out the meaning of these switches.          */  int poly, refine, quality, vararea, fixedarea, usertest;  int regionattrib, convex, weighted, jettison;  int firstnumber;  int edgesout, voronoi, neighbors, geomview;  int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;  int noholes, noexact, conformdel;  int incremental, sweepline, dwyer;  int splitseg;  int docheck;  int quiet, verbose;  int usesegments;  int order;  int nobisect;  int steiner;  REAL minangle, goodangle, offconstant;  REAL maxarea;/* Variables for file names.                                                 */#ifndef TRILIBRARY  char innodefilename[FILENAMESIZE];  char inelefilename[FILENAMESIZE];  char inpolyfilename[FILENAMESIZE];  char areafilename[FILENAMESIZE];  char outnodefilename[FILENAMESIZE];  char outelefilename[FILENAMESIZE];  char outpolyfilename[FILENAMESIZE];  char edgefilename[FILENAMESIZE];  char vnodefilename[FILENAMESIZE];  char vedgefilename[FILENAMESIZE];  char neighborfilename[FILENAMESIZE];  char offfilename[FILENAMESIZE];#endif /* not TRILIBRARY */};                                              /* End of `struct behavior'. *//*****************************************************************************//*                                                                           *//*  Mesh manipulation primitives.  Each triangle contains three pointers to  *//*  other triangles, with orientations.  Each pointer points not to the      *//*  first byte of a triangle, but to one of the first three bytes of a       *//*  triangle.  It is necessary to extract both the triangle itself and the   *//*  orientation.  To save memory, I keep both pieces of information in one   *//*  pointer.  To make this possible, I assume that all triangles are aligned *//*  to four-byte boundaries.  The decode() routine below decodes a pointer,  *//*  extracting an orientation (in the range 0 to 2) and a pointer to the     *//*  beginning of a triangle.  The encode() routine compresses a pointer to a *//*  triangle and an orientation into a single pointer.  My assumptions that  *//*  triangles are four-byte-aligned and that the `unsigned long' type is     *//*  long enough to hold a pointer are two of the few kludges in this program.*//*                                                                           *//*  Subsegments are manipulated similarly.  A pointer to a subsegment        *//*  carries both an address and an orientation in the range 0 to 1.          *//*                                                                           *//*  The other primitives take an oriented triangle or oriented subsegment,   *//*  and return an oriented triangle or oriented subsegment or vertex; or     *//*  they change the connections in the data structure.                       *//*                                                                           *//*  Below, triangles and subsegments are denoted by their vertices.  The     *//*  triangle abc has origin (org) a, destination (dest) b, and apex (apex)   *//*  c.  These vertices occur in counterclockwise order about the triangle.   *//*  The handle abc may simultaneously denote vertex a, edge ab, and triangle *//*  abc.                                                                     *//*                                                                           *//*  Similarly, the subsegment ab has origin (sorg) a and destination (sdest) *//*  b.  If ab is thought to be directed upward (with b directly above a),    *//*  then the handle ab is thought to grasp the right side of ab, and may     *//*  simultaneously denote vertex a and edge ab.                              *//*                                                                           *//*  An asterisk (*) denotes a vertex whose identity is unknown.              *//*                                                                           *//*  Given this notation, a partial list of mesh manipulation primitives      *//*  follows.                                                                 *//*                                                                           *//*                                                                           *//*  For triangles:                                                           *//*                                                                           *//*  sym:  Find the abutting triangle; same edge.                             *//*  sym(abc) -> ba*                                                          *//*                                                                           *//*  lnext:  Find the next edge (counterclockwise) of a triangle.             *//*  lnext(abc) -> bca                                                        *//*                                                                           *//*  lprev:  Find the previous edge (clockwise) of a triangle.                *//*  lprev(abc) -> cab                                                        *//*                                                                           *//*  onext:  Find the next edge counterclockwise with the same origin.        *//*  onext(abc) -> ac*                                                        *//*                                                                           *//*  oprev:  Find the next edge clockwise with the same origin.               *//*  oprev(abc) -> a*b                                                        *//*                                                                           *//*  dnext:  Find the next edge counterclockwise with the same destination.   *//*  dnext(abc) -> *ba                                                        *//*                                                                           *//*  dprev:  Find the next edge clockwise with the same destination.          *//*  dprev(abc) -> cb*                                                        *//*                                                                           *//*  rnext:  Find the next edge (counterclockwise) of the adjacent triangle.  *//*  rnext(abc) -> *a*                                                        *//*                                                                           *//*  rprev:  Find the previous edge (clockwise) of the adjacent triangle.     *//*  rprev(abc) -> b**                                                        *//*                                                                           *//*  org:  Origin          dest:  Destination          apex:  Apex            *//*  org(abc) -> a         dest(abc) -> b              apex(abc) -> c         *//*                                                                           *//*  bond:  Bond two triangles together at the resepective handles.           *//*  bond(abc, bad)                                                           *//*                                                                           *//*                                                                           *//*  For subsegments:                                                         *//*                                                                           *//*  ssym:  Reverse the orientation of a subsegment.                          *//*  ssym(ab) -> ba                                                           *//*                                                                           *//*  spivot:  Find adjoining subsegment with the same origin.                 *//*  spivot(ab) -> a*                                                         *//*                                                                           *//*  snext:  Find next subsegment in sequence.                                *//*  snext(ab) -> b*                                                          *//*                                                                           *//*  sorg:  Origin                      sdest:  Destination                   *//*  sorg(ab) -> a                      sdest(ab) -> b                        *//*                                                                           *//*  sbond:  Bond two subsegments together at the respective origins.         *//*  sbond(ab, ac)                                                            *//*                                                                           *//*                                                                           *//*  For interacting tetrahedra and subfacets:                                *//*                                                                           *//*  tspivot:  Find a subsegment abutting a triangle.                         *//*  tspivot(abc) -> ba                                                       *//*                                                                           *//*  stpivot:  Find a triangle abutting a subsegment.                         *//*  stpivot(ab) -> ba*                                                       *//*                                                                           *//*  tsbond:  Bond a triangle to a subsegment.                                *//*  tsbond(abc, ba)                                                          *//*                                                                           *//*****************************************************************************//********* Mesh manipulation primitives begin here                   *********//**                                                                         **//**                                                                         **//* Fast lookup arrays to speed some of the mesh manipulation primitives.     */int plus1mod3[3] = {1, 2, 0};int minus1mod3[3] = {2, 0, 1};/********* Primitives for triangles                                  *********//*                                                                           *//*                                                                           *//* decode() converts a pointer to an oriented triangle.  The orientation is  *//*   extracted from the two least significant bits of the pointer.           */#define decode(ptr, otri)                                                     \  (otri).orient = (int) ((unsigned long) (ptr) & (unsigned long) 3l);         \  (otri).tri = (triangle *)                                                   \                  ((unsigned long) (ptr) ^ (unsigned long) (otri).orient)/* encode() compresses an oriented triangle into a single pointer.  It       *//*   relies on the assumption that all triangles are aligned to four-byte    *//*   boundaries, so the two least significant bits of (otri).tri are zero.   */#define encode(otri)                                                          \  (triangle) ((unsigned long) (otri).tri | (unsigned long) (otri).orient) /* The following handle manipulation primitives are all described by Guibas  *//*   and Stolfi.  However, Guibas and Stolfi use an edge-based data          *//*   structure, whereas I use a triangle-based data structure.               *//* sym() finds the abutting triangle, on the same edge.  Note that the edge  *//*   direction is necessarily reversed, because the handle specified by an   *//*   oriented triangle is directed counterclockwise around the triangle.     */#define sym(otri1, otri2)                                                     \  ptr = (otri1).tri[(otri1).orient];                                          \  decode(ptr, otri2);#define symself(otri)                                                         \  ptr = (otri).tri[(otri).orient];                                            \  decode(ptr, otri);/* lnext() finds the next edge (counterclockwise) of a triangle.             */#define lnext(otri1, otri2)                                                   \  (otri2).tri = (otri1).tri;                                                  \  (otri2).orient = plus1mod3[(otri1).orient]#define lnextself(otri)                                                       \  (otri).orient = plus1mod3[(otri).orient]/* lprev() finds the previous edge (clockwise) of a triangle.                */#define lprev(otri1, otri2)                                                   \  (otri2).tri = (otri1).tri;                                                  \  (otri2).orient = minus1mod3[(otri1).orient]#define lprevself(otri)                                                       \  (otri).orient = minus1mod3[(otri).orient]/* onext() spins counterclockwise around a vertex; that is, it finds the     *//*   next edge with the same origin in the counterclockwise direction.  This *//*   edge is part of a different triangle.                                   */#define onext(otri1, otri2)                                                   \  lprev(otri1, otri2);                                                        \  symself(otri2);#define onextself(otri)                                                       \  lprevself(otri);                                                            \  symself(otri);/* oprev() spins clockwise around a vertex; that is, it finds the next edge  *//*   with the same origin in the clockwise direction.  This edge is part of  *//*   a different triangle.                                                   */#define oprev(otri1, otri2)                                                   \  sym(otri1, otri2);                                                          \  lnextself(otri2);#define oprevself(otri)                                                       \  symself(otri);                                                              \  lnextself(otri);/* dnext() spins counterclockwise around a vertex; that is, it finds the     *//*   next edge with the same destination in the counterclockwise direction.  *//*   This edge is part of a different triangle.                              */#define dnext(otri1, otri2)                                                   \  sym(otri1, otri2);                                                          \  lprevself(otri2);#define dnextself(otri)                                                       \  symself(otri);                                                              \  lprevself(otri);/* dprev() spins clockwise around a vertex; that is, it finds the next edge  *//*   with the same destination in the clockwise direction.  This edge is     *//*   part of a different triangle.                                           */#define dprev(otri1, otri2)                                                   \  lnext(otri1, otri2);                                                        \  symself(otri2);#define dprevself(otri)                                                       \  lnextself(otri);                                                            \  symself(otri);/* rnext() moves one edge counterclockwise about the adjacent triangle.      *//*   (It's best understood by reading Guibas and Stolfi.  It involves        *//*   changing triangles twice.)                                              */#define rnext(otri1, otri2)                                                   \  sym(otri1, otri2);                                                          \  lnextself(otri2);                                                           \  symself(otri2);#define rnextself(otri)                                                       \  symself(otri);                                                              \  lnextself(otri);                                                            \  symself(otri);/* rprev() moves one edge clockwise about the adjacent triangle.             *//*   (It's best understood by reading Guibas and Stolfi.  It involves        *//*   changing triangles twice.)                                              */#define rprev(otri1, otri2)                                                   \  sym(otri1, otri2);                                                          \  lprevself(otri2);                                                           \  symself(otri2);#define rprevself(otri)                                                       \  symself(otri);                                                              \  lprevself(otri);                                                            \  symself(otri);/* These primitives determine or set the origin, destination, or apex of a   *//* triangle.                                                                 */#define org(otri, vertexptr)                                                  \  vertexptr = (vertex) (otri).tri[plus1mod3[(otri).orient] + 3]#define dest(otri, vertexptr)                                                 \  vertexptr = (vertex) (otri).tri[minus1mod3[(otri).orient] + 3]#define apex(otri, vertexptr)                                                 \  vertexptr = (vertex) (otri).tri[(otri).orient + 3]#define setorg(otri, vertexptr)                                               \  (otri).tri[plus1mod3[(otri).orient] + 3] = (triangle) vertexptr#define setdest(otri, vertexptr)                                              \  (otri).tri[minus1mod3[(otri).orient] + 3] = (triangle) vertexptr#define setapex(otri, vertexptr)                                              \  (otri).tri[(otri).orient + 3] = (triangle) vertexptr/* Bond two triangles together.                                              */#define bond(otri1, otri2)                                                    \  (otri1).tri[(otri1).orient] = encode(otri2);                                \  (otri2).tri[(otri2).orient] = encode(otri1)/* Dissolve a bond (from one side).  Note that the other triangle will still *//*   think it's connected to this triangle.  Usually, however, the other     *//*   triangle is being deleted entirely, or bonded to another triangle, so   *//*   it doesn't matter.                                                      */#define dissolve(otri)                                                        \  (otri).tri[(otri).orient] = (triangle) m->dummytri/* Copy an oriented triangle.                                                */#define otricopy(otri1, otri2)                                                \  (otri2).tri = (otri1).tri;                                                  \  (otri2).orient = (otri1).orient/* Test for equality of oriented triangles.                                  */#define otriequal(otri1, otri2)                                               \  (((otri1).tri == (otri2).tri) &&                                            \   ((otri1).orient == (otri2).orient))/* Primitives to infect or cure a triangle with the virus.  These rely on    *//*   the assumption that all subsegments are aligned to four-byte boundaries.*/#define infect(otri)                                                          \  (otri).tri[6] = (triangle)                                                  \                    ((unsigned long) (otri).tri[6] | (unsigned long) 2l)#define uninfect(otri)                                                        \  (otri).tri[6] = (triangle)                                                  \                    ((unsigned long) (otri).tri[6] & ~ (unsigned long) 2l)/* Test a triangle for viral infection.                                      */#define infected(otri)                                                        \  (((unsigned long) (otri).tri[6] & (unsigned long) 2l) != 0l)/* Check or set a triangle's attributes.                                     */#define elemattribute(otri, attnum)                                           \  ((REAL *) (otri).tri)[m->elemattribindex + (attnum)]#define setelemattribute(otri, attnum, value)                                 \  ((REAL *) (otri).tri)[m->elemattribindex + (attnum)] = value/* Check or set a triangle's maximum area bound.                             */#define areabound(otri)  ((REAL *) (otri).tri)[m->areaboundindex]#define setareabound(otri, value)                                             \  ((REAL *) (otri).tri)[m->areaboundindex] = value/* Check or set a triangle's deallocation.  Its second pointer is set to     *//*   NULL to indicate that it is not allocated.  (Its first pointer is used  *//*   for the stack of dead items.)  Its fourth pointer (its first vertex)    *//*   is set to NULL in case a `badtriang' structure points to it.            */#define deadtri(tria)  ((tria)[1] == (triangle) NULL)#define killtri(tria)                                                         \  (tria)[1] = (triangle) NULL;                                                \  (tria)[3] = (triangle) NULL/********* Primitives for subsegments                                *********//*                                                                           *//*                                                                           *//* sdecode() converts a pointer to an oriented subsegment.  The orientation  *//*   is extracted from the least significant bit of the pointer.  The two    *//*   least significant bits (one for orientation, one for viral infection)   *//*   are masked out to produce the real pointer.                             */#define sdecode(sptr, osub)                                                   \  (osub).ssorient = (int) ((unsigned long) (sptr) & (unsigned long) 1l);      \  (osub).ss = (subseg *)                                                      \              ((unsigned long) (sptr) & ~ (unsigned long) 3l)/* sencode() compresses an oriented subsegment into a single pointer.  It    *//*   relies on the assumption that all subsegments are aligned to two-byte   *//*   boundaries, so the least significant bit of (osub).ss is zero.          */#define sencode(osub)                                                         \  (subseg) ((unsigned long) (osub).ss | (unsigned long) (osub).ssorient)/* ssym() toggles the orientation of a subsegment.                           */#define ssym(osub1, osub2)                                                    \  (osub2).ss = (osub1).ss;                                                    \  (osub2).ssorient = 1 - (osub1).ssorient#define ssymself(osub)                                                        \  (osub).ssorient = 1 - (osub).ssorient/* spivot() finds the other subsegment (from the same segment) that shares   *//*   the same origin.                                                        */#define spivot(osub1, osub2)                                                  \  sptr = (osub1).ss[(osub1).ssorient];                                        \  sdecode(sptr, osub2)#define spivotself(osub)                                                      \  sptr = (osub).ss[(osub).ssorient];                                          \  sdecode(sptr, osub)/* snext() finds the next subsegment (from the same segment) in sequence;    *//*   one whose origin is the input subsegment's destination.                 */#define snext(osub1, osub2)                                                   \  sptr = (osub1).ss[1 - (osub1).ssorient];                                    \  sdecode(sptr, osub2)#define snextself(osub)                                                       \  sptr = (osub).ss[1 - (osub).ssorient];                                      \  sdecode(sptr, osub)/* These primitives determine or set the origin or destination of a          *//*   subsegment or the segment that includes it.                             */#define sorg(osub, vertexptr)                                                 \  vertexptr = (vertex) (osub).ss[2 + (osub).ssorient]#define sdest(osub, vertexptr)                                                \  vertexptr = (vertex) (osub).ss[3 - (osub).ssorient]#define setsorg(osub, vertexptr)                                              \  (osub).ss[2 + (osub).ssorient] = (subseg) vertexptr#define setsdest(osub, vertexptr)                                             \  (osub).ss[3 - (osub).ssorient] = (subseg) vertexptr#define segorg(osub, vertexptr)                                               \  vertexptr = (vertex) (osub).ss[4 + (osub).ssorient]#define segdest(osub, vertexptr)                                              \  vertexptr = (vertex) (osub).ss[5 - (osub).ssorient]#define setsegorg(osub, vertexptr)                                            \  (osub).ss[4 + (osub).ssorient] = (subseg) vertexptr#define setsegdest(osub, vertexptr)                                           \  (osub).ss[5 - (osub).ssorient] = (subseg) vertexptr/* These primitives read or set a boundary marker.  Boundary markers are     *//*   used to hold user-defined tags for setting boundary conditions in       *//*   finite element solvers.                                                 */#define mark(osub)  (* (int *) ((osub).ss + 8))#define setmark(osub, value)                                                  \  * (int *) ((osub).ss + 8) = value/* Bond two subsegments together.                                            */#define sbond(osub1, osub2)                                                   \  (osub1).ss[(osub1).ssorient] = sencode(osub2);                              \  (osub2).ss[(osub2).ssorient] = sencode(osub1)/* Dissolve a subsegment bond (from one side).  Note that the other          *//*   subsegment will still think it's connected to this subsegment.          */#define sdissolve(osub)                                                       \  (osub).ss[(osub).ssorient] = (subseg) m->dummysub/* Copy a subsegment.                                                        */#define subsegcopy(osub1, osub2)                                              \  (osub2).ss = (osub1).ss;                                                    \  (osub2).ssorient = (osub1).ssorient/* Test for equality of subsegments.                                         */#define subsegequal(osub1, osub2)                                             \  (((osub1).ss == (osub2).ss) &&                                              \   ((osub1).ssorient == (osub2).ssorient))/* Check or set a subsegment's deallocation.  Its second pointer is set to   *//*   NULL to indicate that it is not allocated.  (Its first pointer is used  *//*   for the stack of dead items.)  Its third pointer (its first vertex)     *//*   is set to NULL in case a `badsubseg' structure points to it.            */#define deadsubseg(sub)  ((sub)[1] == (subseg) NULL)#define killsubseg(sub)                                                       \  (sub)[1] = (subseg) NULL;                                                   \  (sub)[2] = (subseg) NULL/********* Primitives for interacting triangles and subsegments      *********//*                                                                           *//*                                                                           *//* tspivot() finds a subsegment abutting a triangle.                         */#define tspivot(otri, osub)                                                   \  sptr = (subseg) (otri).tri[6 + (otri).orient];                              \  sdecode(sptr, osub)/* stpivot() finds a triangle abutting a subsegment.  It requires that the   *//*   variable `ptr' of type `triangle' be defined.                           */#define stpivot(osub, otri)                                                   \  ptr = (triangle) (osub).ss[6 + (osub).ssorient];                            \  decode(ptr, otri)/* Bond a triangle to a subsegment.                                          */#define tsbond(otri, osub)                                                    \  (otri).tri[6 + (otri).orient] = (triangle) sencode(osub);                   \  (osub).ss[6 + (osub).ssorient] = (subseg) encode(otri)/* Dissolve a bond (from the triangle side).                                 */#define tsdissolve(otri)                                                      \  (otri).tri[6 + (otri).orient] = (triangle) m->dummysub/* Dissolve a bond (from the subsegment side).                               */#define stdissolve(osub)                                                      \  (osub).ss[6 + (osub).ssorient] = (subseg) m->dummytri/********* Primitives for vertices                                   *********//*                                                                           *//*                                                                           */#define vertexmark(vx)  ((int *) (vx))[m->vertexmarkindex]#define setvertexmark(vx, value)                                              \  ((int *) (vx))[m->vertexmarkindex] = value#define vertextype(vx)  ((int *) (vx))[m->vertexmarkindex + 1]#define setvertextype(vx, value)                                              \  ((int *) (vx))[m->vertexmarkindex + 1] = value#define vertex2tri(vx)  ((triangle *) (vx))[m->vertex2triindex]#define setvertex2tri(vx, value)                                              \  ((triangle *) (vx))[m->vertex2triindex] = value/**                                                                         **//**                                                                         **//********* Mesh manipulation primitives end here                     *********//********* User-defined triangle evaluation routine begins here      *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  triunsuitable()   Determine if a triangle is unsuitable, and thus must   *//*                    be further refined.                                    *//*                                                                           *//*  You may write your own procedure that decides whether or not a selected  *//*  triangle is too big (and needs to be refined).  There are two ways to do *//*  this.                                                                    *//*                                                                           *//*  (1)  Modify the procedure `triunsuitable' below, then recompile          *//*  Triangle.                                                                *//*                                                                           *//*  (2)  Define the symbol EXTERNAL_TEST (either by adding the definition    *//*  to this file, or by using the appropriate compiler switch).  This way,   *//*  you can compile triangle.c separately from your test.  Write your own    *//*  `triunsuitable' procedure in a separate C file (using the same prototype *//*  as below).  Compile it and link the object code with triangle.o.         *//*                                                                           *//*  This procedure returns 1 if the triangle is too large and should be      *//*  refined; 0 otherwise.                                                    *//*                                                                           *//*****************************************************************************/#ifdef EXTERNAL_TESTint triunsuitable();#else /* not EXTERNAL_TEST */#ifdef ANSI_DECLARATORSint triunsuitable(vertex triorg, vertex tridest, vertex triapex, REAL area)#else /* not ANSI_DECLARATORS */int triunsuitable(triorg, tridest, triapex, area)vertex triorg;                              /* The triangle's origin vertex. */vertex tridest;                        /* The triangle's destination vertex. */vertex triapex;                               /* The triangle's apex vertex. */REAL area;                                      /* The area of the triangle. */#endif /* not ANSI_DECLARATORS */{  REAL dxoa, dxda, dxod;  REAL dyoa, dyda, dyod;  REAL oalen, dalen, odlen;  REAL maxlen;  dxoa = triorg[0] - triapex[0];  dyoa = triorg[1] - triapex[1];  dxda = tridest[0] - triapex[0];  dyda = tridest[1] - triapex[1];  dxod = triorg[0] - tridest[0];  dyod = triorg[1] - tridest[1];  /* Find the squares of the lengths of the triangle's three edges. */  oalen = dxoa * dxoa + dyoa * dyoa;  dalen = dxda * dxda + dyda * dyda;  odlen = dxod * dxod + dyod * dyod;  /* Find the square of the length of the longest edge. */  maxlen = (dalen > oalen) ? dalen : oalen;  maxlen = (odlen > maxlen) ? odlen : maxlen;  if (maxlen > 0.05 * (triorg[0] * triorg[0] + triorg[1] * triorg[1]) + 0.02) {    return 1;  } else {    return 0;  }}#endif /* not EXTERNAL_TEST *//**                                                                         **//**                                                                         **//********* User-defined triangle evaluation routine ends here        *********//********* Memory allocation and program exit wrappers begin here    *********//**                                                                         **//**                                                                         **/#ifdef ANSI_DECLARATORSvoid triexit(int status)#else /* not ANSI_DECLARATORS */void triexit(status)int status;#endif /* not ANSI_DECLARATORS */{  exit(status);}#ifdef ANSI_DECLARATORSVOID *trimalloc(int size)#else /* not ANSI_DECLARATORS */VOID *trimalloc(size)int size;#endif /* not ANSI_DECLARATORS */{  VOID *memptr;  memptr = (VOID *) malloc((unsigned int) size);  if (memptr == (VOID *) NULL) {    printf("Error:  Out of memory.\n");    triexit(1);  }  return(memptr);}#ifdef ANSI_DECLARATORSvoid trifree(VOID *memptr)#else /* not ANSI_DECLARATORS */void trifree(memptr)VOID *memptr;#endif /* not ANSI_DECLARATORS */{  free(memptr);}/**                                                                         **//**                                                                         **//********* Memory allocation and program exit wrappers end here      *********//********* User interaction routines begin here                      *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  syntax()   Print list of command line switches.                          *//*                                                                           *//*****************************************************************************/#ifndef TRILIBRARYvoid syntax(){#ifdef CDT_ONLY#ifdef REDUCED  printf("triangle [-pAcjevngBPNEIOXzo_lQVh] input_file\n");#else /* not REDUCED */  printf("triangle [-pAcjevngBPNEIOXzo_iFlCQVh] input_file\n");#endif /* not REDUCED */#else /* not CDT_ONLY */#ifdef REDUCED  printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__lQVh] input_file\n");#else /* not REDUCED */  printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh] input_file\n");#endif /* not REDUCED */#endif /* not CDT_ONLY */  printf("    -p  Triangulates a Planar Straight Line Graph (.poly file).\n");#ifndef CDT_ONLY  printf("    -r  Refines a previously generated mesh.\n");  printf(    "    -q  Quality mesh generation.  A minimum angle may be specified.\n");  printf("    -a  Applies a maximum triangle area constraint.\n");  printf("    -u  Applies a user-defined triangle constraint.\n");#endif /* not CDT_ONLY */  printf(    "    -A  Applies attributes to identify triangles in certain regions.\n");  printf("    -c  Encloses the convex hull with segments.\n");#ifndef CDT_ONLY  printf("    -D  Conforming Delaunay:  all triangles are truly Delaunay.\n");#endif /* not CDT_ONLY *//*  printf("    -w  Weighted Delaunay triangulation.\n");  printf("    -W  Regular triangulation (lower hull of a height field).\n");*/  printf("    -j  Jettison unused vertices from output .node file.\n");  printf("    -e  Generates an edge list.\n");  printf("    -v  Generates a Voronoi diagram.\n");  printf("    -n  Generates a list of triangle neighbors.\n");  printf("    -g  Generates an .off file for Geomview.\n");  printf("    -B  Suppresses output of boundary information.\n");  printf("    -P  Suppresses output of .poly file.\n");  printf("    -N  Suppresses output of .node file.\n");  printf("    -E  Suppresses output of .ele file.\n");  printf("    -I  Suppresses mesh iteration numbers.\n");  printf("    -O  Ignores holes in .poly file.\n");  printf("    -X  Suppresses use of exact arithmetic.\n");  printf("    -z  Numbers all items starting from zero (rather than one).\n");  printf("    -o2 Generates second-order subparametric elements.\n");#ifndef CDT_ONLY  printf("    -Y  Suppresses boundary segment splitting.\n");  printf("    -S  Specifies maximum number of added Steiner points.\n");#endif /* not CDT_ONLY */#ifndef REDUCED  printf("    -i  Uses incremental method, rather than divide-and-conquer.\n");  printf("    -F  Uses Fortune's sweepline algorithm, rather than d-and-c.\n");#endif /* not REDUCED */  printf("    -l  Uses vertical cuts only, rather than alternating cuts.\n");#ifndef REDUCED#ifndef CDT_ONLY  printf(    "    -s  Force segments into mesh by splitting (instead of using CDT).\n");#endif /* not CDT_ONLY */  printf("    -C  Check consistency of final mesh.\n");#endif /* not REDUCED */  printf("    -Q  Quiet:  No terminal output except errors.\n");  printf("    -V  Verbose:  Detailed information on what I'm doing.\n");  printf("    -h  Help:  Detailed instructions for Triangle.\n");  triexit(0);}#endif /* not TRILIBRARY *//*****************************************************************************//*                                                                           *//*  info()   Print out complete instructions.                                *//*                                                                           *//*****************************************************************************/#ifndef TRILIBRARYvoid info(){  printf("Triangle\n");  printf("A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.\n");  printf("Version 1.6\n\n");  printf("Copyright 1993, 1995, 1997, 1998, 2002, 2005 Jonathan Richard Shewchuk\n");  printf("2360 Woolsey #H / Berkeley, California 94705-1927\n");  printf("Bugs/comments to jrs@cs.berkeley.edu\n");  printf("Created as part of the Quake project (tools for earthquake simulation).\n");  printf("Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n");  printf("There is no warranty whatsoever.  Use at your own risk.\n");#ifdef SINGLE  printf("This executable is compiled for single precision arithmetic.\n\n\n");#else /* not SINGLE */  printf("This executable is compiled for double precision arithmetic.\n\n\n");#endif /* not SINGLE */  printf("Triangle generates exact Delaunay triangulations, constrained Delaunay\n");  printf("triangulations, conforming Delaunay triangulations, Voronoi diagrams, and\n");  printf("high-quality triangular meshes.  The latter can be generated with no small\n");  printf("or large angles, and are thus suitable for finite element analysis.  If no\n");  printf("command line switch is specified, your .node input file is read, and the\n");  printf("Delaunay triangulation is returned in .node and .ele output files.  The\n");  printf("command syntax is:\n\n");  printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh] input_file\n\n");  printf("Underscores indicate that numbers may optionally follow certain switches.\n");  printf("Do not leave any space between a switch and its numeric parameter.\n");  printf("input_file must be a file with extension .node, or extension .poly if the\n");  printf("-p switch is used.  If -r is used, you must supply .node and .ele files,\n");  printf("and possibly a .poly file and an .area file as well.  The formats of these\n");  printf("files are described below.\n\n");  printf("Command Line Switches:\n\n");  printf("    -p  Reads a Planar Straight Line Graph (.poly file), which can specify\n");  printf("        vertices, segments, holes, regional attributes, and regional area\n");  printf("        constraints.  Generates a constrained Delaunay triangulation (CDT)\n");  printf("        fitting the input; or, if -s, -q, -a, or -u is used, a conforming\n");  printf("        constrained Delaunay triangulation (CCDT).  If you want a truly\n");  printf("        Delaunay (not just constrained Delaunay) triangulation, use -D as\n");  printf("        well.  When -p is not used, Triangle reads a .node file by default.\n");  printf("    -r  Refines a previously generated mesh.  The mesh is read from a .node\n");  printf("        file and an .ele file.  If -p is also used, a .poly file is read\n");  printf("        and used to constrain segments in the mesh.  If -a is also used\n");  printf("        (with no number following), an .area file is read and used to\n");  printf("        impose area constraints on the mesh.  Further details on refinement\n");  printf("        appear below.\n");  printf("    -q  Quality mesh generation by Delaunay refinement (a hybrid of Paul\n");  printf("        Chew's and Jim Ruppert's algorithms).  Adds vertices to the mesh to\n");  printf("        ensure that all angles are between 20 and 140 degrees.  An\n");  printf("        alternative bound on the minimum angle, replacing 20 degrees, may\n");  printf("        be specified after the `q'.  The specified angle may include a\n");  printf("        decimal point, but not exponential notation.  Note that a bound of\n");  printf("        theta degrees on the smallest angle also implies a bound of\n");  printf("        (180 - 2 theta) on the largest angle.  If the minimum angle is 28.6\n");  printf("        degrees or smaller, Triangle is mathematically guaranteed to\n");  printf("        terminate (assuming infinite precision arithmetic--Triangle may\n");  printf("        fail to terminate if you run out of precision).  In practice,\n");  printf("        Triangle often succeeds for minimum angles up to 34 degrees.  For\n");  printf("        some meshes, however, you might need to reduce the minimum angle to\n");  printf("        avoid problems associated with insufficient floating-point\n");  printf("        precision.\n");  printf("    -a  Imposes a maximum triangle area.  If a number follows the `a', no\n");  printf("        triangle is generated whose area is larger than that number.  If no\n");  printf("        number is specified, an .area file (if -r is used) or .poly file\n");  printf("        (if -r is not used) specifies a set of maximum area constraints.\n");  printf("        An .area file contains a separate area constraint for each\n");  printf("        triangle, and is useful for refining a finite element mesh based on\n");  printf("        a posteriori error estimates.  A .poly file can optionally contain\n");  printf("        an area constraint for each segment-bounded region, thereby\n");  printf("        controlling triangle densities in a first triangulation of a PSLG.\n");  printf("        You can impose both a fixed area constraint and a varying area\n");  printf("        constraint by invoking the -a switch twice, once with and once\n");  printf("        without a number following.  Each area specified may include a\n");  printf("        decimal point.\n");  printf("    -u  Imposes a user-defined constraint on triangle size.  There are two\n");  printf("        ways to use this feature.  One is to edit the triunsuitable()\n");  printf("        procedure in triangle.c to encode any constraint you like, then\n");  printf("        recompile Triangle.  The other is to compile triangle.c with the\n");  printf("        EXTERNAL_TEST symbol set (compiler switch -DEXTERNAL_TEST), then\n");  printf("        link Triangle with a separate object file that implements\n");  printf("        triunsuitable().  In either case, the -u switch causes the user-\n");  printf("        defined test to be applied to every triangle.\n");  printf("    -A  Assigns an additional floating-point attribute to each triangle\n");  printf("        that identifies what segment-bounded region each triangle belongs\n");  printf("        to.  Attributes are assigned to regions by the .poly file.  If a\n");  printf("        region is not explicitly marked by the .poly file, triangles in\n");  printf("        that region are assigned an attribute of zero.  The -A switch has\n");  printf("        an effect only when the -p switch is used and the -r switch is not.\n");  printf("    -c  Creates segments on the convex hull of the triangulation.  If you\n");  printf("        are triangulating a vertex set, this switch causes a .poly file to\n");  printf("        be written, containing all edges of the convex hull.  If you are\n");  printf("        triangulating a PSLG, this switch specifies that the whole convex\n");  printf("        hull of the PSLG should be triangulated, regardless of what\n");  printf("        segments the PSLG has.  If you do not use this switch when\n");  printf("        triangulating a PSLG, Triangle assumes that you have identified the\n");  printf("        region to be triangulated by surrounding it with segments of the\n");  printf("        input PSLG.  Beware:  if you are not careful, this switch can cause\n");  printf("        the introduction of an extremely thin angle between a PSLG segment\n");  printf("        and a convex hull segment, which can cause overrefinement (and\n");  printf("        possibly failure if Triangle runs out of precision).  If you are\n");  printf("        refining a mesh, the -c switch works differently:  it causes a\n");  printf("        .poly file to be written containing the boundary edges of the mesh\n");  printf("        (useful if no .poly file was read).\n");  printf("    -D  Conforming Delaunay triangulation:  use this switch if you want to\n");  printf("        ensure that all the triangles in the mesh are Delaunay, and not\n");  printf("        merely constrained Delaunay; or if you want to ensure that all the\n");  printf("        Voronoi vertices lie within the triangulation.  (Some finite volume\n");  printf("        methods have this requirement.)  This switch invokes Ruppert's\n");  printf("        original algorithm, which splits every subsegment whose diametral\n");  printf("        circle is encroached.  It usually increases the number of vertices\n");  printf("        and triangles.\n");  printf("    -j  Jettisons vertices that are not part of the final triangulation\n");  printf("        from the output .node file.  By default, Triangle copies all\n");  printf("        vertices in the input .node file to the output .node file, in the\n");  printf("        same order, so their indices do not change.  The -j switch prevents\n");  printf("        duplicated input vertices, or vertices `eaten' by holes, from\n");  printf("        appearing in the output .node file.  Thus, if two input vertices\n");  printf("        have exactly the same coordinates, only the first appears in the\n");  printf("        output.  If any vertices are jettisoned, the vertex numbering in\n");  printf("        the output .node file differs from that of the input .node file.\n");  printf("    -e  Outputs (to an .edge file) a list of edges of the triangulation.\n");  printf("    -v  Outputs the Voronoi diagram associated with the triangulation.\n");  printf("        Does not attempt to detect degeneracies, so some Voronoi vertices\n");  printf("        may be duplicated.  See the discussion of Voronoi diagrams below.\n");  printf("    -n  Outputs (to a .neigh file) a list of triangles neighboring each\n");  printf("        triangle.\n");  printf("    -g  Outputs the mesh to an Object File Format (.off) file, suitable for\n");  printf("        viewing with the Geometry Center's Geomview package.\n");  printf("    -B  No boundary markers in the output .node, .poly, and .edge output\n");  printf("        files.  See the detailed discussion of boundary markers below.\n");  printf("    -P  No output .poly file.  Saves disk space, but you lose the ability\n");  printf("        to maintain constraining segments on later refinements of the mesh.\n");  printf("    -N  No output .node file.\n");  printf("    -E  No output .ele file.\n");  printf("    -I  No iteration numbers.  Suppresses the output of .node and .poly\n");  printf("        files, so your input files won't be overwritten.  (If your input is\n");  printf("        a .poly file only, a .node file is written.)  Cannot be used with\n");  printf("        the -r switch, because that would overwrite your input .ele file.\n");  printf("        Shouldn't be used with the -q, -a, -u, or -s switch if you are\n");  printf("        using a .node file for input, because no .node file is written, so\n");  printf("        there is no record of any added Steiner points.\n");  printf("    -O  No holes.  Ignores the holes in the .poly file.\n");  printf("    -X  No exact arithmetic.  Normally, Triangle uses exact floating-point\n");  printf("        arithmetic for certain tests if it thinks the inexact tests are not\n");  printf("        accurate enough.  Exact arithmetic ensures the robustness of the\n");  printf("        triangulation algorithms, despite floating-point roundoff error.\n");  printf("        Disabling exact arithmetic with the -X switch causes a small\n");  printf("        improvement in speed and creates the possibility that Triangle will\n");  printf("        fail to produce a valid mesh.  Not recommended.\n");  printf("    -z  Numbers all items starting from zero (rather than one).  Note that\n");  printf("        this switch is normally overridden by the value used to number the\n");  printf("        first vertex of the input .node or .poly file.  However, this\n");  printf("        switch is useful when calling Triangle from another program.\n");  printf("    -o2 Generates second-order subparametric elements with six nodes each.\n");  printf("    -Y  No new vertices on the boundary.  This switch is useful when the\n");  printf("        mesh boundary must be preserved so that it conforms to some\n");  printf("        adjacent mesh.  Be forewarned that you will probably sacrifice much\n");  printf("        of the quality of the mesh; Triangle will try, but the resulting\n");  printf("        mesh may contain poorly shaped triangles.  Works well if all the\n");  printf("        boundary vertices are closely spaced.  Specify this switch twice\n");  printf("        (`-YY') to prevent all segment splitting, including internal\n");  printf("        boundaries.\n");  printf("    -S  Specifies the maximum number of Steiner points (vertices that are\n");  printf("        not in the input, but are added to meet the constraints on minimum\n");  printf("        angle and maximum area).  The default is to allow an unlimited\n");  printf("        number.  If you specify this switch with no number after it,\n");  printf("        the limit is set to zero.  Triangle always adds vertices at segment\n");  printf("        intersections, even if it needs to use more vertices than the limit\n");  printf("        you set.  When Triangle inserts segments by splitting (-s), it\n");  printf("        always adds enough vertices to ensure that all the segments of the\n");  printf("        PLSG are recovered, ignoring the limit if necessary.\n");  printf("    -i  Uses an incremental rather than a divide-and-conquer algorithm to\n");  printf("        construct a Delaunay triangulation.  Try it if the divide-and-\n");  printf("        conquer algorithm fails.\n");  printf("    -F  Uses Steven Fortune's sweepline algorithm to construct a Delaunay\n");  printf("        triangulation.  Warning:  does not use exact arithmetic for all\n");  printf("        calculations.  An exact result is not guaranteed.\n");  printf("    -l  Uses only vertical cuts in the divide-and-conquer algorithm.  By\n");  printf("        default, Triangle alternates between vertical and horizontal cuts,\n");  printf("        which usually improve the speed except with vertex sets that are\n");  printf("        small or short and wide.  This switch is primarily of theoretical\n");  printf("        interest.\n");  printf("    -s  Specifies that segments should be forced into the triangulation by\n");  printf("        recursively splitting them at their midpoints, rather than by\n");  printf("        generating a constrained Delaunay triangulation.  Segment splitting\n");  printf("        is true to Ruppert's original algorithm, but can create needlessly\n");  printf("        small triangles.  This switch is primarily of theoretical interest.\n");  printf("    -C  Check the consistency of the final mesh.  Uses exact arithmetic for\n");  printf("        checking, even if the -X switch is used.  Useful if you suspect\n");  printf("        Triangle is buggy.\n");  printf("    -Q  Quiet:  Suppresses all explanation of what Triangle is doing,\n");  printf("        unless an error occurs.\n");  printf("    -V  Verbose:  Gives detailed information about what Triangle is doing.\n");  printf("        Add more `V's for increasing amount of detail.  `-V' is most\n");  printf("        useful; itgives information on algorithmic progress and much more\n");  printf("        detailed statistics.  `-VV' gives vertex-by-vertex details, and\n");  printf("        prints so much that Triangle runs much more slowly.  `-VVVV' gives\n");  printf("        information only a debugger could love.\n");  printf("    -h  Help:  Displays these instructions.\n");  printf("\n");  printf("Definitions:\n");  printf("\n");  printf("  A Delaunay triangulation of a vertex set is a triangulation whose\n");  printf("  vertices are the vertex set, that covers the convex hull of the vertex\n");  printf("  set.  A Delaunay triangulation has the property that no vertex lies\n");  printf("  inside the circumscribing circle (circle that passes through all three\n");  printf("  vertices) of any triangle in the triangulation.\n\n");  printf("  A Voronoi diagram of a vertex set is a subdivision of the plane into\n");  printf("  polygonal cells (some of which may be unbounded, meaning infinitely\n");  printf("  large), where each cell is the set of points in the plane that are closer\n");  printf("  to some input vertex than to any other input vertex.  The Voronoi diagram\n");  printf("  is a geometric dual of the Delaunay triangulation.\n\n");  printf("  A Planar Straight Line Graph (PSLG) is a set of vertices and segments.\n");  printf("  Segments are simply edges, whose endpoints are all vertices in the PSLG.\n");  printf("  Segments may intersect each other only at their endpoints.  The file\n");  printf("  format for PSLGs (.poly files) is described below.\n\n");  printf("  A constrained Delaunay triangulation (CDT) of a PSLG is similar to a\n");  printf("  Delaunay triangulation, but each PSLG segment is present as a single edge\n");  printf("  of the CDT.  (A constrained Delaunay triangulation is not truly a\n");  printf("  Delaunay triangulation, because some of its triangles might not be\n");  printf("  Delaunay.)  By definition, a CDT does not have any vertices other than\n");  printf("  those specified in the input PSLG.  Depending on context, a CDT might\n");  printf("  cover the convex hull of the PSLG, or it might cover only a segment-\n");  printf("  bounded region (e.g. a polygon).\n\n");  printf("  A conforming Delaunay triangulation of a PSLG is a triangulation in which\n");  printf("  each triangle is truly Delaunay, and each PSLG segment is represented by\n");  printf("  a linear contiguous sequence of edges of the triangulation.  New vertices\n");  printf("  (not part of the PSLG) may appear, and each input segment may have been\n");  printf("  subdivided into shorter edges (subsegments) by these additional vertices.\n");  printf("  The new vertices are frequently necessary to maintain the Delaunay\n");  printf("  property while ensuring that every segment is represented.\n\n");  printf("  A conforming constrained Delaunay triangulation (CCDT) of a PSLG is a\n");  printf("  triangulation of a PSLG whose triangles are constrained Delaunay.  New\n");  printf("  vertices may appear, and input segments may be subdivided into\n");  printf("  subsegments, but not to guarantee that segments are respected; rather, to\n");  printf("  improve the quality of the triangles.  The high-quality meshes produced\n");  printf("  by the -q switch are usually CCDTs, but can be made conforming Delaunay\n");  printf("  with the -D switch.\n\n");  printf("File Formats:\n\n");  printf("  All files may contain comments prefixed by the character '#'.  Vertices,\n");  printf("  triangles, edges, holes, and maximum area constraints must be numbered\n");  printf("  consecutively, starting from either 1 or 0.  Whichever you choose, all\n");  printf("  input files must be consistent; if the vertices are numbered from 1, so\n");  printf("  must be all other objects.  Triangle automatically detects your choice\n");  printf("  while reading the .node (or .poly) file.  (When calling Triangle from\n");  printf("  another program, use the -z switch if you wish to number objects from\n");  printf("  zero.)  Examples of these file formats are given below.\n\n");  printf("  .node files:\n");  printf("    First line:  <# of vertices> <dimension (must be 2)> <# of attributes>\n");  printf("                                           <# of boundary markers (0 or 1)>\n");  printf("    Remaining lines:  <vertex #> <x> <y> [attributes] [boundary marker]\n");  printf("\n");  printf("    The attributes, which are typically floating-point values of physical\n");  printf("    quantities (such as mass or conductivity) associated with the nodes of\n");  printf("    a finite element mesh, are copied unchanged to the output mesh.  If -q,\n");  printf("    -a, -u, -D, or -s is selected, each new Steiner point added to the mesh\n");  printf("    has attributes assigned to it by linear interpolation.\n\n");  printf("    If the fourth entry of the first line is `1', the last column of the\n");  printf("    remainder of the file is assumed to contain boundary markers.  Boundary\n");  printf("    markers are used to identify boundary vertices and vertices resting on\n");  printf("    PSLG segments; a complete description appears in a section below.  The\n");  printf("    .node file produced by Triangle contains boundary markers in the last\n");  printf("    column unless they are suppressed by the -B switch.\n\n");  printf("  .ele files:\n");  printf("    First line:  <# of triangles> <nodes per triangle> <# of attributes>\n");  printf("    Remaining lines:  <triangle #> <node> <node> <node> ... [attributes]\n");  printf("\n");  printf("    Nodes are indices into the corresponding .node file.  The first three\n");  printf("    nodes are the corner vertices, and are listed in counterclockwise order\n");  printf("    around each triangle.  (The remaining nodes, if any, depend on the type\n");  printf("    of finite element used.)\n\n");  printf("    The attributes are just like those of .node files.  Because there is no\n");  printf("    simple mapping from input to output triangles, Triangle attempts to\n");  printf("    interpolate attributes, and may cause a lot of diffusion of attributes\n");  printf("    among nearby triangles as the triangulation is refined.  Attributes do\n");  printf("    not diffuse across segments, so attributes used to identify\n");  printf("    segment-bounded regions remain intact.\n\n");  printf("    In .ele files produced by Triangle, each triangular element has three\n");  printf("    nodes (vertices) unless the -o2 switch is used, in which case\n");  printf("    subparametric quadratic elements with six nodes each are generated.\n");  printf("    The first three nodes are the corners in counterclockwise order, and\n");  printf("    the fourth, fifth, and sixth nodes lie on the midpoints of the edges\n");  printf("    opposite the first, second, and third vertices, respectively.\n");  printf("\n");  printf("  .poly files:\n");  printf("    First line:  <# of vertices> <dimension (must be 2)> <# of attributes>\n");  printf("                                           <# of boundary markers (0 or 1)>\n");  printf("    Following lines:  <vertex #> <x> <y> [attributes] [boundary marker]\n");  printf("    One line:  <# of segments> <# of boundary markers (0 or 1)>\n");  printf("    Following lines:  <segment #> <endpoint> <endpoint> [boundary marker]\n");  printf("    One line:  <# of holes>\n");  printf("    Following lines:  <hole #> <x> <y>\n");  printf("    Optional line:  <# of regional attributes and/or area constraints>\n");  printf("    Optional following lines:  <region #> <x> <y> <attribute> <max area>\n");  printf("\n");  printf("    A .poly file represents a PSLG, as well as some additional information.\n");  printf("    The first section lists all the vertices, and is identical to the\n");  printf("    format of .node files.  <# of vertices> may be set to zero to indicate\n");  printf("    that the vertices are listed in a separate .node file; .poly files\n");  printf("    produced by Triangle always have this format.  A vertex set represented\n");  printf("    this way has the advantage that it may easily be triangulated with or\n");  printf("    without segments (depending on whether the -p switch is invoked).\n");  printf("\n");  printf("    The second section lists the segments.  Segments are edges whose\n");  printf("    presence in the triangulation is enforced.  (Depending on the choice of\n");  printf("    switches, segment might be subdivided into smaller edges).  Each\n");  printf("    segment is specified by listing the indices of its two endpoints.  This\n");  printf("    means that you must include its endpoints in the vertex list.  Each\n");  printf("    segment, like each point, may have a boundary marker.\n\n");  printf("    If -q, -a, -u, and -s are not selected, Triangle produces a constrained\n");  printf("    Delaunay triangulation (CDT), in which each segment appears as a single\n");  printf("    edge in the triangulation.  If -q, -a, -u, or -s is selected, Triangle\n");  printf("    produces a conforming constrained Delaunay triangulation (CCDT), in\n");  printf("    which segments may be subdivided into smaller edges.  If -D is\n");  printf("    selected, Triangle produces a conforming Delaunay triangulation, so\n");  printf("    that every triangle is Delaunay, and not just constrained Delaunay.\n");  printf("\n");  printf("    The third section lists holes (and concavities, if -c is selected) in\n");  printf("    the triangulation.  Holes are specified by identifying a point inside\n");  printf("    each hole.  After the triangulation is formed, Triangle creates holes\n");  printf("    by eating triangles, spreading out from each hole point until its\n");  printf("    progress is blocked by segments in the PSLG.  You must be careful to\n");  printf("    enclose each hole in segments, or your whole triangulation might be\n");  printf("    eaten away.  If the two triangles abutting a segment are eaten, the\n");  printf("    segment itself is also eaten.  Do not place a hole directly on a\n");  printf("    segment; if you do, Triangle chooses one side of the segment\n");  printf("    arbitrarily.\n\n");  printf("    The optional fourth section lists regional attributes (to be assigned\n");  printf("    to all triangles in a region) and regional constraints on the maximum\n");  printf("    triangle area.  Triangle reads this section only if the -A switch is\n");  printf("    used or the -a switch is used without a number following it, and the -r\n");  printf("    switch is not used.  Regional attributes and area constraints are\n");  printf("    propagated in the same manner as holes:  you specify a point for each\n");  printf("    attribute and/or constraint, and the attribute and/or constraint\n");  printf("    affects the whole region (bounded by segments) containing the point.\n");  printf("    If two values are written on a line after the x and y coordinate, the\n");  printf("    first such value is assumed to be a regional attribute (but is only\n");  printf("    applied if the -A switch is selected), and the second value is assumed\n");  printf("    to be a regional area constraint (but is only applied if the -a switch\n");  printf("    is selected).  You may specify just one value after the coordinates,\n");  printf("    which can serve as both an attribute and an area constraint, depending\n");  printf("    on the choice of switches.  If you are using the -A and -a switches\n");  printf("    simultaneously and wish to assign an attribute to some region without\n");  printf("    imposing an area constraint, use a negative maximum area.\n\n");  printf("    When a triangulation is created from a .poly file, you must either\n");  printf("    enclose the entire region to be triangulated in PSLG segments, or\n");  printf("    use the -c switch, which automatically creates extra segments that\n");  printf("    enclose the convex hull of the PSLG.  If you do not use the -c switch,\n");  printf("    Triangle eats all triangles that are not enclosed by segments; if you\n");  printf("    are not careful, your whole triangulation may be eaten away.  If you do\n");  printf("    use the -c switch, you can still produce concavities by the appropriate\n");  printf("    placement of holes just inside the boundary of the convex hull.\n");  printf("\n");  printf("    An ideal PSLG has no intersecting segments, nor any vertices that lie\n");  printf("    upon segments (except, of course, the endpoints of each segment).  You\n");  printf("    aren't required to make your .poly files ideal, but you should be aware\n");  printf("    of what can go wrong.  Segment intersections are relatively safe--\n");  printf("    Triangle calculates the intersection points for you and adds them to\n");  printf("    the triangulation--as long as your machine's floating-point precision\n");  printf("    doesn't become a problem.  You are tempting the fates if you have three\n");  printf("    segments that cross at the same location, and expect Triangle to figure\n");  printf("    out where the intersection point is.  Thanks to floating-point roundoff\n");  printf("    error, Triangle will probably decide that the three segments intersect\n");  printf("    at three different points, and you will find a minuscule triangle in\n");  printf("    your output--unless Triangle tries to refine the tiny triangle, uses\n");  printf("    up the last bit of machine precision, and fails to terminate at all.\n");  printf("    You're better off putting the intersection point in the input files,\n");  printf("    and manually breaking up each segment into two.  Similarly, if you\n");  printf("    place a vertex at the middle of a segment, and hope that Triangle will\n");  printf("    break up the segment at that vertex, you might get lucky.  On the other\n");  printf("    hand, Triangle might decide that the vertex doesn't lie precisely on\n");  printf("    the segment, and you'll have a needle-sharp triangle in your output--or\n");  printf("    a lot of tiny triangles if you're generating a quality mesh.\n");  printf("\n");  printf("    When Triangle reads a .poly file, it also writes a .poly file, which\n");  printf("    includes all the subsegments--the edges that are parts of input\n");  printf("    segments.  If the -c switch is used, the output .poly file also\n");  printf("    includes all of the edges on the convex hull.  Hence, the output .poly\n");  printf("    file is useful for finding edges associated with input segments and for\n");  printf("    setting boundary conditions in finite element simulations.  Moreover,\n");  printf("    you will need the output .poly file if you plan to refine the output\n");  printf("    mesh, and don't want segments to be missing in later triangulations.\n");  printf("\n");  printf("  .area files:\n");  printf("    First line:  <# of triangles>\n");  printf("    Following lines:  <triangle #> <maximum area>\n");  printf("\n");  printf("    An .area file associates with each triangle a maximum area that is used\n");  printf("    for mesh refinement.  As with other file formats, every triangle must\n");  printf("    be represented, and the triangles must be numbered consecutively.  A\n");  printf("    triangle may be left unconstrained by assigning it a negative maximum\n");  printf("    area.\n\n");  printf("  .edge files:\n");  printf("    First line:  <# of edges> <# of boundary markers (0 or 1)>\n");  printf("    Following lines:  <edge #> <endpoint> <endpoint> [boundary marker]\n");  printf("\n");  printf("    Endpoints are indices into the corresponding .node file.  Triangle can\n");  printf("    produce .edge files (use the -e switch), but cannot read them.  The\n");  printf("    optional column of boundary markers is suppressed by the -B switch.\n");  printf("\n");  printf("    In Voronoi diagrams, one also finds a special kind of edge that is an\n");  printf("    infinite ray with only one endpoint.  For these edges, a different\n");  printf("    format is used:\n\n");  printf("        <edge #> <endpoint> -1 <direction x> <direction y>\n\n");  printf("    The `direction' is a floating-point vector that indicates the direction\n");  printf("    of the infinite ray.\n\n");  printf("  .neigh files:\n");  printf("    First line:  <# of triangles> <# of neighbors per triangle (always 3)>\n");  printf("    Following lines:  <triangle #> <neighbor> <neighbor> <neighbor>\n");  printf("\n");  printf("    Neighbors are indices into the corresponding .ele file.  An index of -1\n");  printf("    indicates no neighbor (because the triangle is on an exterior\n");  printf("    boundary).  The first neighbor of triangle i is opposite the first\n");  printf("    corner of triangle i, and so on.\n\n");  printf("    Triangle can produce .neigh files (use the -n switch), but cannot read\n");  printf("    them.\n\n");  printf("Boundary Markers:\n\n");  printf("  Boundary markers are tags used mainly to identify which output vertices\n");  printf("  and edges are associated with which PSLG segment, and to identify which\n");  printf("  vertices and edges occur on a boundary of the triangulation.  A common\n");  printf("  use is to determine where boundary conditions should be applied to a\n");  printf("  finite element mesh.  You can prevent boundary markers from being written\n");  printf("  into files produced by Triangle by using the -B switch.\n\n");  printf("  The boundary marker associated with each segment in an output .poly file\n");  printf("  and each edge in an output .edge file is chosen as follows:\n");  printf("    - If an output edge is part or all of a PSLG segment with a nonzero\n");  printf("      boundary marker, then the edge is assigned the same marker.\n");  printf("    - Otherwise, if the edge lies on a boundary of the triangulation\n");  printf("      (even the boundary of a hole), then the edge is assigned the marker\n");  printf("      one (1).\n");  printf("    - Otherwise, the edge is assigned the marker zero (0).\n");  printf("  The boundary marker associated with each vertex in an output .node file\n");  printf("  is chosen as follows:\n");  printf("    - If a vertex is assigned a nonzero boundary marker in the input file,\n");  printf("      then it is assigned the same marker in the output .node file.\n");  printf("    - Otherwise, if the vertex lies on a PSLG segment (even if it is an\n");  printf("      endpoint of the segment) with a nonzero boundary marker, then the\n");  printf("      vertex is assigned the same marker.  If the vertex lies on several\n");  printf("      such segments, one of the markers is chosen arbitrarily.\n");  printf("    - Otherwise, if the vertex occurs on a boundary of the triangulation,\n");  printf("      then the vertex is assigned the marker one (1).\n");  printf("    - Otherwise, the vertex is assigned the marker zero (0).\n");  printf("\n");  printf("  If you want Triangle to determine for you which vertices and edges are on\n");  printf("  the boundary, assign them the boundary marker zero (or use no markers at\n");  printf("  all) in your input files.  In the output files, all boundary vertices,\n");  printf("  edges, and segments will be assigned the value one.\n\n");  printf("Triangulation Iteration Numbers:\n\n");  printf("  Because Triangle can read and refine its own triangulations, input\n");  printf("  and output files have iteration numbers.  For instance, Triangle might\n");  printf("  read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the\n");  printf("  triangulation, and output the files mesh.4.node, mesh.4.ele, and\n");  printf("  mesh.4.poly.  Files with no iteration number are treated as if\n");  printf("  their iteration number is zero; hence, Triangle might read the file\n");  printf("  points.node, triangulate it, and produce the files points.1.node and\n");  printf("  points.1.ele.\n\n");  printf("  Iteration numbers allow you to create a sequence of successively finer\n");  printf("  meshes suitable for multigrid methods.  They also allow you to produce a\n");  printf("  sequence of meshes using error estimate-driven mesh refinement.\n");  printf("\n");  printf("  If you're not using refinement or quality meshing, and you don't like\n");  printf("  iteration numbers, use the -I switch to disable them.  This switch also\n");  printf("  disables output of .node and .poly files to prevent your input files from\n");  printf("  being overwritten.  (If the input is a .poly file that contains its own\n");  printf("  points, a .node file is written.  This can be quite convenient for\n");  printf("  computing CDTs or quality meshes.)\n\n");  printf("Examples of How to Use Triangle:\n\n");  printf("  `triangle dots' reads vertices from dots.node, and writes their Delaunay\n");  printf("  triangulation to dots.1.node and dots.1.ele.  (dots.1.node is identical\n");  printf("  to dots.node.)  `triangle -I dots' writes the triangulation to dots.ele\n");  printf("  instead.  (No additional .node file is needed, so none is written.)\n");  printf("\n");  printf("  `triangle -pe object.1' reads a PSLG from object.1.poly (and possibly\n");  printf("  object.1.node, if the vertices are omitted from object.1.poly) and writes\n");  printf("  its constrained Delaunay triangulation to object.2.node and object.2.ele.\n");  printf("  The segments are copied to object.2.poly, and all edges are written to\n");  printf("  object.2.edge.\n\n");  printf("  `triangle -pq31.5a.1 object' reads a PSLG from object.poly (and possibly\n");  printf("  object.node), generates a mesh whose angles are all between 31.5 and 117\n");  printf("  degrees and whose triangles all have areas of 0.1 or less, and writes the\n");  printf("  mesh to object.1.node and object.1.ele.  Each segment may be broken up\n");  printf("  into multiple subsegments; these are written to object.1.poly.\n");  printf("\n");  printf("  Here is a sample file `box.poly' describing a square with a square hole:\n");  printf("\n");  printf("    # A box with eight vertices in 2D, no attributes, one boundary marker.\n");  printf("    8 2 0 1\n");  printf("     # Outer box has these vertices:\n");  printf("     1   0 0   0\n");  printf("     2   0 3   0\n");  printf("     3   3 0   0\n");  printf("     4   3 3   33     # A special marker for this vertex.\n");  printf("     # Inner square has these vertices:\n");  printf("     5   1 1   0\n");  printf("     6   1 2   0\n");  printf("     7   2 1   0\n");  printf("     8   2 2   0\n");  printf("    # Five segments with boundary markers.\n");  printf("    5 1\n");  printf("     1   1 2   5      # Left side of outer box.\n");  printf("     # Square hole has these segments:\n");  printf("     2   5 7   0\n");  printf("     3   7 8   0\n");  printf("     4   8 6   10\n");  printf("     5   6 5   0\n");  printf("    # One hole in the middle of the inner square.\n");  printf("    1\n");  printf("     1   1.5 1.5\n");  printf("\n");  printf("  Note that some segments are missing from the outer square, so you must\n");  printf("  use the `-c' switch.  After `triangle -pqc box.poly', here is the output\n");  printf("  file `box.1.node', with twelve vertices.  The last four vertices were\n");  printf("  added to meet the angle constraint.  Vertices 1, 2, and 9 have markers\n");  printf("  from segment 1.  Vertices 6 and 8 have markers from segment 4.  All the\n");  printf("  other vertices but 4 have been marked to indicate that they lie on a\n");  printf("  boundary.\n\n");  printf("    12  2  0  1\n");  printf("       1    0   0      5\n");  printf("       2    0   3      5\n");  printf("       3    3   0      1\n");  printf("       4    3   3     33\n");  printf("       5    1   1      1\n");  printf("       6    1   2     10\n");  printf("       7    2   1      1\n");  printf("       8    2   2     10\n");  printf("       9    0   1.5    5\n");  printf("      10    1.5   0    1\n");  printf("      11    3   1.5    1\n");  printf("      12    1.5   3    1\n");  printf("    # Generated by triangle -pqc box.poly\n");  printf("\n");  printf("  Here is the output file `box.1.ele', with twelve triangles.\n");  printf("\n");  printf("    12  3  0\n");  printf("       1     5   6   9\n");  printf("       2    10   3   7\n");  printf("       3     6   8  12\n");  printf("       4     9   1   5\n");  printf("       5     6   2   9\n");  printf("       6     7   3  11\n");  printf("       7    11   4   8\n");  printf("       8     7   5  10\n");  printf("       9    12   2   6\n");  printf("      10     8   7  11\n");  printf("      11     5   1  10\n");  printf("      12     8   4  12\n");  printf("    # Generated by triangle -pqc box.poly\n\n");  printf("  Here is the output file `box.1.poly'.  Note that segments have been added\n");  printf("  to represent the convex hull, and some segments have been subdivided by\n");  printf("  newly added vertices.  Note also that <# of vertices> is set to zero to\n");  printf("  indicate that the vertices should be read from the .node file.\n");  printf("\n");  printf("    0  2  0  1\n");  printf("    12  1\n");  printf("       1     1   9     5\n");  printf("       2     5   7     1\n");  printf("       3     8   7     1\n");  printf("       4     6   8    10\n");  printf("       5     5   6     1\n");  printf("       6     3  10     1\n");  printf("       7     4  11     1\n");  printf("       8     2  12     1\n");  printf("       9     9   2     5\n");  printf("      10    10   1     1\n");  printf("      11    11   3     1\n");  printf("      12    12   4     1\n");  printf("    1\n");  printf("       1   1.5 1.5\n");  printf("    # Generated by triangle -pqc box.poly\n");  printf("\n");  printf("Refinement and Area Constraints:\n");  printf("\n");  printf("  The -r switch causes a mesh (.node and .ele files) to be read and\n");  printf("  refined.  If the -p switch is also used, a .poly file is read and used to\n");  printf("  specify edges that are constrained and cannot be eliminated (although\n");  printf("  they can be subdivided into smaller edges) by the refinement process.\n");  printf("\n");  printf("  When you refine a mesh, you generally want to impose tighter constraints.\n");  printf("  One way to accomplish this is to use -q with a larger angle, or -a\n");  printf("  followed by a smaller area than you used to generate the mesh you are\n");  printf("  refining.  Another way to do this is to create an .area file, which\n");  printf("  specifies a maximum area for each triangle, and use the -a switch\n");  printf("  (without a number following).  Each triangle's area constraint is applied\n");  printf("  to that triangle.  Area constraints tend to diffuse as the mesh is\n");  printf("  refined, so if there are large variations in area constraint between\n");  printf("  adjacent triangles, you may not get the results you want.  In that case,\n");  printf("  consider instead using the -u switch and writing a C procedure that\n");  printf("  determines which triangles are too large.\n\n");  printf("  If you are refining a mesh composed of linear (three-node) elements, the\n");  printf("  output mesh contains all the nodes present in the input mesh, in the same\n");  printf("  order, with new nodes added at the end of the .node file.  However, the\n");  printf("  refinement is not hierarchical: there is no guarantee that each output\n");  printf("  element is contained in a single input element.  Often, an output element\n");  printf("  can overlap two or three input elements, and some input edges are not\n");  printf("  present in the output mesh.  Hence, a sequence of refined meshes forms a\n");  printf("  hierarchy of nodes, but not a hierarchy of elements.  If you refine a\n");  printf("  mesh of higher-order elements, the hierarchical property applies only to\n");  printf("  the nodes at the corners of an element; the midpoint nodes on each edge\n");  printf("  are discarded before the mesh is refined.\n\n");  printf("  Maximum area constraints in .poly files operate differently from those in\n");  printf("  .area files.  A maximum area in a .poly file applies to the whole\n");  printf("  (segment-bounded) region in which a point falls, whereas a maximum area\n");  printf("  in an .area file applies to only one triangle.  Area constraints in .poly\n");  printf("  files are used only when a mesh is first generated, whereas area\n");  printf("  constraints in .area files are used only to refine an existing mesh, and\n");  printf("  are typically based on a posteriori error estimates resulting from a\n");  printf("  finite element simulation on that mesh.\n\n");  printf("  `triangle -rq25 object.1' reads object.1.node and object.1.ele, then\n");  printf("  refines the triangulation to enforce a 25 degree minimum angle, and then\n");  printf("  writes the refined triangulation to object.2.node and object.2.ele.\n");  printf("\n");  printf("  `triangle -rpaa6.2 z.3' reads z.3.node, z.3.ele, z.3.poly, and z.3.area.\n");  printf("  After reconstructing the mesh and its subsegments, Triangle refines the\n");  printf("  mesh so that no triangle has area greater than 6.2, and furthermore the\n");  printf("  triangles satisfy the maximum area constraints in z.3.area.  No angle\n");  printf("  bound is imposed at all.  The output is written to z.4.node, z.4.ele, and\n");  printf("  z.4.poly.\n\n");  printf("  The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1\n");  printf("  x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,\n");  printf("  suitable for multigrid.\n\n");  printf("Convex Hulls and Mesh Boundaries:\n\n");  printf("  If the input is a vertex set (not a PSLG), Triangle produces its convex\n");  printf("  hull as a by-product in the output .poly file if you use the -c switch.\n");  printf("  There are faster algorithms for finding a two-dimensional convex hull\n");  printf("  than triangulation, of course, but this one comes for free.\n\n");  printf("  If the input is an unconstrained mesh (you are using the -r switch but\n");  printf("  not the -p switch), Triangle produces a list of its boundary edges\n");  printf("  (including hole boundaries) as a by-product when you use the -c switch.\n");  printf("  If you also use the -p switch, the output .poly file contains all the\n");  printf("  segments from the input .poly file as well.\n\n");  printf("Voronoi Diagrams:\n\n");  printf("  The -v switch produces a Voronoi diagram, in files suffixed .v.node and\n");  printf("  .v.edge.  For example, `triangle -v points' reads points.node, produces\n");  printf("  its Delaunay triangulation in points.1.node and points.1.ele, and\n");  printf("  produces its Voronoi diagram in points.1.v.node and points.1.v.edge.  The\n");  printf("  .v.node file contains a list of all Voronoi vertices, and the .v.edge\n");  printf("  file contains a list of all Voronoi edges, some of which may be infinite\n");  printf("  rays.  (The choice of filenames makes it easy to run the set of Voronoi\n");  printf("  vertices through Triangle, if so desired.)\n\n");  printf("  This implementation does not use exact arithmetic to compute the Voronoi\n");  printf("  vertices, and does not check whether neighboring vertices are identical.\n");  printf("  Be forewarned that if the Delaunay triangulation is degenerate or\n");  printf("  near-degenerate, the Voronoi diagram may have duplicate vertices or\n");  printf("  crossing edges.\n\n");  printf("  The result is a valid Voronoi diagram only if Triangle's output is a true\n");  printf("  Delaunay triangulation.  The Voronoi output is usually meaningless (and\n");  printf("  may contain crossing edges and other pathology) if the output is a CDT or\n");  printf("  CCDT, or if it has holes or concavities.  If the triangulated domain is\n");  printf("  convex and has no holes, you can use -D switch to force Triangle to\n");  printf("  construct a conforming Delaunay triangulation instead of a CCDT, so the\n");  printf("  Voronoi diagram will be valid.\n\n");  printf("Mesh Topology:\n\n");  printf("  You may wish to know which triangles are adjacent to a certain Delaunay\n");  printf("  edge in an .edge file, which Voronoi cells are adjacent to a certain\n");  printf("  Voronoi edge in a .v.edge file, or which Voronoi cells are adjacent to\n");  printf("  each other.  All of this information can be found by cross-referencing\n");  printf("  output files with the recollection that the Delaunay triangulation and\n");  printf("  the Voronoi diagram are planar duals.\n\n");  printf("  Specifically, edge i of an .edge file is the dual of Voronoi edge i of\n");  printf("  the corresponding .v.edge file, and is rotated 90 degrees counterclock-\n");  printf("  wise from the Voronoi edge.  Triangle j of an .ele file is the dual of\n");  printf("  vertex j of the corresponding .v.node file.  Voronoi cell k is the dual\n");  printf("  of vertex k of the corresponding .node file.\n\n");  printf("  Hence, to find the triangles adjacent to a Delaunay edge, look at the\n");  printf("  vertices of the corresponding Voronoi edge.  If the endpoints of a\n");  printf("  Voronoi edge are Voronoi vertices 2 and 6 respectively, then triangles 2\n");  printf("  and 6 adjoin the left and right sides of the corresponding Delaunay edge,\n");  printf("  respectively.  To find the Voronoi cells adjacent to a Voronoi edge, look\n");  printf("  at the endpoints of the corresponding Delaunay edge.  If the endpoints of\n");  printf("  a Delaunay edge are input vertices 7 and 12, then Voronoi cells 7 and 12\n");  printf("  adjoin the right and left sides of the corresponding Voronoi edge,\n");  printf("  respectively.  To find which Voronoi cells are adjacent to each other,\n");  printf("  just read the list of Delaunay edges.\n\n");  printf("  Triangle does not write a list of the edges adjoining each Voronoi cell,\n");  printf("  but you can reconstructed it straightforwardly.  For instance, to find\n");  printf("  all the edges of Voronoi cell 1, search the output .edge file for every\n");  printf("  edge that has input vertex 1 as an endpoint.  The corresponding dual\n");  printf("  edges in the output .v.edge file form the boundary of Voronoi cell 1.\n");  printf("\n");  printf("  For each Voronoi vertex, the .neigh file gives a list of the three\n");  printf("  Voronoi vertices attached to it.  You might find this more convenient\n");  printf("  than the .v.edge file.\n\n");  printf("Quadratic Elements:\n\n");  printf("  Triangle generates meshes with subparametric quadratic elements if the\n");  printf("  -o2 switch is specified.  Quadratic elements have six nodes per element,\n");  printf("  rather than three.  `Subparametric' means that the edges of the triangles\n");  printf("  are always straight, so that subparametric quadratic elements are\n");  printf("  geometrically identical to linear elements, even though they can be used\n");  printf("  with quadratic interpolating functions.  The three extra nodes of an\n");  printf("  element fall at the midpoints of the three edges, with the fourth, fifth,\n");  printf("  and sixth nodes appearing opposite the first, second, and third corners\n");  printf("  respectively.\n\n");  printf("Domains with Small Angles:\n\n");  printf("  If two input segments adjoin each other at a small angle, clearly the -q\n");  printf("  switch cannot remove the small angle.  Moreover, Triangle may have no\n");  printf("  choice but to generate additional triangles whose smallest angles are\n");  printf("  smaller than the specified bound.  However, these triangles only appear\n");  printf("  between input segments separated by small angles.  Moreover, if you\n");  printf("  request a minimum angle of theta degrees, Triangle will generally produce\n");  printf("  no angle larger than 180 - 2 theta, even if it is forced to compromise on\n");  printf("  the minimum angle.\n\n");  printf("Statistics:\n\n");  printf("  After generating a mesh, Triangle prints a count of entities in the\n");  printf("  output mesh, including the number of vertices, triangles, edges, exterior\n");  printf("  boundary edges (i.e. subsegments on the boundary of the triangulation,\n");  printf("  including hole boundaries), interior boundary edges (i.e. subsegments of\n");  printf("  input segments not on the boundary), and total subsegments.  If you've\n");  printf("  forgotten the statistics for an existing mesh, run Triangle on that mesh\n");  printf("  with the -rNEP switches to read the mesh and print the statistics without\n");  printf("  writing any files.  Use -rpNEP if you've got a .poly file for the mesh.\n");  printf("\n");  printf("  The -V switch produces extended statistics, including a rough estimate\n");  printf("  of memory use, the number of calls to geometric predicates, and\n");  printf("  histograms of the angles and the aspect ratios of the triangles in the\n");  printf("  mesh.\n\n");  printf("Exact Arithmetic:\n\n");  printf("  Triangle uses adaptive exact arithmetic to perform what computational\n");  printf("  geometers call the `orientation' and `incircle' tests.  If the floating-\n");  printf("  point arithmetic of your machine conforms to the IEEE 754 standard (as\n");  printf("  most workstations do), and does not use extended precision internal\n");  printf("  floating-point registers, then your output is guaranteed to be an\n");  printf("  absolutely true Delaunay or constrained Delaunay triangulation, roundoff\n");  printf("  error notwithstanding.  The word `adaptive' implies that these arithmetic\n");  printf("  routines compute the result only to the precision necessary to guarantee\n");  printf("  correctness, so they are usually nearly as fast as their approximate\n");  printf("  counterparts.\n\n");  printf("  May CPUs, including Intel x86 processors, have extended precision\n");  printf("  floating-point registers.  These must be reconfigured so their precision\n");  printf("  is reduced to memory precision.  Triangle does this if it is compiled\n");  printf("  correctly.  See the makefile for details.\n\n");  printf("  The exact tests can be disabled with the -X switch.  On most inputs, this\n");  printf("  switch reduces the computation time by about eight percent--it's not\n");  printf("  worth the risk.  There are rare difficult inputs (having many collinear\n");  printf("  and cocircular vertices), however, for which the difference in speed\n");  printf("  could be a factor of two.  Be forewarned that these are precisely the\n");  printf("  inputs most likely to cause errors if you use the -X switch.  Hence, the\n");  printf("  -X switch is not recommended.\n\n");  printf("  Unfortunately, the exact tests don't solve every numerical problem.\n");  printf("  Exact arithmetic is not used to compute the positions of new vertices,\n");  printf("  because the bit complexity of vertex coordinates would grow without\n");  printf("  bound.  Hence, segment intersections aren't computed exactly; in very\n");  printf("  unusual cases, roundoff error in computing an intersection point might\n");  printf("  actually lead to an inverted triangle and an invalid triangulation.\n");  printf("  (This is one reason to specify your own intersection points in your .poly\n");  printf("  files.)  Similarly, exact arithmetic is not used to compute the vertices\n");  printf("  of the Voronoi diagram.\n\n");  printf("  Another pair of problems not solved by the exact arithmetic routines is\n");  printf("  underflow and overflow.  If Triangle is compiled for double precision\n");  printf("  arithmetic, I believe that Triangle's geometric predicates work correctly\n");  printf("  if the exponent of every input coordinate falls in the range [-148, 201].\n");  printf("  Underflow can silently prevent the orientation and incircle tests from\n");  printf("  being performed exactly, while overflow typically causes a floating\n");  printf("  exception.\n\n");  printf("Calling Triangle from Another Program:\n\n");  printf("  Read the file triangle.h for details.\n\n");  printf("Troubleshooting:\n\n");  printf("  Please read this section before mailing me bugs.\n\n");  printf("  `My output mesh has no triangles!'\n\n");  printf("    If you're using a PSLG, you've probably failed to specify a proper set\n");  printf("    of bounding segments, or forgotten to use the -c switch.  Or you may\n");  printf("    have placed a hole badly, thereby eating all your triangles.  To test\n");  printf("    these possibilities, try again with the -c and -O switches.\n");  printf("    Alternatively, all your input vertices may be collinear, in which case\n");  printf("    you can hardly expect to triangulate them.\n\n");  printf("  `Triangle doesn't terminate, or just crashes.'\n\n");  printf("    Bad things can happen when triangles get so small that the distance\n");  printf("    between their vertices isn't much larger than the precision of your\n");  printf("    machine's arithmetic.  If you've compiled Triangle for single-precision\n");  printf("    arithmetic, you might do better by recompiling it for double-precision.\n");  printf("    Then again, you might just have to settle for more lenient constraints\n");  printf("    on the minimum angle and the maximum area than you had planned.\n");  printf("\n");  printf("    You can minimize precision problems by ensuring that the origin lies\n");  printf("    inside your vertex set, or even inside the densest part of your\n");  printf("    mesh.  If you're triangulating an object whose x-coordinates all fall\n");  printf("    between 6247133 and 6247134, you're not leaving much floating-point\n");  printf("    precision for Triangle to work with.\n\n");  printf("    Precision problems can occur covertly if the input PSLG contains two\n");  printf("    segments that meet (or intersect) at an extremely small angle, or if\n");  printf("    such an angle is introduced by the -c switch.  If you don't realize\n");  printf("    that a tiny angle is being formed, you might never discover why\n");  printf("    Triangle is crashing.  To check for this possibility, use the -S switch\n");  printf("    (with an appropriate limit on the number of Steiner points, found by\n");  printf("    trial-and-error) to stop Triangle early, and view the output .poly file\n");  printf("    with Show Me (described below).  Look carefully for regions where dense\n");  printf("    clusters of vertices are forming and for small angles between segments.\n");  printf("    Zoom in closely, as such segments might look like a single segment from\n");  printf("    a distance.\n\n");  printf("    If some of the input values are too large, Triangle may suffer a\n");  printf("    floating exception due to overflow when attempting to perform an\n");  printf("    orientation or incircle test.  (Read the section on exact arithmetic\n");  printf("    above.)  Again, I recommend compiling Triangle for double (rather\n");  printf("    than single) precision arithmetic.\n\n");  printf("    Unexpected problems can arise if you use quality meshing (-q, -a, or\n");  printf("    -u) with an input that is not segment-bounded--that is, if your input\n");  printf("    is a vertex set, or you're using the -c switch.  If the convex hull of\n");  printf("    your input vertices has collinear vertices on its boundary, an input\n");  printf("    vertex that you think lies on the convex hull might actually lie just\n");  printf("    inside the convex hull.  If so, the vertex and the nearby convex hull\n");  printf("    edge form an extremely thin triangle.  When Triangle tries to refine\n");  printf("    the mesh to enforce angle and area constraints, Triangle might generate\n");  printf("    extremely tiny triangles, or it might fail because of insufficient\n");  printf("    floating-point precision.\n\n");  printf("  `The numbering of the output vertices doesn't match the input vertices.'\n");  printf("\n");  printf("    You may have had duplicate input vertices, or you may have eaten some\n");  printf("    of your input vertices with a hole, or by placing them outside the area\n");  printf("    enclosed by segments.  In any case, you can solve the problem by not\n");  printf("    using the -j switch.\n\n");  printf("  `Triangle executes without incident, but when I look at the resulting\n");  printf("  mesh, it has overlapping triangles or other geometric inconsistencies.'\n");  printf("\n");  printf("    If you select the -X switch, Triangle occasionally makes mistakes due\n");  printf("    to floating-point roundoff error.  Although these errors are rare,\n");  printf("    don't use the -X switch.  If you still have problems, please report the\n");  printf("    bug.\n\n");  printf("  `Triangle executes without incident, but when I look at the resulting\n");  printf("  Voronoi diagram, it has overlapping edges or other geometric\n");  printf("  inconsistencies.'\n");  printf("\n");  printf("    If your input is a PSLG (-p), you can only expect a meaningful Voronoi\n");  printf("    diagram if the domain you are triangulating is convex and free of\n");  printf("    holes, and you use the -D switch to construct a conforming Delaunay\n");  printf("    triangulation (instead of a CDT or CCDT).\n\n");  printf("  Strange things can happen if you've taken liberties with your PSLG.  Do\n");  printf("  you have a vertex lying in the middle of a segment?  Triangle sometimes\n");  printf("  copes poorly with that sort of thing.  Do you want to lay out a collinear\n");  printf("  row of evenly spaced, segment-connected vertices?  Have you simply\n");  printf("  defined one long segment connecting the leftmost vertex to the rightmost\n");  printf("  vertex, and a bunch of vertices lying along it?  This method occasionally\n");  printf("  works, especially with horizontal and vertical lines, but often it\n");  printf("  doesn't, and you'll have to connect each adjacent pair of vertices with a\n");  printf("  separate segment.  If you don't like it, tough.\n\n");  printf("  Furthermore, if you have segments that intersect other than at their\n");  printf("  endpoints, try not to let the intersections fall extremely close to PSLG\n");  printf("  vertices or each other.\n\n");  printf("  If you have problems refining a triangulation not produced by Triangle:\n");  printf("  Are you sure the triangulation is geometrically valid?  Is it formatted\n");  printf("  correctly for Triangle?  Are the triangles all listed so the first three\n");  printf("  vertices are their corners in counterclockwise order?  Are all of the\n");  printf("  triangles constrained Delaunay?  Triangle's Delaunay refinement algorithm\n");  printf("  assumes that it starts with a CDT.\n\n");  printf("Show Me:\n\n");  printf("  Triangle comes with a separate program named `Show Me', whose primary\n");  printf("  purpose is to draw meshes on your screen or in PostScript.  Its secondary\n");  printf("  purpose is to check the validity of your input files, and do so more\n");  printf("  thoroughly than Triangle does.  Unlike Triangle, Show Me requires that\n");  printf("  you have the X Windows system.  Sorry, Microsoft Windows users.\n");  printf("\n");  printf("Triangle on the Web:\n");  printf("\n");  printf("  To see an illustrated version of these instructions, check out\n");  printf("\n");  printf("    http://www.cs.cmu.edu/~quake/triangle.html\n");  printf("\n");  printf("A Brief Plea:\n");  printf("\n");  printf("  If you use Triangle, and especially if you use it to accomplish real\n");  printf("  work, I would like very much to hear from you.  A short letter or email\n");  printf("  (to jrs@cs.berkeley.edu) describing how you use Triangle will mean a lot\n");  printf("  to me.  The more people I know are using this program, the more easily I\n");  printf("  can justify spending time on improvements, which in turn will benefit\n");  printf("  you.  Also, I can put you on a list to receive email whenever a new\n");  printf("  version of Triangle is available.\n\n");  printf("  If you use a mesh generated by Triangle in a publication, please include\n");  printf("  an acknowledgment as well.  And please spell Triangle with a capital `T'!\n");  printf("  If you want to include a citation, use `Jonathan Richard Shewchuk,\n");  printf("  ``Triangle: Engineering a 2D Quality Mesh Generator and Delaunay\n");  printf("  Triangulator,'' in Applied Computational Geometry:  Towards Geometric\n");  printf("  Engineering (Ming C. Lin and Dinesh Manocha, editors), volume 1148 of\n");  printf("  Lecture Notes in Computer Science, pages 203-222, Springer-Verlag,\n");  printf("  Berlin, May 1996.  (From the First ACM Workshop on Applied Computational\n");  printf("  Geometry.)'\n\n");  printf("Research credit:\n\n");  printf("  Of course, I can take credit for only a fraction of the ideas that made\n");  printf("  this mesh generator possible.  Triangle owes its existence to the efforts\n");  printf("  of many fine computational geometers and other researchers, including\n");  printf("  Marshall Bern, L. Paul Chew, Kenneth L. Clarkson, Boris Delaunay, Rex A.\n");  printf("  Dwyer, David Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E.\n");  printf("  Knuth, Charles L. Lawson, Der-Tsai Lee, Gary L. Miller, Ernst P. Mucke,\n");  printf("  Steven E. Pav, Douglas M. Priest, Jim Ruppert, Isaac Saias, Bruce J.\n");  printf("  Schachter, Micha Sharir, Peter W. Shor, Daniel D. Sleator, Jorge Stolfi,\n");  printf("  Robert E. Tarjan, Alper Ungor, Christopher J. Van Wyk, Noel J.\n");  printf("  Walkington, and Binhai Zhu.  See the comments at the beginning of the\n");  printf("  source code for references.\n\n");  triexit(0);}#endif /* not TRILIBRARY *//*****************************************************************************//*                                                                           *//*  internalerror()   Ask the user to send me the defective product.  Exit.  *//*                                                                           *//*****************************************************************************/void internalerror(){  printf("  Please report this bug to jrs@cs.berkeley.edu\n");  printf("  Include the message above, your input data set, and the exact\n");  printf("    command line you used to run Triangle.\n");  triexit(1);}/*****************************************************************************//*                                                                           *//*  parsecommandline()   Read the command line, identify switches, and set   *//*                       up options and file names.                          *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid parsecommandline(int argc, char **argv, struct behavior *b)#else /* not ANSI_DECLARATORS */void parsecommandline(argc, argv, b)int argc;char **argv;struct behavior *b;#endif /* not ANSI_DECLARATORS */{#ifdef TRILIBRARY#define STARTINDEX 0#else /* not TRILIBRARY */#define STARTINDEX 1  int increment;  int meshnumber;#endif /* not TRILIBRARY */  int i, j, k;  char workstring[FILENAMESIZE];  b->poly = b->refine = b->quality = 0;  b->vararea = b->fixedarea = b->usertest = 0;  b->regionattrib = b->convex = b->weighted = b->jettison = 0;  b->firstnumber = 1;  b->edgesout = b->voronoi = b->neighbors = b->geomview = 0;  b->nobound = b->nopolywritten = b->nonodewritten = b->noelewritten = 0;  b->noiterationnum = 0;  b->noholes = b->noexact = 0;  b->incremental = b->sweepline = 0;  b->dwyer = 1;  b->splitseg = 0;  b->docheck = 0;  b->nobisect = 0;  b->conformdel = 0;  b->steiner = -1;  b->order = 1;  b->minangle = 0.0;  b->maxarea = -1.0;  b->quiet = b->verbose = 0;#ifndef TRILIBRARY  b->innodefilename[0] = '\0';#endif /* not TRILIBRARY */  for (i = STARTINDEX; i < argc; i++) {#ifndef TRILIBRARY    if (argv[i][0] == '-') {#endif /* not TRILIBRARY */      for (j = STARTINDEX; argv[i][j] != '\0'; j++) {        if (argv[i][j] == 'p') {          b->poly = 1;}#ifndef CDT_ONLY        if (argv[i][j] == 'r') {          b->refine = 1;}        if (argv[i][j] == 'q') {          b->quality = 1;          if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||              (argv[i][j + 1] == '.')) {            k = 0;            while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||                   (argv[i][j + 1] == '.')) {              j++;              workstring[k] = argv[i][j];              k++;            }            workstring[k] = '\0';            b->minangle = (REAL) strtod(workstring, (char **) NULL);  } else {            b->minangle = 20.0;  }}        if (argv[i][j] == 'a'){          b->quality = 1;             if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||                 (argv[i][j + 1] == '.'))  {                b->fixedarea = 1;                k = 0;                while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||                      (argv[i][j + 1] == '.')){                  j++;                   workstring[k] = argv[i][j];                  k++;}            workstring[k] = '\0';            b->maxarea = (REAL) strtod(workstring, (char **) NULL);                 if (b->maxarea <= 0.0) {                     printf("Error:  Maximum area must be greater than zero.\n");                     triexit(1); } }     else{              b->vararea = 1;}}        if (argv[i][j] == 'u') {          b->quality = 1;          b->usertest = 1;        }#endif /* not CDT_ONLY */        if (argv[i][j] == 'A') {          b->regionattrib = 1;        }        if (argv[i][j] == 'c') {          b->convex = 1;        }        if (argv[i][j] == 'w') {          b->weighted = 1;        }        if (argv[i][j] == 'W') {          b->weighted = 2;        }        if (argv[i][j] == 'j') {          b->jettison = 1;        }        if (argv[i][j] == 'z') {          b->firstnumber = 0;        }        if (argv[i][j] == 'e') {          b->edgesout = 1;}        if (argv[i][j] == 'v') {          b->voronoi = 1;}        if (argv[i][j] == 'n') {          b->neighbors = 1;}        if (argv[i][j] == 'g') {          b->geomview = 1;}        if (argv[i][j] == 'B') {          b->nobound = 1;}        if (argv[i][j] == 'P') {          b->nopolywritten = 1;}        if (argv[i][j] == 'N') {          b->nonodewritten = 1;}        if (argv[i][j] == 'E') {          b->noelewritten = 1;}#ifndef TRILIBRARY        if (argv[i][j] == 'I') {          b->noiterationnum = 1;}#endif /* not TRILIBRARY */        if (argv[i][j] == 'O') {          b->noholes = 1;}        if (argv[i][j] == 'X') {          b->noexact = 1;}        if (argv[i][j] == 'o') {          if (argv[i][j + 1] == '2') {            j++;            b->order = 2;          }}#ifndef CDT_ONLY        if (argv[i][j] == 'Y') {          b->nobisect++;}        if (argv[i][j] == 'S') {          b->steiner = 0;          while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) {            j++;            b->steiner = b->steiner * 10 + (int) (argv[i][j] - '0');          }        }#endif /* not CDT_ONLY */#ifndef REDUCED        if (argv[i][j] == 'i') {          b->incremental = 1;        }        if (argv[i][j] == 'F') {          b->sweepline = 1;        }#endif /* not REDUCED */        if (argv[i][j] == 'l') {          b->dwyer = 0;        }#ifndef REDUCED#ifndef CDT_ONLY        if (argv[i][j] == 's') {          b->splitseg = 1;        }        if ((argv[i][j] == 'D') || (argv[i][j] == 'L')) {          b->quality = 1;          b->conformdel = 1;        }#endif /* not CDT_ONLY */        if (argv[i][j] == 'C') {          b->docheck = 1;        }#endif /* not REDUCED */        if (argv[i][j] == 'Q') {          b->quiet = 1;        }        if (argv[i][j] == 'V') {          b->verbose++;        }#ifndef TRILIBRARY        if ((argv[i][j] == 'h') || (argv[i][j] == 'H') ||            (argv[i][j] == '?')) {          info();}#endif /* not TRILIBRARY */      }#ifndef TRILIBRARY    } else {      strncpy(b->innodefilename, argv[i], FILENAMESIZE - 1);      b->innodefilename[FILENAMESIZE - 1] = '\0';    }#endif /* not TRILIBRARY */  }#ifndef TRILIBRARY  if (b->innodefilename[0] == '\0') {    syntax();  }  if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".node")) {    b->innodefilename[strlen(b->innodefilename) - 5] = '\0';  }  if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".poly")) {    b->innodefilename[strlen(b->innodefilename) - 5] = '\0';    b->poly = 1;  }#ifndef CDT_ONLY  if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 4], ".ele")) {    b->innodefilename[strlen(b->innodefilename) - 4] = '\0';    b->refine = 1;  }  if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".area")) {    b->innodefilename[strlen(b->innodefilename) - 5] = '\0';    b->refine = 1;    b->quality = 1;    b->vararea = 1;  }#endif /* not CDT_ONLY */#endif /* not TRILIBRARY */  b->usesegments = b->poly || b->refine || b->quality || b->convex;  b->goodangle = cos(b->minangle * PI / 180.0);  if (b->goodangle == 1.0) {    b->offconstant = 0.0;  } else {    b->offconstant = 0.475 * sqrt((1.0 + b->goodangle) / (1.0 - b->goodangle));  }  b->goodangle *= b->goodangle;  if (b->refine && b->noiterationnum) {    printf(      "Error:  You cannot use the -I switch when refining a triangulation.\n");    triexit(1);  }  /* Be careful not to allocate space for element area constraints that */  /*   will never be assigned any value (other than the default -1.0).  */  if (!b->refine && !b->poly) {    b->vararea = 0;  }  /* Be careful not to add an extra attribute to each element unless the */  /*   input supports it (PSLG in, but not refining a preexisting mesh). */  if (b->refine || !b->poly) {    b->regionattrib = 0;  }  /* Regular/weighted triangulations are incompatible with PSLGs */  /*   and meshing.                                              */  if (b->weighted && (b->poly || b->quality)) {    b->weighted = 0;    if (!b->quiet) {      printf("Warning:  weighted triangulations (-w, -W) are incompatible\n");      printf("  with PSLGs (-p) and meshing (-q, -a, -u).  Weights ignored.\n"             );    }  }  if (b->jettison && b->nonodewritten && !b->quiet) {    printf("Warning:  -j and -N switches are somewhat incompatible.\n");    printf("  If any vertices are jettisoned, you will need the output\n");    printf("  .node file to reconstruct the new node indices.");  }#ifndef TRILIBRARY  strcpy(b->inpolyfilename, b->innodefilename);  strcpy(b->inelefilename, b->innodefilename);  strcpy(b->areafilename, b->innodefilename);  increment = 0;  strcpy(workstring, b->innodefilename);  j = 1;  while (workstring[j] != '\0') {    if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) {      increment = j + 1;    }    j++;  }  meshnumber = 0;  if (increment > 0) {    j = increment;    do {      if ((workstring[j] >= '0') && (workstring[j] <= '9')) {        meshnumber = meshnumber * 10 + (int) (workstring[j] - '0');      } else {        increment = 0;      }      j++;    } while (workstring[j] != '\0');  }  if (b->noiterationnum) {    strcpy(b->outnodefilename, b->innodefilename);    strcpy(b->outelefilename, b->innodefilename);    strcpy(b->edgefilename, b->innodefilename);    strcpy(b->vnodefilename, b->innodefilename);    strcpy(b->vedgefilename, b->innodefilename);    strcpy(b->neighborfilename, b->innodefilename);    strcpy(b->offfilename, b->innodefilename);    strcat(b->outnodefilename, ".node");    strcat(b->outelefilename, ".ele");    strcat(b->edgefilename, ".edge");    strcat(b->vnodefilename, ".v.node");    strcat(b->vedgefilename, ".v.edge");    strcat(b->neighborfilename, ".neigh");    strcat(b->offfilename, ".off");  } else if (increment == 0) {    strcpy(b->outnodefilename, b->innodefilename);    strcpy(b->outpolyfilename, b->innodefilename);    strcpy(b->outelefilename, b->innodefilename);    strcpy(b->edgefilename, b->innodefilename);    strcpy(b->vnodefilename, b->innodefilename);    strcpy(b->vedgefilename, b->innodefilename);    strcpy(b->neighborfilename, b->innodefilename);    strcpy(b->offfilename, b->innodefilename);    strcat(b->outnodefilename, ".1.node");    strcat(b->outpolyfilename, ".1.poly");    strcat(b->outelefilename, ".1.ele");    strcat(b->edgefilename, ".1.edge");    strcat(b->vnodefilename, ".1.v.node");    strcat(b->vedgefilename, ".1.v.edge");    strcat(b->neighborfilename, ".1.neigh");    strcat(b->offfilename, ".1.off");  } else {    workstring[increment] = '%';    workstring[increment + 1] = 'd';    workstring[increment + 2] = '\0';    sprintf(b->outnodefilename, workstring, meshnumber + 1);    strcpy(b->outpolyfilename, b->outnodefilename);    strcpy(b->outelefilename, b->outnodefilename);    strcpy(b->edgefilename, b->outnodefilename);    strcpy(b->vnodefilename, b->outnodefilename);    strcpy(b->vedgefilename, b->outnodefilename);    strcpy(b->neighborfilename, b->outnodefilename);    strcpy(b->offfilename, b->outnodefilename);    strcat(b->outnodefilename, ".node");    strcat(b->outpolyfilename, ".poly");    strcat(b->outelefilename, ".ele");    strcat(b->edgefilename, ".edge");    strcat(b->vnodefilename, ".v.node");    strcat(b->vedgefilename, ".v.edge");    strcat(b->neighborfilename, ".neigh");    strcat(b->offfilename, ".off");  }  strcat(b->innodefilename, ".node");  strcat(b->inpolyfilename, ".poly");  strcat(b->inelefilename, ".ele");  strcat(b->areafilename, ".area");#endif /* not TRILIBRARY */}/**                                                                         **//**                                                                         **//********* User interaction routines begin here                      *********//********* Debugging routines begin here                             *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  printtriangle()   Print out the details of an oriented triangle.         *//*                                                                           *//*  I originally wrote this procedure to simplify debugging; it can be       *//*  called directly from the debugger, and presents information about an     *//*  oriented triangle in digestible form.  It's also used when the           *//*  highest level of verbosity (`-VVV') is specified.                        *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid printtriangle(struct mesh *m, struct behavior *b, struct otri *t)#else /* not ANSI_DECLARATORS */void printtriangle(m, b, t)struct mesh *m;struct behavior *b;struct otri *t;#endif /* not ANSI_DECLARATORS */{  struct otri printtri;  struct osub printsh;  vertex printvertex;  printf("triangle x%lx with orientation %d:\n", (unsigned long) t->tri,         t->orient);  decode(t->tri[0], printtri);  if (printtri.tri == m->dummytri) {    printf("    [0] = Outer space\n");  } else {    printf("    [0] = x%lx  %d\n", (unsigned long) printtri.tri,           printtri.orient);  }  decode(t->tri[1], printtri);  if (printtri.tri == m->dummytri) {    printf("    [1] = Outer space\n");  } else {    printf("    [1] = x%lx  %d\n", (unsigned long) printtri.tri,           printtri.orient);  }  decode(t->tri[2], printtri);  if (printtri.tri == m->dummytri) {    printf("    [2] = Outer space\n");  } else {    printf("    [2] = x%lx  %d\n", (unsigned long) printtri.tri,           printtri.orient);  }  org(*t, printvertex);  if (printvertex == (vertex) NULL)    printf("    Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);  else    printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",           (t->orient + 1) % 3 + 3, (unsigned long) printvertex,           printvertex[0], printvertex[1]);  dest(*t, printvertex);  if (printvertex == (vertex) NULL)    printf("    Dest  [%d] = NULL\n", (t->orient + 2) % 3 + 3);  else    printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",           (t->orient + 2) % 3 + 3, (unsigned long) printvertex,           printvertex[0], printvertex[1]);  apex(*t, printvertex);  if (printvertex == (vertex) NULL)    printf("    Apex  [%d] = NULL\n", t->orient + 3);  else    printf("    Apex  [%d] = x%lx  (%.12g, %.12g)\n",           t->orient + 3, (unsigned long) printvertex,           printvertex[0], printvertex[1]);  if (b->usesegments) {    sdecode(t->tri[6], printsh);    if (printsh.ss != m->dummysub) {      printf("    [6] = x%lx  %d\n", (unsigned long) printsh.ss,             printsh.ssorient);    }    sdecode(t->tri[7], printsh);    if (printsh.ss != m->dummysub) {      printf("    [7] = x%lx  %d\n", (unsigned long) printsh.ss,             printsh.ssorient);    }    sdecode(t->tri[8], printsh);    if (printsh.ss != m->dummysub) {      printf("    [8] = x%lx  %d\n", (unsigned long) printsh.ss,             printsh.ssorient);    }  }  if (b->vararea) {    printf("    Area constraint:  %.4g\n", areabound(*t));  }}/*****************************************************************************//*                                                                           *//*  printsubseg()   Print out the details of an oriented subsegment.         *//*                                                                           *//*  I originally wrote this procedure to simplify debugging; it can be       *//*  called directly from the debugger, and presents information about an     *//*  oriented subsegment in digestible form.  It's also used when the highest *//*  level of verbosity (`-VVV') is specified.                                *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid printsubseg(struct mesh *m, struct behavior *b, struct osub *s)#else /* not ANSI_DECLARATORS */void printsubseg(m, b, s)struct mesh *m;struct behavior *b;struct osub *s;#endif /* not ANSI_DECLARATORS */{  struct osub printsh;  struct otri printtri;  vertex printvertex;  printf("subsegment x%lx with orientation %d and mark %d:\n",         (unsigned long) s->ss, s->ssorient, mark(*s));  sdecode(s->ss[0], printsh);  if (printsh.ss == m->dummysub) {    printf("    [0] = No subsegment\n");  } else {    printf("    [0] = x%lx  %d\n", (unsigned long) printsh.ss,           printsh.ssorient);  }  sdecode(s->ss[1], printsh);  if (printsh.ss == m->dummysub) {    printf("    [1] = No subsegment\n");  } else {    printf("    [1] = x%lx  %d\n", (unsigned long) printsh.ss,           printsh.ssorient);  }  sorg(*s, printvertex);  if (printvertex == (vertex) NULL)    printf("    Origin[%d] = NULL\n", 2 + s->ssorient);  else    printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",           2 + s->ssorient, (unsigned long) printvertex,           printvertex[0], printvertex[1]);  sdest(*s, printvertex);  if (printvertex == (vertex) NULL)    printf("    Dest  [%d] = NULL\n", 3 - s->ssorient);  else    printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",           3 - s->ssorient, (unsigned long) printvertex,           printvertex[0], printvertex[1]);  decode(s->ss[6], printtri);  if (printtri.tri == m->dummytri) {    printf("    [6] = Outer space\n");  } else {    printf("    [6] = x%lx  %d\n", (unsigned long) printtri.tri,           printtri.orient);  }  decode(s->ss[7], printtri);  if (printtri.tri == m->dummytri) {    printf("    [7] = Outer space\n");  } else {    printf("    [7] = x%lx  %d\n", (unsigned long) printtri.tri,           printtri.orient);  }  segorg(*s, printvertex);  if (printvertex == (vertex) NULL)    printf("    Segment origin[%d] = NULL\n", 4 + s->ssorient);  else    printf("    Segment origin[%d] = x%lx  (%.12g, %.12g)\n",           4 + s->ssorient, (unsigned long) printvertex,           printvertex[0], printvertex[1]);  segdest(*s, printvertex);  if (printvertex == (vertex) NULL)    printf("    Segment dest  [%d] = NULL\n", 5 - s->ssorient);  else    printf("    Segment dest  [%d] = x%lx  (%.12g, %.12g)\n",           5 - s->ssorient, (unsigned long) printvertex,           printvertex[0], printvertex[1]);}/**                                                                         **//**                                                                         **//********* Debugging routines end here                               *********//********* Memory management routines begin here                     *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  poolzero()   Set all of a pool's fields to zero.                         *//*                                                                           *//*  This procedure should never be called on a pool that has any memory      *//*  allocated to it, as that memory would leak.                              *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid poolzero(struct memorypool *pool)#else /* not ANSI_DECLARATORS */void poolzero(pool)struct memorypool *pool;#endif /* not ANSI_DECLARATORS */{  pool->firstblock = (VOID **) NULL;  pool->nowblock = (VOID **) NULL;  pool->nextitem = (VOID *) NULL;  pool->deaditemstack = (VOID *) NULL;  pool->pathblock = (VOID **) NULL;  pool->pathitem = (VOID *) NULL;  pool->alignbytes = 0;  pool->itembytes = 0;  pool->itemsperblock = 0;  pool->itemsfirstblock = 0;  pool->items = 0;  pool->maxitems = 0;  pool->unallocateditems = 0;  pool->pathitemsleft = 0;}/*****************************************************************************//*                                                                           *//*  poolrestart()   Deallocate all items in a pool.                          *//*                                                                           *//*  The pool is returned to its starting state, except that no memory is     *//*  freed to the operating system.  Rather, the previously allocated blocks  *//*  are ready to be reused.                                                  *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid poolrestart(struct memorypool *pool)#else /* not ANSI_DECLARATORS */void poolrestart(pool)struct memorypool *pool;#endif /* not ANSI_DECLARATORS */{  unsigned long alignptr;  pool->items = 0;  pool->maxitems = 0;  /* Set the currently active block. */  pool->nowblock = pool->firstblock;  /* Find the first item in the pool.  Increment by the size of (VOID *). */  alignptr = (unsigned long) (pool->nowblock + 1);  /* Align the item on an `alignbytes'-byte boundary. */  pool->nextitem = (VOID *)    (alignptr + (unsigned long) pool->alignbytes -     (alignptr % (unsigned long) pool->alignbytes));  /* There are lots of unallocated items left in this block. */  pool->unallocateditems = pool->itemsfirstblock;  /* The stack of deallocated items is empty. */  pool->deaditemstack = (VOID *) NULL;}/*****************************************************************************//*                                                                           *//*  poolinit()   Initialize a pool of memory for allocation of items.        *//*                                                                           *//*  This routine initializes the machinery for allocating items.  A `pool'   *//*  is created whose records have size at least `bytecount'.  Items will be  *//*  allocated in `itemcount'-item blocks.  Each item is assumed to be a      *//*  collection of words, and either pointers or floating-point values are    *//*  assumed to be the "primary" word type.  (The "primary" word type is used *//*  to determine alignment of items.)  If `alignment' isn't zero, all items  *//*  will be `alignment'-byte aligned in memory.  `alignment' must be either  *//*  a multiple or a factor of the primary word size; powers of two are safe. *//*  `alignment' is normally used to create a few unused bits at the bottom   *//*  of each item's pointer, in which information may be stored.              *//*                                                                           *//*  Don't change this routine unless you understand it.                      *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid poolinit(struct memorypool *pool, int bytecount, int itemcount,              int firstitemcount, int alignment)#else /* not ANSI_DECLARATORS */void poolinit(pool, bytecount, itemcount, firstitemcount, alignment)struct memorypool *pool;int bytecount;int itemcount;int firstitemcount;int alignment;#endif /* not ANSI_DECLARATORS */{  /* Find the proper alignment, which must be at least as large as:   */  /*   - The parameter `alignment'.                                   */  /*   - sizeof(VOID *), so the stack of dead items can be maintained */  /*       without unaligned accesses.                                */  if (alignment > sizeof(VOID *)) {    pool->alignbytes = alignment;  } else {    pool->alignbytes = sizeof(VOID *);  }  pool->itembytes = ((bytecount - 1) / pool->alignbytes + 1) *                    pool->alignbytes;  pool->itemsperblock = itemcount;  if (firstitemcount == 0) {    pool->itemsfirstblock = itemcount;  } else {    pool->itemsfirstblock = firstitemcount;  }  /* Allocate a block of items.  Space for `itemsfirstblock' items and one  */  /*   pointer (to point to the next block) are allocated, as well as space */  /*   to ensure alignment of the items.                                    */  pool->firstblock = (VOID **)    trimalloc(pool->itemsfirstblock * pool->itembytes + (int) sizeof(VOID *) +              pool->alignbytes);  /* Set the next block pointer to NULL. */  *(pool->firstblock) = (VOID *) NULL;  poolrestart(pool);}/*****************************************************************************//*                                                                           *//*  pooldeinit()   Free to the operating system all memory taken by a pool.  *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid pooldeinit(struct memorypool *pool)#else /* not ANSI_DECLARATORS */void pooldeinit(pool)struct memorypool *pool;#endif /* not ANSI_DECLARATORS */{  while (pool->firstblock != (VOID **) NULL) {    pool->nowblock = (VOID **) *(pool->firstblock);    trifree((VOID *) pool->firstblock);    pool->firstblock = pool->nowblock;  }}/*****************************************************************************//*                                                                           *//*  poolalloc()   Allocate space for an item.                                *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSVOID *poolalloc(struct memorypool *pool)#else /* not ANSI_DECLARATORS */VOID *poolalloc(pool)struct memorypool *pool;#endif /* not ANSI_DECLARATORS */{  VOID *newitem;  VOID **newblock;  unsigned long alignptr;  /* First check the linked list of dead items.  If the list is not   */  /*   empty, allocate an item from the list rather than a fresh one. */  if (pool->deaditemstack != (VOID *) NULL) {    newitem = pool->deaditemstack;               /* Take first item in list. */    pool->deaditemstack = * (VOID **) pool->deaditemstack;  } else {    /* Check if there are any free items left in the current block. */    if (pool->unallocateditems == 0) {      /* Check if another block must be allocated. */      if (*(pool->nowblock) == (VOID *) NULL) {        /* Allocate a new block of items, pointed to by the previous block. */        newblock = (VOID **) trimalloc(pool->itemsperblock * pool->itembytes +                                       (int) sizeof(VOID *) +                                       pool->alignbytes);        *(pool->nowblock) = (VOID *) newblock;        /* The next block pointer is NULL. */        *newblock = (VOID *) NULL;      }      /* Move to the new block. */      pool->nowblock = (VOID **) *(pool->nowblock);      /* Find the first item in the block.    */      /*   Increment by the size of (VOID *). */      alignptr = (unsigned long) (pool->nowblock + 1);      /* Align the item on an `alignbytes'-byte boundary. */      pool->nextitem = (VOID *)        (alignptr + (unsigned long) pool->alignbytes -         (alignptr % (unsigned long) pool->alignbytes));      /* There are lots of unallocated items left in this block. */      pool->unallocateditems = pool->itemsperblock;    }    /* Allocate a new item. */    newitem = pool->nextitem;    /* Advance `nextitem' pointer to next free item in block. */    pool->nextitem = (VOID *) ((char *) pool->nextitem + pool->itembytes);    pool->unallocateditems--;    pool->maxitems++;  }  pool->items++;  return newitem;}/*****************************************************************************//*                                                                           *//*  pooldealloc()   Deallocate space for an item.                            *//*                                                                           *//*  The deallocated space is stored in a queue for later reuse.              *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid pooldealloc(struct memorypool *pool, VOID *dyingitem)#else /* not ANSI_DECLARATORS */void pooldealloc(pool, dyingitem)struct memorypool *pool;VOID *dyingitem;#endif /* not ANSI_DECLARATORS */{  /* Push freshly killed item onto stack. */  *((VOID **) dyingitem) = pool->deaditemstack;  pool->deaditemstack = dyingitem;  pool->items--;}/*****************************************************************************//*                                                                           *//*  traversalinit()   Prepare to traverse the entire list of items.          *//*                                                                           *//*  This routine is used in conjunction with traverse().                     *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid traversalinit(struct memorypool *pool)#else /* not ANSI_DECLARATORS */void traversalinit(pool)struct memorypool *pool;#endif /* not ANSI_DECLARATORS */{  unsigned long alignptr;  /* Begin the traversal in the first block. */  pool->pathblock = pool->firstblock;  /* Find the first item in the block.  Increment by the size of (VOID *). */  alignptr = (unsigned long) (pool->pathblock + 1);  /* Align with item on an `alignbytes'-byte boundary. */  pool->pathitem = (VOID *)    (alignptr + (unsigned long) pool->alignbytes -     (alignptr % (unsigned long) pool->alignbytes));  /* Set the number of items left in the current block. */  pool->pathitemsleft = pool->itemsfirstblock;}/*****************************************************************************//*                                                                           *//*  traverse()   Find the next item in the list.                             *//*                                                                           *//*  This routine is used in conjunction with traversalinit().  Be forewarned *//*  that this routine successively returns all items in the list, including  *//*  deallocated ones on the deaditemqueue.  It's up to you to figure out     *//*  which ones are actually dead.  Why?  I don't want to allocate extra      *//*  space just to demarcate dead items.  It can usually be done more         *//*  space-efficiently by a routine that knows something about the structure  *//*  of the item.                                                             *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSVOID *traverse(struct memorypool *pool)#else /* not ANSI_DECLARATORS */VOID *traverse(pool)struct memorypool *pool;#endif /* not ANSI_DECLARATORS */{  VOID *newitem;  unsigned long alignptr;  /* Stop upon exhausting the list of items. */  if (pool->pathitem == pool->nextitem) {    return (VOID *) NULL;  }  /* Check whether any untraversed items remain in the current block. */  if (pool->pathitemsleft == 0) {    /* Find the next block. */    pool->pathblock = (VOID **) *(pool->pathblock);    /* Find the first item in the block.  Increment by the size of (VOID *). */    alignptr = (unsigned long) (pool->pathblock + 1);    /* Align with item on an `alignbytes'-byte boundary. */    pool->pathitem = (VOID *)      (alignptr + (unsigned long) pool->alignbytes -       (alignptr % (unsigned long) pool->alignbytes));    /* Set the number of items left in the current block. */    pool->pathitemsleft = pool->itemsperblock;  }  newitem = pool->pathitem;  /* Find the next item in the block. */  pool->pathitem = (VOID *) ((char *) pool->pathitem + pool->itembytes);  pool->pathitemsleft--;  return newitem;}/*****************************************************************************//*                                                                           *//*  dummyinit()   Initialize the triangle that fills "outer space" and the   *//*                omnipresent subsegment.                                    *//*                                                                           *//*  The triangle that fills "outer space," called `dummytri', is pointed to  *//*  by every triangle and subsegment on a boundary (be it outer or inner) of *//*  the triangulation.  Also, `dummytri' points to one of the triangles on   *//*  the convex hull (until the holes and concavities are carved), making it  *//*  possible to find a starting triangle for point location.                 *//*                                                                           *//*  The omnipresent subsegment, `dummysub', is pointed to by every triangle  *//*  or subsegment that doesn't have a full complement of real subsegments    *//*  to point to.                                                             *//*                                                                           *//*  `dummytri' and `dummysub' are generally required to fulfill only a few   *//*  invariants:  their vertices must remain NULL and `dummytri' must always  *//*  be bonded (at offset zero) to some triangle on the convex hull of the    *//*  mesh, via a boundary edge.  Otherwise, the connections of `dummytri' and *//*  `dummysub' may change willy-nilly.  This makes it possible to avoid      *//*  writing a good deal of special-case code (in the edge flip, for example) *//*  for dealing with the boundary of the mesh, places where no subsegment is *//*  present, and so forth.  Other entities are frequently bonded to          *//*  `dummytri' and `dummysub' as if they were real mesh entities, with no    *//*  harm done.                                                               *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid dummyinit(struct mesh *m, struct behavior *b, int trianglebytes,               int subsegbytes)#else /* not ANSI_DECLARATORS */void dummyinit(m, b, trianglebytes, subsegbytes)struct mesh *m;struct behavior *b;int trianglebytes;int subsegbytes;#endif /* not ANSI_DECLARATORS */{  unsigned long alignptr;  /* Set up `dummytri', the `triangle' that occupies "outer space." */  m->dummytribase = (triangle *) trimalloc(trianglebytes +                                           m->triangles.alignbytes);  /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */  alignptr = (unsigned long) m->dummytribase;  m->dummytri = (triangle *)    (alignptr + (unsigned long) m->triangles.alignbytes -     (alignptr % (unsigned long) m->triangles.alignbytes));  /* Initialize the three adjoining triangles to be "outer space."  These  */  /*   will eventually be changed by various bonding operations, but their */  /*   values don't really matter, as long as they can legally be          */  /*   dereferenced.                                                       */  m->dummytri[0] = (triangle) m->dummytri;  m->dummytri[1] = (triangle) m->dummytri;  m->dummytri[2] = (triangle) m->dummytri;  /* Three NULL vertices. */  m->dummytri[3] = (triangle) NULL;  m->dummytri[4] = (triangle) NULL;  m->dummytri[5] = (triangle) NULL;  if (b->usesegments) {    /* Set up `dummysub', the omnipresent subsegment pointed to by any */    /*   triangle side or subsegment end that isn't attached to a real */    /*   subsegment.                                                   */    m->dummysubbase = (subseg *) trimalloc(subsegbytes +                                           m->subsegs.alignbytes);    /* Align `dummysub' on a `subsegs.alignbytes'-byte boundary. */    alignptr = (unsigned long) m->dummysubbase;    m->dummysub = (subseg *)      (alignptr + (unsigned long) m->subsegs.alignbytes -       (alignptr % (unsigned long) m->subsegs.alignbytes));    /* Initialize the two adjoining subsegments to be the omnipresent      */    /*   subsegment.  These will eventually be changed by various bonding  */    /*   operations, but their values don't really matter, as long as they */    /*   can legally be dereferenced.                                      */    m->dummysub[0] = (subseg) m->dummysub;    m->dummysub[1] = (subseg) m->dummysub;    /* Four NULL vertices. */    m->dummysub[2] = (subseg) NULL;    m->dummysub[3] = (subseg) NULL;    m->dummysub[4] = (subseg) NULL;    m->dummysub[5] = (subseg) NULL;    /* Initialize the two adjoining triangles to be "outer space." */    m->dummysub[6] = (subseg) m->dummytri;    m->dummysub[7] = (subseg) m->dummytri;    /* Set the boundary marker to zero. */    * (int *) (m->dummysub + 8) = 0;    /* Initialize the three adjoining subsegments of `dummytri' to be */    /*   the omnipresent subsegment.                                  */    m->dummytri[6] = (triangle) m->dummysub;    m->dummytri[7] = (triangle) m->dummysub;    m->dummytri[8] = (triangle) m->dummysub;  }}/*****************************************************************************//*                                                                           *//*  initializevertexpool()   Calculate the size of the vertex data structure *//*                           and initialize its memory pool.                 *//*                                                                           *//*  This routine also computes the `vertexmarkindex' and `vertex2triindex'   *//*  indices used to find values within each vertex.                          *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid initializevertexpool(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void initializevertexpool(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  int vertexsize;  /* The index within each vertex at which the boundary marker is found,    */  /*   followed by the vertex type.  Ensure the vertex marker is aligned to */  /*   a sizeof(int)-byte address.                                          */  m->vertexmarkindex = ((m->mesh_dim + m->nextras) * sizeof(REAL) +                        sizeof(int) - 1) /                       sizeof(int);  vertexsize = (m->vertexmarkindex + 2) * sizeof(int);  if (b->poly) {    /* The index within each vertex at which a triangle pointer is found.  */    /*   Ensure the pointer is aligned to a sizeof(triangle)-byte address. */    m->vertex2triindex = (vertexsize + sizeof(triangle) - 1) /                         sizeof(triangle);    vertexsize = (m->vertex2triindex + 1) * sizeof(triangle);  }  /* Initialize the pool of vertices. */  poolinit(&m->vertices, vertexsize, VERTEXPERBLOCK,           m->invertices > VERTEXPERBLOCK ? m->invertices : VERTEXPERBLOCK,           sizeof(REAL));}/*****************************************************************************//*                                                                           *//*  initializetrisubpools()   Calculate the sizes of the triangle and        *//*                            subsegment data structures and initialize      *//*                            their memory pools.                            *//*                                                                           *//*  This routine also computes the `highorderindex', `elemattribindex', and  *//*  `areaboundindex' indices used to find values within each triangle.       *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid initializetrisubpools(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void initializetrisubpools(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  int trisize;  /* The index within each triangle at which the extra nodes (above three)  */  /*   associated with high order elements are found.  There are three      */  /*   pointers to other triangles, three pointers to corners, and possibly */  /*   three pointers to subsegments before the extra nodes.                */  m->highorderindex = 6 + (b->usesegments * 3);  /* The number of bytes occupied by a triangle. */  trisize = ((b->order + 1) * (b->order + 2) / 2 + (m->highorderindex - 3)) *            sizeof(triangle);  /* The index within each triangle at which its attributes are found, */  /*   where the index is measured in REALs.                           */  m->elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);  /* The index within each triangle at which the maximum area constraint  */  /*   is found, where the index is measured in REALs.  Note that if the  */  /*   `regionattrib' flag is set, an additional attribute will be added. */  m->areaboundindex = m->elemattribindex + m->eextras + b->regionattrib;  /* If triangle attributes or an area bound are needed, increase the number */  /*   of bytes occupied by a triangle.                                      */  if (b->vararea) {    trisize = (m->areaboundindex + 1) * sizeof(REAL);  } else if (m->eextras + b->regionattrib > 0) {    trisize = m->areaboundindex * sizeof(REAL);  }  /* If a Voronoi diagram or triangle neighbor graph is requested, make    */  /*   sure there's room to store an integer index in each triangle.  This */  /*   integer index can occupy the same space as the subsegment pointers  */  /*   or attributes or area constraint or extra nodes.                    */  if ((b->voronoi || b->neighbors) &&      (trisize < 6 * sizeof(triangle) + sizeof(int))) {    trisize = 6 * sizeof(triangle) + sizeof(int);  }  /* Having determined the memory size of a triangle, initialize the pool. */  poolinit(&m->triangles, trisize, TRIPERBLOCK,           (2 * m->invertices - 2) > TRIPERBLOCK ? (2 * m->invertices - 2) :           TRIPERBLOCK, 4);  if (b->usesegments) {    /* Initialize the pool of subsegments.  Take into account all eight */    /*   pointers and one boundary marker.                              */    poolinit(&m->subsegs, 8 * sizeof(triangle) + sizeof(int),             SUBSEGPERBLOCK, SUBSEGPERBLOCK, 4);    /* Initialize the "outer space" triangle and omnipresent subsegment. */    dummyinit(m, b, m->triangles.itembytes, m->subsegs.itembytes);  } else {    /* Initialize the "outer space" triangle. */    dummyinit(m, b, m->triangles.itembytes, 0);  }}/*****************************************************************************//*                                                                           *//*  triangledealloc()   Deallocate space for a triangle, marking it dead.    *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid triangledealloc(struct mesh *m, triangle *dyingtriangle)#else /* not ANSI_DECLARATORS */void triangledealloc(m, dyingtriangle)struct mesh *m;triangle *dyingtriangle;#endif /* not ANSI_DECLARATORS */{  /* Mark the triangle as dead.  This makes it possible to detect dead */  /*   triangles when traversing the list of all triangles.            */  killtri(dyingtriangle);  pooldealloc(&m->triangles, (VOID *) dyingtriangle);}/*****************************************************************************//*                                                                           *//*  triangletraverse()   Traverse the triangles, skipping dead ones.         *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORStriangle *triangletraverse(struct mesh *m)#else /* not ANSI_DECLARATORS */triangle *triangletraverse(m)struct mesh *m;#endif /* not ANSI_DECLARATORS */{  triangle *newtriangle;  do {    newtriangle = (triangle *) traverse(&m->triangles);    if (newtriangle == (triangle *) NULL) {      return (triangle *) NULL;    }  } while (deadtri(newtriangle));                         /* Skip dead ones. */  return newtriangle;}/*****************************************************************************//*                                                                           *//*  subsegdealloc()   Deallocate space for a subsegment, marking it dead.    *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid subsegdealloc(struct mesh *m, subseg *dyingsubseg)#else /* not ANSI_DECLARATORS */void subsegdealloc(m, dyingsubseg)struct mesh *m;subseg *dyingsubseg;#endif /* not ANSI_DECLARATORS */{  /* Mark the subsegment as dead.  This makes it possible to detect dead */  /*   subsegments when traversing the list of all subsegments.          */  killsubseg(dyingsubseg);  pooldealloc(&m->subsegs, (VOID *) dyingsubseg);}/*****************************************************************************//*                                                                           *//*  subsegtraverse()   Traverse the subsegments, skipping dead ones.         *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSsubseg *subsegtraverse(struct mesh *m)#else /* not ANSI_DECLARATORS */subseg *subsegtraverse(m)struct mesh *m;#endif /* not ANSI_DECLARATORS */{  subseg *newsubseg;  do {    newsubseg = (subseg *) traverse(&m->subsegs);    if (newsubseg == (subseg *) NULL) {      return (subseg *) NULL;    }  } while (deadsubseg(newsubseg));                        /* Skip dead ones. */  return newsubseg;}/*****************************************************************************//*                                                                           *//*  vertexdealloc()   Deallocate space for a vertex, marking it dead.        *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid vertexdealloc(struct mesh *m, vertex dyingvertex)#else /* not ANSI_DECLARATORS */void vertexdealloc(m, dyingvertex)struct mesh *m;vertex dyingvertex;#endif /* not ANSI_DECLARATORS */{  /* Mark the vertex as dead.  This makes it possible to detect dead */  /*   vertices when traversing the list of all vertices.            */  setvertextype(dyingvertex, DEADVERTEX);  pooldealloc(&m->vertices, (VOID *) dyingvertex);}/*****************************************************************************//*                                                                           *//*  vertextraverse()   Traverse the vertices, skipping dead ones.            *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvertex vertextraverse(struct mesh *m)#else /* not ANSI_DECLARATORS */vertex vertextraverse(m)struct mesh *m;#endif /* not ANSI_DECLARATORS */{  vertex newvertex;  do {    newvertex = (vertex) traverse(&m->vertices);    if (newvertex == (vertex) NULL) {      return (vertex) NULL;    }  } while (vertextype(newvertex) == DEADVERTEX);          /* Skip dead ones. */  return newvertex;}/*****************************************************************************//*                                                                           *//*  badsubsegdealloc()   Deallocate space for a bad subsegment, marking it   *//*                       dead.                                               *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid badsubsegdealloc(struct mesh *m, struct badsubseg *dyingseg)#else /* not ANSI_DECLARATORS */void badsubsegdealloc(m, dyingseg)struct mesh *m;struct badsubseg *dyingseg;#endif /* not ANSI_DECLARATORS */{  /* Set subsegment's origin to NULL.  This makes it possible to detect dead */  /*   badsubsegs when traversing the list of all badsubsegs             .   */  dyingseg->subsegorg = (vertex) NULL;  pooldealloc(&m->badsubsegs, (VOID *) dyingseg);}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  badsubsegtraverse()   Traverse the bad subsegments, skipping dead ones.  *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSstruct badsubseg *badsubsegtraverse(struct mesh *m)#else /* not ANSI_DECLARATORS */struct badsubseg *badsubsegtraverse(m)struct mesh *m;#endif /* not ANSI_DECLARATORS */{  struct badsubseg *newseg;  do {    newseg = (struct badsubseg *) traverse(&m->badsubsegs);    if (newseg == (struct badsubseg *) NULL) {      return (struct badsubseg *) NULL;    }  } while (newseg->subsegorg == (vertex) NULL);           /* Skip dead ones. */  return newseg;}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  getvertex()   Get a specific vertex, by number, from the list.           *//*                                                                           *//*  The first vertex is number 'firstnumber'.                                *//*                                                                           *//*  Note that this takes O(n) time (with a small constant, if VERTEXPERBLOCK *//*  is large).  I don't care to take the trouble to make it work in constant *//*  time.                                                                    *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvertex getvertex(struct mesh *m, struct behavior *b, int number)#else /* not ANSI_DECLARATORS */vertex getvertex(m, b, number)struct mesh *m;struct behavior *b;int number;#endif /* not ANSI_DECLARATORS */{  VOID **getblock;  char *foundvertex;  unsigned long alignptr;  int current;  getblock = m->vertices.firstblock;  current = b->firstnumber;  /* Find the right block. */  if (current + m->vertices.itemsfirstblock <= number) {    getblock = (VOID **) *getblock;    current += m->vertices.itemsfirstblock;    while (current + m->vertices.itemsperblock <= number) {      getblock = (VOID **) *getblock;      current += m->vertices.itemsperblock;    }  }  /* Now find the right vertex. */  alignptr = (unsigned long) (getblock + 1);  foundvertex = (char *) (alignptr + (unsigned long) m->vertices.alignbytes -                          (alignptr % (unsigned long) m->vertices.alignbytes));  return (vertex) (foundvertex + m->vertices.itembytes * (number - current));}/*****************************************************************************//*                                                                           *//*  triangledeinit()   Free all remaining allocated memory.                  *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid triangledeinit(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void triangledeinit(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  pooldeinit(&m->triangles);  trifree((VOID *) m->dummytribase);  if (b->usesegments) {    pooldeinit(&m->subsegs);    trifree((VOID *) m->dummysubbase);  }  pooldeinit(&m->vertices);#ifndef CDT_ONLY  if (b->quality) {    pooldeinit(&m->badsubsegs);    if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) {      pooldeinit(&m->badtriangles);      pooldeinit(&m->flipstackers);    }  }#endif /* not CDT_ONLY */}/**                                                                         **//**                                                                         **//********* Memory management routines end here                       *********//********* Constructors begin here                                   *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  maketriangle()   Create a new triangle with orientation zero.            *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid maketriangle(struct mesh *m, struct behavior *b, struct otri *newotri)#else /* not ANSI_DECLARATORS */void maketriangle(m, b, newotri)struct mesh *m;struct behavior *b;struct otri *newotri;#endif /* not ANSI_DECLARATORS */{  int i;  newotri->tri = (triangle *) poolalloc(&m->triangles);  /* Initialize the three adjoining triangles to be "outer space". */  newotri->tri[0] = (triangle) m->dummytri;  newotri->tri[1] = (triangle) m->dummytri;  newotri->tri[2] = (triangle) m->dummytri;  /* Three NULL vertices. */  newotri->tri[3] = (triangle) NULL;  newotri->tri[4] = (triangle) NULL;  newotri->tri[5] = (triangle) NULL;  if (b->usesegments) {    /* Initialize the three adjoining subsegments to be the omnipresent */    /*   subsegment.                                                    */    newotri->tri[6] = (triangle) m->dummysub;    newotri->tri[7] = (triangle) m->dummysub;    newotri->tri[8] = (triangle) m->dummysub;  }  for (i = 0; i < m->eextras; i++) {    setelemattribute(*newotri, i, 0.0);  }  if (b->vararea) {    setareabound(*newotri, -1.0);  }  newotri->orient = 0;}/*****************************************************************************//*                                                                           *//*  makesubseg()   Create a new subsegment with orientation zero.            *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid makesubseg(struct mesh *m, struct osub *newsubseg)#else /* not ANSI_DECLARATORS */void makesubseg(m, newsubseg)struct mesh *m;struct osub *newsubseg;#endif /* not ANSI_DECLARATORS */{  newsubseg->ss = (subseg *) poolalloc(&m->subsegs);  /* Initialize the two adjoining subsegments to be the omnipresent */  /*   subsegment.                                                  */  newsubseg->ss[0] = (subseg) m->dummysub;  newsubseg->ss[1] = (subseg) m->dummysub;  /* Four NULL vertices. */  newsubseg->ss[2] = (subseg) NULL;  newsubseg->ss[3] = (subseg) NULL;  newsubseg->ss[4] = (subseg) NULL;  newsubseg->ss[5] = (subseg) NULL;  /* Initialize the two adjoining triangles to be "outer space." */  newsubseg->ss[6] = (subseg) m->dummytri;  newsubseg->ss[7] = (subseg) m->dummytri;  /* Set the boundary marker to zero. */  setmark(*newsubseg, 0);  newsubseg->ssorient = 0;}/**                                                                         **//**                                                                         **//********* Constructors end here                                     *********//********* Geometric primitives begin here                           *********//**                                                                         **//**                                                                         **//* The adaptive exact arithmetic geometric predicates implemented herein are *//*   described in detail in my paper, "Adaptive Precision Floating-Point     *//*   Arithmetic and Fast Robust Geometric Predicates."  See the header for a *//*   full citation.                                                          *//* Which of the following two methods of finding the absolute values is      *//*   fastest is compiler-dependent.  A few compilers can inline and optimize *//*   the fabs() call; but most will incur the overhead of a function call,   *//*   which is disastrously slow.  A faster way on IEEE machines might be to  *//*   mask the appropriate bit, but that's difficult to do in C without       *//*   forcing the value to be stored to memory (rather than be kept in the    *//*   register to which the optimizer assigned it).                           */#define Absolute(a)  ((a) >= 0.0 ? (a) : -(a))/* #define Absolute(a)  fabs(a) *//* Many of the operations are broken up into two pieces, a main part that    *//*   performs an approximate operation, and a "tail" that computes the       *//*   roundoff error of that operation.                                       *//*                                                                           *//* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),    *//*   Split(), and Two_Product() are all implemented as described in the      *//*   reference.  Each of these macros requires certain variables to be       *//*   defined in the calling routine.  The variables `bvirt', `c', `abig',    *//*   `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because   *//*   they store the result of an operation that may incur roundoff error.    *//*   The input parameter `x' (or the highest numbered `x_' parameter) must   *//*   also be declared `INEXACT'.                                             */#define Fast_Two_Sum_Tail(a, b, x, y) \  bvirt = x - a; \  y = b - bvirt#define Fast_Two_Sum(a, b, x, y) \  x = (REAL) (a + b); \  Fast_Two_Sum_Tail(a, b, x, y)#define Two_Sum_Tail(a, b, x, y) \  bvirt = (REAL) (x - a); \  avirt = x - bvirt; \  bround = b - bvirt; \  around = a - avirt; \  y = around + bround#define Two_Sum(a, b, x, y) \  x = (REAL) (a + b); \  Two_Sum_Tail(a, b, x, y)#define Two_Diff_Tail(a, b, x, y) \  bvirt = (REAL) (a - x); \  avirt = x + bvirt; \  bround = bvirt - b; \  around = a - avirt; \  y = around + bround#define Two_Diff(a, b, x, y) \  x = (REAL) (a - b); \  Two_Diff_Tail(a, b, x, y)#define Split(a, ahi, alo) \  c = (REAL) (splitter * a); \  abig = (REAL) (c - a); \  ahi = c - abig; \  alo = a - ahi#define Two_Product_Tail(a, b, x, y) \  Split(a, ahi, alo); \  Split(b, bhi, blo); \  err1 = x - (ahi * bhi); \  err2 = err1 - (alo * bhi); \  err3 = err2 - (ahi * blo); \  y = (alo * blo) - err3#define Two_Product(a, b, x, y) \  x = (REAL) (a * b); \  Two_Product_Tail(a, b, x, y)/* Two_Product_Presplit() is Two_Product() where one of the inputs has       *//*   already been split.  Avoids redundant splitting.                        */#define Two_Product_Presplit(a, b, bhi, blo, x, y) \  x = (REAL) (a * b); \  Split(a, ahi, alo); \  err1 = x - (ahi * bhi); \  err2 = err1 - (alo * bhi); \  err3 = err2 - (ahi * blo); \  y = (alo * blo) - err3/* Square() can be done more quickly than Two_Product().                     */#define Square_Tail(a, x, y) \  Split(a, ahi, alo); \  err1 = x - (ahi * ahi); \  err3 = err1 - ((ahi + ahi) * alo); \  y = (alo * alo) - err3#define Square(a, x, y) \  x = (REAL) (a * a); \  Square_Tail(a, x, y)/* Macros for summing expansions of various fixed lengths.  These are all    *//*   unrolled versions of Expansion_Sum().                                   */#define Two_One_Sum(a1, a0, b, x2, x1, x0) \  Two_Sum(a0, b , _i, x0); \  Two_Sum(a1, _i, x2, x1)#define Two_One_Diff(a1, a0, b, x2, x1, x0) \  Two_Diff(a0, b , _i, x0); \  Two_Sum( a1, _i, x2, x1)#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \  Two_One_Sum(a1, a0, b0, _j, _0, x0); \  Two_One_Sum(_j, _0, b1, x3, x2, x1)#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \  Two_One_Diff(a1, a0, b0, _j, _0, x0); \  Two_One_Diff(_j, _0, b1, x3, x2, x1)/* Macro for multiplying a two-component expansion by a single component.    */#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \  Split(b, bhi, blo); \  Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \  Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \  Two_Sum(_i, _0, _k, x1); \  Fast_Two_Sum(_j, _k, x3, x2)/*****************************************************************************//*                                                                           *//*  exactinit()   Initialize the variables used for exact arithmetic.        *//*                                                                           *//*  `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in   *//*  floating-point arithmetic.  `epsilon' bounds the relative roundoff       *//*  error.  It is used for floating-point error analysis.                    *//*                                                                           *//*  `splitter' is used to split floating-point numbers into two half-        *//*  length significands for exact multiplication.                            *//*                                                                           *//*  I imagine that a highly optimizing compiler might be too smart for its   *//*  own good, and somehow cause this routine to fail, if it pretends that    *//*  floating-point arithmetic is too much like real arithmetic.              *//*                                                                           *//*  Don't change this routine unless you fully understand it.                *//*                                                                           *//*****************************************************************************/void exactinit(){  REAL half;  REAL check, lastcheck;  int every_other;#ifdef LINUX  int cword;#endif /* LINUX */#ifdef CPU86#ifdef SINGLE  _control87(_PC_24, _MCW_PC); /* Set FPU control word for single precision. */#else /* not SINGLE */  _control87(_PC_53, _MCW_PC); /* Set FPU control word for double precision. */#endif /* not SINGLE */#endif /* CPU86 */#ifdef LINUX#ifdef SINGLE  /*  cword = 4223; */  cword = 4210;                 /* set FPU control word for single precision */#else /* not SINGLE */  /*  cword = 4735; */  cword = 4722;                 /* set FPU control word for double precision */#endif /* not SINGLE */  _FPU_SETCW(cword);#endif /* LINUX */  every_other = 1;  half = 0.5;  epsilon = 1.0;  splitter = 1.0;  check = 1.0;  /* Repeatedly divide `epsilon' by two until it is too small to add to      */  /*   one without causing roundoff.  (Also check if the sum is equal to     */  /*   the previous sum, for machines that round up instead of using exact   */  /*   rounding.  Not that these routines will work on such machines.)       */  do {    lastcheck = check;    epsilon *= half;    if (every_other) {      splitter *= 2.0;    }    every_other = !every_other;    check = 1.0 + epsilon;  } while ((check != 1.0) && (check != lastcheck));  splitter += 1.0;  /* Error bounds for orientation and incircle tests. */  resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;  ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;  ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;  ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;  iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;  iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;  iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;  o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;  o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;  o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;}/*****************************************************************************//*                                                                           *//*  fast_expansion_sum_zeroelim()   Sum two expansions, eliminating zero     *//*                                  components from the output expansion.    *//*                                                                           *//*  Sets h = e + f.  See my Robust Predicates paper for details.             *//*                                                                           *//*  If round-to-even is used (as with IEEE 754), maintains the strongly      *//*  nonoverlapping property.  (That is, if e is strongly nonoverlapping, h   *//*  will be also.)  Does NOT maintain the nonoverlapping or nonadjacent      *//*  properties.                                                              *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSint fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h)#else /* not ANSI_DECLARATORS */int fast_expansion_sum_zeroelim(elen, e, flen, f, h)  /* h cannot be e or f. */int elen;REAL *e;int flen;REAL *f;REAL *h;#endif /* not ANSI_DECLARATORS */{  REAL Q;  INEXACT REAL Qnew;  INEXACT REAL hh;  INEXACT REAL bvirt;  REAL avirt, bround, around;  int eindex, findex, hindex;  REAL enow, fnow;  enow = e[0];  fnow = f[0];  eindex = findex = 0;  if ((fnow > enow) == (fnow > -enow)) {    Q = enow;    enow = e[++eindex];  } else {    Q = fnow;    fnow = f[++findex];  }  hindex = 0;  if ((eindex < elen) && (findex < flen)) {    if ((fnow > enow) == (fnow > -enow)) {      Fast_Two_Sum(enow, Q, Qnew, hh);      enow = e[++eindex];    } else {      Fast_Two_Sum(fnow, Q, Qnew, hh);      fnow = f[++findex];    }    Q = Qnew;    if (hh != 0.0) {      h[hindex++] = hh;    }    while ((eindex < elen) && (findex < flen)) {      if ((fnow > enow) == (fnow > -enow)) {        Two_Sum(Q, enow, Qnew, hh);        enow = e[++eindex];      } else {        Two_Sum(Q, fnow, Qnew, hh);        fnow = f[++findex];      }      Q = Qnew;      if (hh != 0.0) {        h[hindex++] = hh;      }    }  }  while (eindex < elen) {    Two_Sum(Q, enow, Qnew, hh);    enow = e[++eindex];    Q = Qnew;    if (hh != 0.0) {      h[hindex++] = hh;    }  }  while (findex < flen) {    Two_Sum(Q, fnow, Qnew, hh);    fnow = f[++findex];    Q = Qnew;    if (hh != 0.0) {      h[hindex++] = hh;    }  }  if ((Q != 0.0) || (hindex == 0)) {    h[hindex++] = Q;  }  return hindex;}/*****************************************************************************//*                                                                           *//*  scale_expansion_zeroelim()   Multiply an expansion by a scalar,          *//*                               eliminating zero components from the        *//*                               output expansion.                           *//*                                                                           *//*  Sets h = be.  See my Robust Predicates paper for details.                *//*                                                                           *//*  Maintains the nonoverlapping property.  If round-to-even is used (as     *//*  with IEEE 754), maintains the strongly nonoverlapping and nonadjacent    *//*  properties as well.  (That is, if e has one of these properties, so      *//*  will h.)                                                                 *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSint scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h)#else /* not ANSI_DECLARATORS */int scale_expansion_zeroelim(elen, e, b, h)   /* e and h cannot be the same. */int elen;REAL *e;REAL b;REAL *h;#endif /* not ANSI_DECLARATORS */{  INEXACT REAL Q, sum;  REAL hh;  INEXACT REAL product1;  REAL product0;  int eindex, hindex;  REAL enow;  INEXACT REAL bvirt;  REAL avirt, bround, around;  INEXACT REAL c;  INEXACT REAL abig;  REAL ahi, alo, bhi, blo;  REAL err1, err2, err3;  Split(b, bhi, blo);  Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);  hindex = 0;  if (hh != 0) {    h[hindex++] = hh;  }  for (eindex = 1; eindex < elen; eindex++) {    enow = e[eindex];    Two_Product_Presplit(enow, b, bhi, blo, product1, product0);    Two_Sum(Q, product0, sum, hh);    if (hh != 0) {      h[hindex++] = hh;    }    Fast_Two_Sum(product1, sum, Q, hh);    if (hh != 0) {      h[hindex++] = hh;    }  }  if ((Q != 0.0) || (hindex == 0)) {    h[hindex++] = Q;  }  return hindex;}/*****************************************************************************//*                                                                           *//*  estimate()   Produce a one-word estimate of an expansion's value.        *//*                                                                           *//*  See my Robust Predicates paper for details.                              *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSREAL estimate(int elen, REAL *e)#else /* not ANSI_DECLARATORS */REAL estimate(elen, e)int elen;REAL *e;#endif /* not ANSI_DECLARATORS */{  REAL Q;  int eindex;  Q = e[0];  for (eindex = 1; eindex < elen; eindex++) {    Q += e[eindex];  }  return Q;}/*****************************************************************************//*                                                                           *//*  counterclockwise()   Return a positive value if the points pa, pb, and   *//*                       pc occur in counterclockwise order; a negative      *//*                       value if they occur in clockwise order; and zero    *//*                       if they are collinear.  The result is also a rough  *//*                       approximation of twice the signed area of the       *//*                       triangle defined by the three points.               *//*                                                                           *//*  Uses exact arithmetic if necessary to ensure a correct answer.  The      *//*  result returned is the determinant of a matrix.  This determinant is     *//*  computed adaptively, in the sense that exact arithmetic is used only to  *//*  the degree it is needed to ensure that the returned value has the        *//*  correct sign.  Hence, this function is usually quite fast, but will run  *//*  more slowly when the input points are collinear or nearly so.            *//*                                                                           *//*  See my Robust Predicates paper for details.                              *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSREAL counterclockwiseadapt(vertex pa, vertex pb, vertex pc, REAL detsum)#else /* not ANSI_DECLARATORS */REAL counterclockwiseadapt(pa, pb, pc, detsum)vertex pa;vertex pb;vertex pc;REAL detsum;#endif /* not ANSI_DECLARATORS */{  INEXACT REAL acx, acy, bcx, bcy;  REAL acxtail, acytail, bcxtail, bcytail;  INEXACT REAL detleft, detright;  REAL detlefttail, detrighttail;  REAL det, errbound;  REAL B[4], C1[8], C2[12], D[16];  INEXACT REAL B3;  int C1length, C2length, Dlength;  REAL u[4];  INEXACT REAL u3;  INEXACT REAL s1, t1;  REAL s0, t0;  INEXACT REAL bvirt;  REAL avirt, bround, around;  INEXACT REAL c;  INEXACT REAL abig;  REAL ahi, alo, bhi, blo;  REAL err1, err2, err3;  INEXACT REAL _i, _j;  REAL _0;  acx = (REAL) (pa[0] - pc[0]);  bcx = (REAL) (pb[0] - pc[0]);  acy = (REAL) (pa[1] - pc[1]);  bcy = (REAL) (pb[1] - pc[1]);  Two_Product(acx, bcy, detleft, detlefttail);  Two_Product(acy, bcx, detright, detrighttail);  Two_Two_Diff(detleft, detlefttail, detright, detrighttail,               B3, B[2], B[1], B[0]);  B[3] = B3;  det = estimate(4, B);  errbound = ccwerrboundB * detsum;  if ((det >= errbound) || (-det >= errbound)) {    return det;  }  Two_Diff_Tail(pa[0], pc[0], acx, acxtail);  Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);  Two_Diff_Tail(pa[1], pc[1], acy, acytail);  Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);  if ((acxtail == 0.0) && (acytail == 0.0)      && (bcxtail == 0.0) && (bcytail == 0.0)) {    return det;  }  errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);  det += (acx * bcytail + bcy * acxtail)       - (acy * bcxtail + bcx * acytail);  if ((det >= errbound) || (-det >= errbound)) {    return det;  }  Two_Product(acxtail, bcy, s1, s0);  Two_Product(acytail, bcx, t1, t0);  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);  u[3] = u3;  C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);  Two_Product(acx, bcytail, s1, s0);  Two_Product(acy, bcxtail, t1, t0);  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);  u[3] = u3;  C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);  Two_Product(acxtail, bcytail, s1, s0);  Two_Product(acytail, bcxtail, t1, t0);  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);  u[3] = u3;  Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);  return(D[Dlength - 1]);}#ifdef ANSI_DECLARATORSREAL counterclockwise(struct mesh *m, struct behavior *b,                      vertex pa, vertex pb, vertex pc)#else /* not ANSI_DECLARATORS */REAL counterclockwise(m, b, pa, pb, pc)struct mesh *m;struct behavior *b;vertex pa;vertex pb;vertex pc;#endif /* not ANSI_DECLARATORS */{  REAL detleft, detright, det;  REAL detsum, errbound;  m->counterclockcount++;  detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);  detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);  det = detleft - detright;  if (b->noexact) {    return det;  }  if (detleft > 0.0) {    if (detright <= 0.0) {      return det;    } else {      detsum = detleft + detright;    }  } else if (detleft < 0.0) {    if (detright >= 0.0) {      return det;    } else {      detsum = -detleft - detright;    }  } else {    return det;  }  errbound = ccwerrboundA * detsum;  if ((det >= errbound) || (-det >= errbound)) {    return det;  }  return counterclockwiseadapt(pa, pb, pc, detsum);}/*****************************************************************************//*                                                                           *//*  incircle()   Return a positive value if the point pd lies inside the     *//*               circle passing through pa, pb, and pc; a negative value if  *//*               it lies outside; and zero if the four points are cocircular.*//*               The points pa, pb, and pc must be in counterclockwise       *//*               order, or the sign of the result will be reversed.          *//*                                                                           *//*  Uses exact arithmetic if necessary to ensure a correct answer.  The      *//*  result returned is the determinant of a matrix.  This determinant is     *//*  computed adaptively, in the sense that exact arithmetic is used only to  *//*  the degree it is needed to ensure that the returned value has the        *//*  correct sign.  Hence, this function is usually quite fast, but will run  *//*  more slowly when the input points are cocircular or nearly so.           *//*                                                                           *//*  See my Robust Predicates paper for details.                              *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSREAL incircleadapt(vertex pa, vertex pb, vertex pc, vertex pd, REAL permanent)#else /* not ANSI_DECLARATORS */REAL incircleadapt(pa, pb, pc, pd, permanent)vertex pa;vertex pb;vertex pc;vertex pd;REAL permanent;#endif /* not ANSI_DECLARATORS */{  INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;  REAL det, errbound;  INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;  REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;  REAL bc[4], ca[4], ab[4];  INEXACT REAL bc3, ca3, ab3;  REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];  int axbclen, axxbclen, aybclen, ayybclen, alen;  REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];  int bxcalen, bxxcalen, bycalen, byycalen, blen;  REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];  int cxablen, cxxablen, cyablen, cyyablen, clen;  REAL abdet[64];  int ablen;  REAL fin1[1152], fin2[1152];  REAL *finnow, *finother, *finswap;  int finlength;  REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;  INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;  REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;  REAL aa[4], bb[4], cc[4];  INEXACT REAL aa3, bb3, cc3;  INEXACT REAL ti1, tj1;  REAL ti0, tj0;  REAL u[4], v[4];  INEXACT REAL u3, v3;  REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];  REAL temp32a[32], temp32b[32], temp48[48], temp64[64];  int temp8len, temp16alen, temp16blen, temp16clen;  int temp32alen, temp32blen, temp48len, temp64len;  REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];  int axtbblen, axtcclen, aytbblen, aytcclen;  REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];  int bxtaalen, bxtcclen, bytaalen, bytcclen;  REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];  int cxtaalen, cxtbblen, cytaalen, cytbblen;  REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];  int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;  REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];  int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;  REAL axtbctt[8], aytbctt[8], bxtcatt[8];  REAL bytcatt[8], cxtabtt[8], cytabtt[8];  int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;  REAL abt[8], bct[8], cat[8];  int abtlen, bctlen, catlen;  REAL abtt[4], bctt[4], catt[4];  int abttlen, bcttlen, cattlen;  INEXACT REAL abtt3, bctt3, catt3;  REAL negate;  INEXACT REAL bvirt;  REAL avirt, bround, around;  INEXACT REAL c;  INEXACT REAL abig;  REAL ahi, alo, bhi, blo;  REAL err1, err2, err3;  INEXACT REAL _i, _j;  REAL _0;  adx = (REAL) (pa[0] - pd[0]);  bdx = (REAL) (pb[0] - pd[0]);  cdx = (REAL) (pc[0] - pd[0]);  ady = (REAL) (pa[1] - pd[1]);  bdy = (REAL) (pb[1] - pd[1]);  cdy = (REAL) (pc[1] - pd[1]);  Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);  Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);  Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);  bc[3] = bc3;  axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);  axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);  aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);  ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);  alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);  Two_Product(cdx, ady, cdxady1, cdxady0);  Two_Product(adx, cdy, adxcdy1, adxcdy0);  Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);  ca[3] = ca3;  bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);  bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);  bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);  byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);  blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);  Two_Product(adx, bdy, adxbdy1, adxbdy0);  Two_Product(bdx, ady, bdxady1, bdxady0);  Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);  ab[3] = ab3;  cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);  cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);  cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);  cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);  clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);  ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);  finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);  det = estimate(finlength, fin1);  errbound = iccerrboundB * permanent;  if ((det >= errbound) || (-det >= errbound)) {    return det;  }  Two_Diff_Tail(pa[0], pd[0], adx, adxtail);  Two_Diff_Tail(pa[1], pd[1], ady, adytail);  Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);  Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);  Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);  Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);  if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)      && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {    return det;  }  errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);  det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)                                     - (bdy * cdxtail + cdx * bdytail))          + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))       + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)                                     - (cdy * adxtail + adx * cdytail))          + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))       + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)                                     - (ady * bdxtail + bdx * adytail))          + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));  if ((det >= errbound) || (-det >= errbound)) {    return det;  }  finnow = fin1;  finother = fin2;  if ((bdxtail != 0.0) || (bdytail != 0.0)      || (cdxtail != 0.0) || (cdytail != 0.0)) {    Square(adx, adxadx1, adxadx0);    Square(ady, adyady1, adyady0);    Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);    aa[3] = aa3;  }  if ((cdxtail != 0.0) || (cdytail != 0.0)      || (adxtail != 0.0) || (adytail != 0.0)) {    Square(bdx, bdxbdx1, bdxbdx0);    Square(bdy, bdybdy1, bdybdy0);    Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);    bb[3] = bb3;  }  if ((adxtail != 0.0) || (adytail != 0.0)      || (bdxtail != 0.0) || (bdytail != 0.0)) {    Square(cdx, cdxcdx1, cdxcdx0);    Square(cdy, cdycdy1, cdycdy0);    Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);    cc[3] = cc3;  }  if (adxtail != 0.0) {    axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);    temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,                                          temp16a);    axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);    temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);    axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);    temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                            temp16blen, temp16b, temp32a);    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,                                            temp32alen, temp32a, temp48);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                            temp48, finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if (adytail != 0.0) {    aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);    temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,                                          temp16a);    aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);    temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);    aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);    temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                            temp16blen, temp16b, temp32a);    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,                                            temp32alen, temp32a, temp48);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                            temp48, finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if (bdxtail != 0.0) {    bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);    temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,                                          temp16a);    bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);    temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);    bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);    temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                            temp16blen, temp16b, temp32a);    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,                                            temp32alen, temp32a, temp48);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                            temp48, finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if (bdytail != 0.0) {    bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);    temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,                                          temp16a);    bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);    temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);    bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);    temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                            temp16blen, temp16b, temp32a);    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,                                            temp32alen, temp32a, temp48);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                            temp48, finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if (cdxtail != 0.0) {    cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);    temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,                                          temp16a);    cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);    temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);    cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);    temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                            temp16blen, temp16b, temp32a);    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,                                            temp32alen, temp32a, temp48);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                            temp48, finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if (cdytail != 0.0) {    cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);    temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,                                          temp16a);    cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);    temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);    cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);    temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                            temp16blen, temp16b, temp32a);    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,                                            temp32alen, temp32a, temp48);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                            temp48, finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if ((adxtail != 0.0) || (adytail != 0.0)) {    if ((bdxtail != 0.0) || (bdytail != 0.0)        || (cdxtail != 0.0) || (cdytail != 0.0)) {      Two_Product(bdxtail, cdy, ti1, ti0);      Two_Product(bdx, cdytail, tj1, tj0);      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);      u[3] = u3;      negate = -bdy;      Two_Product(cdxtail, negate, ti1, ti0);      negate = -bdytail;      Two_Product(cdx, negate, tj1, tj0);      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);      v[3] = v3;      bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);      Two_Product(bdxtail, cdytail, ti1, ti0);      Two_Product(cdxtail, bdytail, tj1, tj0);      Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);      bctt[3] = bctt3;      bcttlen = 4;    } else {      bct[0] = 0.0;      bctlen = 1;      bctt[0] = 0.0;      bcttlen = 1;    }    if (adxtail != 0.0) {      temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);      axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);      temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,                                            temp32a);      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp32alen, temp32a, temp48);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                              temp48, finother);      finswap = finnow; finnow = finother; finother = finswap;      if (bdytail != 0.0) {        temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);        temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,                                              temp16a);        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,                                                temp16a, finother);        finswap = finnow; finnow = finother; finother = finswap;      }      if (cdytail != 0.0) {        temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);        temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,                                              temp16a);        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,                                                temp16a, finother);        finswap = finnow; finnow = finother; finother = finswap;      }      temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,                                            temp32a);      axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);      temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,                                            temp16a);      temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,                                            temp16b);      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp16blen, temp16b, temp32b);      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,                                              temp32blen, temp32b, temp64);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,                                              temp64, finother);      finswap = finnow; finnow = finother; finother = finswap;    }    if (adytail != 0.0) {      temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);      aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);      temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,                                            temp32a);      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp32alen, temp32a, temp48);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                              temp48, finother);      finswap = finnow; finnow = finother; finother = finswap;      temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,                                            temp32a);      aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);      temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,                                            temp16a);      temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,                                            temp16b);      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp16blen, temp16b, temp32b);      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,                                              temp32blen, temp32b, temp64);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,                                              temp64, finother);      finswap = finnow; finnow = finother; finother = finswap;    }  }  if ((bdxtail != 0.0) || (bdytail != 0.0)) {    if ((cdxtail != 0.0) || (cdytail != 0.0)        || (adxtail != 0.0) || (adytail != 0.0)) {      Two_Product(cdxtail, ady, ti1, ti0);      Two_Product(cdx, adytail, tj1, tj0);      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);      u[3] = u3;      negate = -cdy;      Two_Product(adxtail, negate, ti1, ti0);      negate = -cdytail;      Two_Product(adx, negate, tj1, tj0);      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);      v[3] = v3;      catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);      Two_Product(cdxtail, adytail, ti1, ti0);      Two_Product(adxtail, cdytail, tj1, tj0);      Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);      catt[3] = catt3;      cattlen = 4;    } else {      cat[0] = 0.0;      catlen = 1;      catt[0] = 0.0;      cattlen = 1;    }    if (bdxtail != 0.0) {      temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);      bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);      temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,                                            temp32a);      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp32alen, temp32a, temp48);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                              temp48, finother);      finswap = finnow; finnow = finother; finother = finswap;      if (cdytail != 0.0) {        temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);        temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,                                              temp16a);        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,                                                temp16a, finother);        finswap = finnow; finnow = finother; finother = finswap;      }      if (adytail != 0.0) {        temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);        temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,                                              temp16a);        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,                                                temp16a, finother);        finswap = finnow; finnow = finother; finother = finswap;      }      temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,                                            temp32a);      bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);      temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,                                            temp16a);      temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,                                            temp16b);      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp16blen, temp16b, temp32b);      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,                                              temp32blen, temp32b, temp64);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,                                              temp64, finother);      finswap = finnow; finnow = finother; finother = finswap;    }    if (bdytail != 0.0) {      temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);      bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);      temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,                                            temp32a);      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp32alen, temp32a, temp48);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                              temp48, finother);      finswap = finnow; finnow = finother; finother = finswap;      temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,                                            temp32a);      bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);      temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,                                            temp16a);      temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,                                            temp16b);      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp16blen, temp16b, temp32b);      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,                                              temp32blen, temp32b, temp64);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,                                              temp64, finother);      finswap = finnow; finnow = finother; finother = finswap;    }  }  if ((cdxtail != 0.0) || (cdytail != 0.0)) {    if ((adxtail != 0.0) || (adytail != 0.0)        || (bdxtail != 0.0) || (bdytail != 0.0)) {      Two_Product(adxtail, bdy, ti1, ti0);      Two_Product(adx, bdytail, tj1, tj0);      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);      u[3] = u3;      negate = -ady;      Two_Product(bdxtail, negate, ti1, ti0);      negate = -adytail;      Two_Product(bdx, negate, tj1, tj0);      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);      v[3] = v3;      abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);      Two_Product(adxtail, bdytail, ti1, ti0);      Two_Product(bdxtail, adytail, tj1, tj0);      Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);      abtt[3] = abtt3;      abttlen = 4;    } else {      abt[0] = 0.0;      abtlen = 1;      abtt[0] = 0.0;      abttlen = 1;    }    if (cdxtail != 0.0) {      temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);      cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);      temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,                                            temp32a);      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp32alen, temp32a, temp48);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                              temp48, finother);      finswap = finnow; finnow = finother; finother = finswap;      if (adytail != 0.0) {        temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);        temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,                                              temp16a);        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,                                                temp16a, finother);        finswap = finnow; finnow = finother; finother = finswap;      }      if (bdytail != 0.0) {        temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);        temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,                                              temp16a);        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,                                                temp16a, finother);        finswap = finnow; finnow = finother; finother = finswap;      }      temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,                                            temp32a);      cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);      temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,                                            temp16a);      temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,                                            temp16b);      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp16blen, temp16b, temp32b);      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,                                              temp32blen, temp32b, temp64);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,                                              temp64, finother);      finswap = finnow; finnow = finother; finother = finswap;    }    if (cdytail != 0.0) {      temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);      cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);      temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,                                            temp32a);      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp32alen, temp32a, temp48);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,                                              temp48, finother);      finswap = finnow; finnow = finother; finother = finswap;      temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,                                            temp32a);      cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);      temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,                                            temp16a);      temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,                                            temp16b);      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,                                              temp16blen, temp16b, temp32b);      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,                                              temp32blen, temp32b, temp64);      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,                                              temp64, finother);      finswap = finnow; finnow = finother; finother = finswap;    }  }  return finnow[finlength - 1];}#ifdef ANSI_DECLARATORSREAL incircle(struct mesh *m, struct behavior *b,              vertex pa, vertex pb, vertex pc, vertex pd)#else /* not ANSI_DECLARATORS */REAL incircle(m, b, pa, pb, pc, pd)struct mesh *m;struct behavior *b;vertex pa;vertex pb;vertex pc;vertex pd;#endif /* not ANSI_DECLARATORS */{  REAL adx, bdx, cdx, ady, bdy, cdy;  REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;  REAL alift, blift, clift;  REAL det;  REAL permanent, errbound;  m->incirclecount++;  adx = pa[0] - pd[0];  bdx = pb[0] - pd[0];  cdx = pc[0] - pd[0];  ady = pa[1] - pd[1];  bdy = pb[1] - pd[1];  cdy = pc[1] - pd[1];  bdxcdy = bdx * cdy;  cdxbdy = cdx * bdy;  alift = adx * adx + ady * ady;  cdxady = cdx * ady;  adxcdy = adx * cdy;  blift = bdx * bdx + bdy * bdy;  adxbdy = adx * bdy;  bdxady = bdx * ady;  clift = cdx * cdx + cdy * cdy;  det = alift * (bdxcdy - cdxbdy)      + blift * (cdxady - adxcdy)      + clift * (adxbdy - bdxady);  if (b->noexact) {    return det;  }  permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift            + (Absolute(cdxady) + Absolute(adxcdy)) * blift            + (Absolute(adxbdy) + Absolute(bdxady)) * clift;  errbound = iccerrboundA * permanent;  if ((det > errbound) || (-det > errbound)) {    return det;  }  return incircleadapt(pa, pb, pc, pd, permanent);}/*****************************************************************************//*                                                                           *//*  orient3d()   Return a positive value if the point pd lies below the      *//*               plane passing through pa, pb, and pc; "below" is defined so *//*               that pa, pb, and pc appear in counterclockwise order when   *//*               viewed from above the plane.  Returns a negative value if   *//*               pd lies above the plane.  Returns zero if the points are    *//*               coplanar.  The result is also a rough approximation of six  *//*               times the signed volume of the tetrahedron defined by the   *//*               four points.                                                *//*                                                                           *//*  Uses exact arithmetic if necessary to ensure a correct answer.  The      *//*  result returned is the determinant of a matrix.  This determinant is     *//*  computed adaptively, in the sense that exact arithmetic is used only to  *//*  the degree it is needed to ensure that the returned value has the        *//*  correct sign.  Hence, this function is usually quite fast, but will run  *//*  more slowly when the input points are coplanar or nearly so.             *//*                                                                           *//*  See my Robust Predicates paper for details.                              *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSREAL orient3dadapt(vertex pa, vertex pb, vertex pc, vertex pd,                   REAL aheight, REAL bheight, REAL cheight, REAL dheight,                   REAL permanent)#else /* not ANSI_DECLARATORS */REAL orient3dadapt(pa, pb, pc, pd,                   aheight, bheight, cheight, dheight, permanent)vertex pa;vertex pb;vertex pc;vertex pd;REAL aheight;REAL bheight;REAL cheight;REAL dheight;REAL permanent;#endif /* not ANSI_DECLARATORS */{  INEXACT REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;  REAL det, errbound;  INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;  REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;  REAL bc[4], ca[4], ab[4];  INEXACT REAL bc3, ca3, ab3;  REAL adet[8], bdet[8], cdet[8];  int alen, blen, clen;  REAL abdet[16];  int ablen;  REAL *finnow, *finother, *finswap;  REAL fin1[192], fin2[192];  int finlength;  REAL adxtail, bdxtail, cdxtail;  REAL adytail, bdytail, cdytail;  REAL adheighttail, bdheighttail, cdheighttail;  INEXACT REAL at_blarge, at_clarge;  INEXACT REAL bt_clarge, bt_alarge;  INEXACT REAL ct_alarge, ct_blarge;  REAL at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];  int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;  INEXACT REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1;  INEXACT REAL adxt_cdy1, adxt_bdy1, bdxt_ady1;  REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0;  REAL adxt_cdy0, adxt_bdy0, bdxt_ady0;  INEXACT REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1;  INEXACT REAL adyt_cdx1, adyt_bdx1, bdyt_adx1;  REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0;  REAL adyt_cdx0, adyt_bdx0, bdyt_adx0;  REAL bct[8], cat[8], abt[8];  int bctlen, catlen, abtlen;  INEXACT REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;  INEXACT REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;  REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;  REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;  REAL u[4], v[12], w[16];  INEXACT REAL u3;  int vlength, wlength;  REAL negate;  INEXACT REAL bvirt;  REAL avirt, bround, around;  INEXACT REAL c;  INEXACT REAL abig;  REAL ahi, alo, bhi, blo;  REAL err1, err2, err3;  INEXACT REAL _i, _j, _k;  REAL _0;  adx = (REAL) (pa[0] - pd[0]);  bdx = (REAL) (pb[0] - pd[0]);  cdx = (REAL) (pc[0] - pd[0]);  ady = (REAL) (pa[1] - pd[1]);  bdy = (REAL) (pb[1] - pd[1]);  cdy = (REAL) (pc[1] - pd[1]);  adheight = (REAL) (aheight - dheight);  bdheight = (REAL) (bheight - dheight);  cdheight = (REAL) (cheight - dheight);  Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);  Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);  Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);  bc[3] = bc3;  alen = scale_expansion_zeroelim(4, bc, adheight, adet);  Two_Product(cdx, ady, cdxady1, cdxady0);  Two_Product(adx, cdy, adxcdy1, adxcdy0);  Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);  ca[3] = ca3;  blen = scale_expansion_zeroelim(4, ca, bdheight, bdet);  Two_Product(adx, bdy, adxbdy1, adxbdy0);  Two_Product(bdx, ady, bdxady1, bdxady0);  Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);  ab[3] = ab3;  clen = scale_expansion_zeroelim(4, ab, cdheight, cdet);  ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);  finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);  det = estimate(finlength, fin1);  errbound = o3derrboundB * permanent;  if ((det >= errbound) || (-det >= errbound)) {    return det;  }  Two_Diff_Tail(pa[0], pd[0], adx, adxtail);  Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);  Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);  Two_Diff_Tail(pa[1], pd[1], ady, adytail);  Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);  Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);  Two_Diff_Tail(aheight, dheight, adheight, adheighttail);  Two_Diff_Tail(bheight, dheight, bdheight, bdheighttail);  Two_Diff_Tail(cheight, dheight, cdheight, cdheighttail);  if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) &&      (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) &&      (adheighttail == 0.0) &&      (bdheighttail == 0.0) &&      (cdheighttail == 0.0)) {    return det;  }  errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);  det += (adheight * ((bdx * cdytail + cdy * bdxtail) -                      (bdy * cdxtail + cdx * bdytail)) +          adheighttail * (bdx * cdy - bdy * cdx)) +         (bdheight * ((cdx * adytail + ady * cdxtail) -                      (cdy * adxtail + adx * cdytail)) +          bdheighttail * (cdx * ady - cdy * adx)) +         (cdheight * ((adx * bdytail + bdy * adxtail) -                      (ady * bdxtail + bdx * adytail)) +          cdheighttail * (adx * bdy - ady * bdx));  if ((det >= errbound) || (-det >= errbound)) {    return det;  }  finnow = fin1;  finother = fin2;  if (adxtail == 0.0) {    if (adytail == 0.0) {      at_b[0] = 0.0;      at_blen = 1;      at_c[0] = 0.0;      at_clen = 1;    } else {      negate = -adytail;      Two_Product(negate, bdx, at_blarge, at_b[0]);      at_b[1] = at_blarge;      at_blen = 2;      Two_Product(adytail, cdx, at_clarge, at_c[0]);      at_c[1] = at_clarge;      at_clen = 2;    }  } else {    if (adytail == 0.0) {      Two_Product(adxtail, bdy, at_blarge, at_b[0]);      at_b[1] = at_blarge;      at_blen = 2;      negate = -adxtail;      Two_Product(negate, cdy, at_clarge, at_c[0]);      at_c[1] = at_clarge;      at_clen = 2;    } else {      Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);      Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);      Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0,                   at_blarge, at_b[2], at_b[1], at_b[0]);      at_b[3] = at_blarge;      at_blen = 4;      Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);      Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);      Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0,                   at_clarge, at_c[2], at_c[1], at_c[0]);      at_c[3] = at_clarge;      at_clen = 4;    }  }  if (bdxtail == 0.0) {    if (bdytail == 0.0) {      bt_c[0] = 0.0;      bt_clen = 1;      bt_a[0] = 0.0;      bt_alen = 1;    } else {      negate = -bdytail;      Two_Product(negate, cdx, bt_clarge, bt_c[0]);      bt_c[1] = bt_clarge;      bt_clen = 2;      Two_Product(bdytail, adx, bt_alarge, bt_a[0]);      bt_a[1] = bt_alarge;      bt_alen = 2;    }  } else {    if (bdytail == 0.0) {      Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);      bt_c[1] = bt_clarge;      bt_clen = 2;      negate = -bdxtail;      Two_Product(negate, ady, bt_alarge, bt_a[0]);      bt_a[1] = bt_alarge;      bt_alen = 2;    } else {      Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);      Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);      Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0,                   bt_clarge, bt_c[2], bt_c[1], bt_c[0]);      bt_c[3] = bt_clarge;      bt_clen = 4;      Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);      Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);      Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0,                  bt_alarge, bt_a[2], bt_a[1], bt_a[0]);      bt_a[3] = bt_alarge;      bt_alen = 4;    }  }  if (cdxtail == 0.0) {    if (cdytail == 0.0) {      ct_a[0] = 0.0;      ct_alen = 1;      ct_b[0] = 0.0;      ct_blen = 1;    } else {      negate = -cdytail;      Two_Product(negate, adx, ct_alarge, ct_a[0]);      ct_a[1] = ct_alarge;      ct_alen = 2;      Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);      ct_b[1] = ct_blarge;      ct_blen = 2;    }  } else {    if (cdytail == 0.0) {      Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);      ct_a[1] = ct_alarge;      ct_alen = 2;      negate = -cdxtail;      Two_Product(negate, bdy, ct_blarge, ct_b[0]);      ct_b[1] = ct_blarge;      ct_blen = 2;    } else {      Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);      Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);      Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0,                   ct_alarge, ct_a[2], ct_a[1], ct_a[0]);      ct_a[3] = ct_alarge;      ct_alen = 4;      Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);      Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);      Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0,                   ct_blarge, ct_b[2], ct_b[1], ct_b[0]);      ct_b[3] = ct_blarge;      ct_blen = 4;    }  }  bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);  wlength = scale_expansion_zeroelim(bctlen, bct, adheight, w);  finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,                                          finother);  finswap = finnow; finnow = finother; finother = finswap;  catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);  wlength = scale_expansion_zeroelim(catlen, cat, bdheight, w);  finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,                                          finother);  finswap = finnow; finnow = finother; finother = finswap;  abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);  wlength = scale_expansion_zeroelim(abtlen, abt, cdheight, w);  finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,                                          finother);  finswap = finnow; finnow = finother; finother = finswap;  if (adheighttail != 0.0) {    vlength = scale_expansion_zeroelim(4, bc, adheighttail, v);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,                                            finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if (bdheighttail != 0.0) {    vlength = scale_expansion_zeroelim(4, ca, bdheighttail, v);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,                                            finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if (cdheighttail != 0.0) {    vlength = scale_expansion_zeroelim(4, ab, cdheighttail, v);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,                                            finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if (adxtail != 0.0) {    if (bdytail != 0.0) {      Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);      Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheight, u3, u[2], u[1], u[0]);      u[3] = u3;      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                              finother);      finswap = finnow; finnow = finother; finother = finswap;      if (cdheighttail != 0.0) {        Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheighttail,                        u3, u[2], u[1], u[0]);        u[3] = u3;        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                                finother);        finswap = finnow; finnow = finother; finother = finswap;      }    }    if (cdytail != 0.0) {      negate = -adxtail;      Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);      Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheight, u3, u[2], u[1], u[0]);      u[3] = u3;      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                              finother);      finswap = finnow; finnow = finother; finother = finswap;      if (bdheighttail != 0.0) {        Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheighttail,                        u3, u[2], u[1], u[0]);        u[3] = u3;        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                                finother);        finswap = finnow; finnow = finother; finother = finswap;      }    }  }  if (bdxtail != 0.0) {    if (cdytail != 0.0) {      Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);      Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheight, u3, u[2], u[1], u[0]);      u[3] = u3;      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                              finother);      finswap = finnow; finnow = finother; finother = finswap;      if (adheighttail != 0.0) {        Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheighttail,                        u3, u[2], u[1], u[0]);        u[3] = u3;        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                                finother);        finswap = finnow; finnow = finother; finother = finswap;      }    }    if (adytail != 0.0) {      negate = -bdxtail;      Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);      Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheight, u3, u[2], u[1], u[0]);      u[3] = u3;      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                              finother);      finswap = finnow; finnow = finother; finother = finswap;      if (cdheighttail != 0.0) {        Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheighttail,                        u3, u[2], u[1], u[0]);        u[3] = u3;        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                                finother);        finswap = finnow; finnow = finother; finother = finswap;      }    }  }  if (cdxtail != 0.0) {    if (adytail != 0.0) {      Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);      Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheight, u3, u[2], u[1], u[0]);      u[3] = u3;      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                              finother);      finswap = finnow; finnow = finother; finother = finswap;      if (bdheighttail != 0.0) {        Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheighttail,                        u3, u[2], u[1], u[0]);        u[3] = u3;        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                                finother);        finswap = finnow; finnow = finother; finother = finswap;      }    }    if (bdytail != 0.0) {      negate = -cdxtail;      Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);      Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheight, u3, u[2], u[1], u[0]);      u[3] = u3;      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                              finother);      finswap = finnow; finnow = finother; finother = finswap;      if (adheighttail != 0.0) {        Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheighttail,                        u3, u[2], u[1], u[0]);        u[3] = u3;        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,                                                finother);        finswap = finnow; finnow = finother; finother = finswap;      }    }  }  if (adheighttail != 0.0) {    wlength = scale_expansion_zeroelim(bctlen, bct, adheighttail, w);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,                                            finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if (bdheighttail != 0.0) {    wlength = scale_expansion_zeroelim(catlen, cat, bdheighttail, w);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,                                            finother);    finswap = finnow; finnow = finother; finother = finswap;  }  if (cdheighttail != 0.0) {    wlength = scale_expansion_zeroelim(abtlen, abt, cdheighttail, w);    finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,                                            finother);    finswap = finnow; finnow = finother; finother = finswap;  }  return finnow[finlength - 1];}#ifdef ANSI_DECLARATORSREAL orient3d(struct mesh *m, struct behavior *b,              vertex pa, vertex pb, vertex pc, vertex pd,              REAL aheight, REAL bheight, REAL cheight, REAL dheight)#else /* not ANSI_DECLARATORS */REAL orient3d(m, b, pa, pb, pc, pd, aheight, bheight, cheight, dheight)struct mesh *m;struct behavior *b;vertex pa;vertex pb;vertex pc;vertex pd;REAL aheight;REAL bheight;REAL cheight;REAL dheight;#endif /* not ANSI_DECLARATORS */{  REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;  REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;  REAL det;  REAL permanent, errbound;  m->orient3dcount++;  adx = pa[0] - pd[0];  bdx = pb[0] - pd[0];  cdx = pc[0] - pd[0];  ady = pa[1] - pd[1];  bdy = pb[1] - pd[1];  cdy = pc[1] - pd[1];  adheight = aheight - dheight;  bdheight = bheight - dheight;  cdheight = cheight - dheight;  bdxcdy = bdx * cdy;  cdxbdy = cdx * bdy;  cdxady = cdx * ady;  adxcdy = adx * cdy;  adxbdy = adx * bdy;  bdxady = bdx * ady;  det = adheight * (bdxcdy - cdxbdy)       + bdheight * (cdxady - adxcdy)      + cdheight * (adxbdy - bdxady);  if (b->noexact) {    return det;  }  permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adheight)            + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdheight)            + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdheight);  errbound = o3derrboundA * permanent;  if ((det > errbound) || (-det > errbound)) {    return det;  }  return orient3dadapt(pa, pb, pc, pd, aheight, bheight, cheight, dheight,                       permanent);}/*****************************************************************************//*                                                                           *//*  nonregular()   Return a positive value if the point pd is incompatible   *//*                 with the circle or plane passing through pa, pb, and pc   *//*                 (meaning that pd is inside the circle or below the        *//*                 plane); a negative value if it is compatible; and zero if *//*                 the four points are cocircular/coplanar.  The points pa,  *//*                 pb, and pc must be in counterclockwise order, or the sign *//*                 of the result will be reversed.                           *//*                                                                           *//*  If the -w switch is used, the points are lifted onto the parabolic       *//*  lifting map, then they are dropped according to their weights, then the  *//*  3D orientation test is applied.  If the -W switch is used, the points'   *//*  heights are already provided, so the 3D orientation test is applied      *//*  directly.  If neither switch is used, the incircle test is applied.      *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSREAL nonregular(struct mesh *m, struct behavior *b,                vertex pa, vertex pb, vertex pc, vertex pd)#else /* not ANSI_DECLARATORS */REAL nonregular(m, b, pa, pb, pc, pd)struct mesh *m;struct behavior *b;vertex pa;vertex pb;vertex pc;vertex pd;#endif /* not ANSI_DECLARATORS */{  if (b->weighted == 0) {    return incircle(m, b, pa, pb, pc, pd);  } else if (b->weighted == 1) {    return orient3d(m, b, pa, pb, pc, pd,                    pa[0] * pa[0] + pa[1] * pa[1] - pa[2],                    pb[0] * pb[0] + pb[1] * pb[1] - pb[2],                    pc[0] * pc[0] + pc[1] * pc[1] - pc[2],                    pd[0] * pd[0] + pd[1] * pd[1] - pd[2]);  } else {    return orient3d(m, b, pa, pb, pc, pd, pa[2], pb[2], pc[2], pd[2]);  }}/*****************************************************************************//*                                                                           *//*  findcircumcenter()   Find the circumcenter of a triangle.                *//*                                                                           *//*  The result is returned both in terms of x-y coordinates and xi-eta       *//*  (barycentric) coordinates.  The xi-eta coordinate system is defined in   *//*  terms of the triangle:  the origin of the triangle is the origin of the  *//*  coordinate system; the destination of the triangle is one unit along the *//*  xi axis; and the apex of the triangle is one unit along the eta axis.    *//*  This procedure also returns the square of the length of the triangle's   *//*  shortest edge.                                                           *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid findcircumcenter(struct mesh *m, struct behavior *b,                      vertex torg, vertex tdest, vertex tapex,                      vertex circumcenter, REAL *xi, REAL *eta, int offcenter)#else /* not ANSI_DECLARATORS */void findcircumcenter(m, b, torg, tdest, tapex, circumcenter, xi, eta,                      offcenter)struct mesh *m;struct behavior *b;vertex torg;vertex tdest;vertex tapex;vertex circumcenter;REAL *xi;REAL *eta;int offcenter;#endif /* not ANSI_DECLARATORS */{  REAL xdo, ydo, xao, yao;  REAL dodist, aodist, dadist;  REAL denominator;  REAL dx, dy, dxoff, dyoff;  m->circumcentercount++;  /* Compute the circumcenter of the triangle. */  xdo = tdest[0] - torg[0];  ydo = tdest[1] - torg[1];  xao = tapex[0] - torg[0];  yao = tapex[1] - torg[1];  dodist = xdo * xdo + ydo * ydo;  aodist = xao * xao + yao * yao;  dadist = (tdest[0] - tapex[0]) * (tdest[0] - tapex[0]) +           (tdest[1] - tapex[1]) * (tdest[1] - tapex[1]);  if (b->noexact) {    denominator = 0.5 / (xdo * yao - xao * ydo);  } else {    /* Use the counterclockwise() routine to ensure a positive (and */    /*   reasonably accurate) result, avoiding any possibility of   */    /*   division by zero.                                          */    denominator = 0.5 / counterclockwise(m, b, tdest, tapex, torg);    /* Don't count the above as an orientation test. */    m->counterclockcount--;  }  dx = (yao * dodist - ydo * aodist) * denominator;  dy = (xdo * aodist - xao * dodist) * denominator;  /* Find the (squared) length of the triangle's shortest edge.  This   */  /*   serves as a conservative estimate of the insertion radius of the */  /*   circumcenter's parent.  The estimate is used to ensure that      */  /*   the algorithm terminates even if very small angles appear in     */  /*   the input PSLG.                                                  */  if ((dodist < aodist) && (dodist < dadist)) {    if (offcenter && (b->offconstant > 0.0)) {      /* Find the position of the off-center, as described by Alper Ungor. */      dxoff = 0.5 * xdo - b->offconstant * ydo;      dyoff = 0.5 * ydo + b->offconstant * xdo;      /* If the off-center is closer to the origin than the */      /*   circumcenter, use the off-center instead.        */      if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {        dx = dxoff;        dy = dyoff;      }    }  } else if (aodist < dadist) {    if (offcenter && (b->offconstant > 0.0)) {      dxoff = 0.5 * xao + b->offconstant * yao;      dyoff = 0.5 * yao - b->offconstant * xao;      /* If the off-center is closer to the origin than the */      /*   circumcenter, use the off-center instead.        */      if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {        dx = dxoff;        dy = dyoff;      }    }  } else {    if (offcenter && (b->offconstant > 0.0)) {      dxoff = 0.5 * (tapex[0] - tdest[0]) -              b->offconstant * (tapex[1] - tdest[1]);      dyoff = 0.5 * (tapex[1] - tdest[1]) +              b->offconstant * (tapex[0] - tdest[0]);      /* If the off-center is closer to the destination than the */      /*   circumcenter, use the off-center instead.             */      if (dxoff * dxoff + dyoff * dyoff <          (dx - xdo) * (dx - xdo) + (dy - ydo) * (dy - ydo)) {        dx = xdo + dxoff;        dy = ydo + dyoff;      }    }  }  circumcenter[0] = torg[0] + dx;  circumcenter[1] = torg[1] + dy;  /* To interpolate vertex attributes for the new vertex inserted at */  /*   the circumcenter, define a coordinate system with a xi-axis,  */  /*   directed from the triangle's origin to its destination, and   */  /*   an eta-axis, directed from its origin to its apex.            */  /*   Calculate the xi and eta coordinates of the circumcenter.     */  *xi = (yao * dx - xao * dy) * (2.0 * denominator);  *eta = (xdo * dy - ydo * dx) * (2.0 * denominator);}/**                                                                         **//**                                                                         **//********* Geometric primitives end here                             *********//*****************************************************************************//*                                                                           *//*  triangleinit()   Initialize some variables.                              *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid triangleinit(struct mesh *m)#else /* not ANSI_DECLARATORS */void triangleinit(m)struct mesh *m;#endif /* not ANSI_DECLARATORS */{  poolzero(&m->vertices);  poolzero(&m->triangles);  poolzero(&m->subsegs);  poolzero(&m->viri);  poolzero(&m->badsubsegs);  poolzero(&m->badtriangles);  poolzero(&m->flipstackers);  poolzero(&m->splaynodes);  m->recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */  m->undeads = 0;                       /* No eliminated input vertices yet. */  m->samples = 1;         /* Point location should take at least one sample. */  m->checksegments = 0;   /* There are no segments in the triangulation yet. */  m->checkquality = 0;     /* The quality triangulation stage has not begun. */  m->incirclecount = m->counterclockcount = m->orient3dcount = 0;  m->hyperbolacount = m->circletopcount = m->circumcentercount = 0;  randomseed = 1;  exactinit();                     /* Initialize exact arithmetic constants. */}/*****************************************************************************//*                                                                           *//*  randomnation()   Generate a random number between 0 and `choices' - 1.   *//*                                                                           *//*  This is a simple linear congruential random number generator.  Hence, it *//*  is a bad random number generator, but good enough for most randomized    *//*  geometric algorithms.                                                    *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSunsigned long randomnation(unsigned int choices)#else /* not ANSI_DECLARATORS */unsigned long randomnation(choices)unsigned int choices;#endif /* not ANSI_DECLARATORS */{  randomseed = (randomseed * 1366l + 150889l) % 714025l;  return randomseed / (714025l / choices + 1);}/********* Mesh quality testing routines begin here                  *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  checkmesh()   Test the mesh for topological consistency.                 *//*                                                                           *//*****************************************************************************/#ifndef REDUCED#ifdef ANSI_DECLARATORSvoid checkmesh(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void checkmesh(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri triangleloop;  struct otri oppotri, oppooppotri;  vertex triorg, tridest, triapex;  vertex oppoorg, oppodest;  int horrors;  int saveexact;  triangle ptr;                         /* Temporary variable used by sym(). */  /* Temporarily turn on exact arithmetic if it's off. */  saveexact = b->noexact;  b->noexact = 0;  if (!b->quiet) {    printf("  Checking consistency of mesh...\n");  }  horrors = 0;  /* Run through the list of triangles, checking each one. */  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  while (triangleloop.tri != (triangle *) NULL) {    /* Check all three edges of the triangle. */    for (triangleloop.orient = 0; triangleloop.orient < 3;         triangleloop.orient++) {      org(triangleloop, triorg);      dest(triangleloop, tridest);      if (triangleloop.orient == 0) {       /* Only test for inversion once. */        /* Test if the triangle is flat or inverted. */        apex(triangleloop, triapex);        if (counterclockwise(m, b, triorg, tridest, triapex) <= 0.0) {          printf("  !! !! Inverted ");          printtriangle(m, b, &triangleloop);          horrors++;        }      }      /* Find the neighboring triangle on this edge. */      sym(triangleloop, oppotri);      if (oppotri.tri != m->dummytri) {        /* Check that the triangle's neighbor knows it's a neighbor. */        sym(oppotri, oppooppotri);        if ((triangleloop.tri != oppooppotri.tri)            || (triangleloop.orient != oppooppotri.orient)) {          printf("  !! !! Asymmetric triangle-triangle bond:\n");          if (triangleloop.tri == oppooppotri.tri) {            printf("   (Right triangle, wrong orientation)\n");          }          printf("    First ");          printtriangle(m, b, &triangleloop);          printf("    Second (nonreciprocating) ");          printtriangle(m, b, &oppotri);          horrors++;        }        /* Check that both triangles agree on the identities */        /*   of their shared vertices.                       */        org(oppotri, oppoorg);        dest(oppotri, oppodest);        if ((triorg != oppodest) || (tridest != oppoorg)) {          printf("  !! !! Mismatched edge coordinates between two triangles:\n"                 );          printf("    First mismatched ");          printtriangle(m, b, &triangleloop);          printf("    Second mismatched ");          printtriangle(m, b, &oppotri);          horrors++;        }      }    }    triangleloop.tri = triangletraverse(m);  }  if (horrors == 0) {    if (!b->quiet) {      printf("  In my studied opinion, the mesh appears to be consistent.\n");    }  } else if (horrors == 1) {    printf("  !! !! !! !! Precisely one festering wound discovered.\n");  } else {    printf("  !! !! !! !! %d abominations witnessed.\n", horrors);  }  /* Restore the status of exact arithmetic. */  b->noexact = saveexact;}#endif /* not REDUCED *//*****************************************************************************//*                                                                           *//*  checkdelaunay()   Ensure that the mesh is (constrained) Delaunay.        *//*                                                                           *//*****************************************************************************/#ifndef REDUCED#ifdef ANSI_DECLARATORSvoid checkdelaunay(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void checkdelaunay(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri triangleloop;  struct otri oppotri;  struct osub opposubseg;  vertex triorg, tridest, triapex;  vertex oppoapex;  int shouldbedelaunay;  int horrors;  int saveexact;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  /* Temporarily turn on exact arithmetic if it's off. */  saveexact = b->noexact;  b->noexact = 0;  if (!b->quiet) {    printf("  Checking Delaunay property of mesh...\n");  }  horrors = 0;  /* Run through the list of triangles, checking each one. */  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  while (triangleloop.tri != (triangle *) NULL) {    /* Check all three edges of the triangle. */    for (triangleloop.orient = 0; triangleloop.orient < 3;         triangleloop.orient++) {      org(triangleloop, triorg);      dest(triangleloop, tridest);      apex(triangleloop, triapex);      sym(triangleloop, oppotri);      apex(oppotri, oppoapex);      /* Only test that the edge is locally Delaunay if there is an   */      /*   adjoining triangle whose pointer is larger (to ensure that */      /*   each pair isn't tested twice).                             */      shouldbedelaunay = (oppotri.tri != m->dummytri) &&            !deadtri(oppotri.tri) && (triangleloop.tri < oppotri.tri) &&            (triorg != m->infvertex1) && (triorg != m->infvertex2) &&            (triorg != m->infvertex3) &&            (tridest != m->infvertex1) && (tridest != m->infvertex2) &&            (tridest != m->infvertex3) &&            (triapex != m->infvertex1) && (triapex != m->infvertex2) &&            (triapex != m->infvertex3) &&            (oppoapex != m->infvertex1) && (oppoapex != m->infvertex2) &&            (oppoapex != m->infvertex3);      if (m->checksegments && shouldbedelaunay) {        /* If a subsegment separates the triangles, then the edge is */        /*   constrained, so no local Delaunay test should be done.  */        tspivot(triangleloop, opposubseg);        if (opposubseg.ss != m->dummysub){          shouldbedelaunay = 0;        }      }      if (shouldbedelaunay) {        if (nonregular(m, b, triorg, tridest, triapex, oppoapex) > 0.0) {          if (!b->weighted) {            printf("  !! !! Non-Delaunay pair of triangles:\n");            printf("    First non-Delaunay ");            printtriangle(m, b, &triangleloop);            printf("    Second non-Delaunay ");          } else {            printf("  !! !! Non-regular pair of triangles:\n");            printf("    First non-regular ");            printtriangle(m, b, &triangleloop);            printf("    Second non-regular ");          }          printtriangle(m, b, &oppotri);          horrors++;        }      }    }    triangleloop.tri = triangletraverse(m);  }  if (horrors == 0) {    if (!b->quiet) {      printf(  "  By virtue of my perceptive intelligence, I declare the mesh Delaunay.\n");    }  } else if (horrors == 1) {    printf(         "  !! !! !! !! Precisely one terrifying transgression identified.\n");  } else {    printf("  !! !! !! !! %d obscenities viewed with horror.\n", horrors);  }  /* Restore the status of exact arithmetic. */  b->noexact = saveexact;}#endif /* not REDUCED *//*****************************************************************************//*                                                                           *//*  enqueuebadtriang()   Add a bad triangle data structure to the end of a   *//*                       queue.                                              *//*                                                                           *//*  The queue is actually a set of 4096 queues.  I use multiple queues to    *//*  give priority to smaller angles.  I originally implemented a heap, but   *//*  the queues are faster by a larger margin than I'd suspected.             *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid enqueuebadtriang(struct mesh *m, struct behavior *b,                      struct badtriang *badtri)#else /* not ANSI_DECLARATORS */void enqueuebadtriang(m, b, badtri)struct mesh *m;struct behavior *b;struct badtriang *badtri;#endif /* not ANSI_DECLARATORS */{  REAL length, multiplier;  int exponent, expincrement;  int queuenumber;  int posexponent;  int i;  if (b->verbose > 2) {    printf("  Queueing bad triangle:\n");    printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",           badtri->triangorg[0], badtri->triangorg[1],           badtri->triangdest[0], badtri->triangdest[1],           badtri->triangapex[0], badtri->triangapex[1]);  }  /* Determine the appropriate queue to put the bad triangle into.    */  /*   Recall that the key is the square of its shortest edge length. */  if (badtri->key >= 1.0) {    length = badtri->key;    posexponent = 1;  } else {    /* `badtri->key' is 2.0 to a negative exponent, so we'll record that */    /*   fact and use the reciprocal of `badtri->key', which is > 1.0.   */    length = 1.0 / badtri->key;    posexponent = 0;  }  /* `length' is approximately 2.0 to what exponent?  The following code */  /*   determines the answer in time logarithmic in the exponent.        */  exponent = 0;  while (length > 2.0) {    /* Find an approximation by repeated squaring of two. */    expincrement = 1;    multiplier = 0.5;    while (length * multiplier * multiplier > 1.0) {      expincrement *= 2;      multiplier *= multiplier;    }    /* Reduce the value of `length', then iterate if necessary. */    exponent += expincrement;    length *= multiplier;  }  /* `length' is approximately squareroot(2.0) to what exponent? */  exponent = 2.0 * exponent + (length > SQUAREROOTTWO);  /* `exponent' is now in the range 0...2047 for IEEE double precision.   */  /*   Choose a queue in the range 0...4095.  The shortest edges have the */  /*   highest priority (queue 4095).                                     */  if (posexponent) {    queuenumber = 2047 - exponent;  } else {    queuenumber = 2048 + exponent;  }  /* Are we inserting into an empty queue? */  if (m->queuefront[queuenumber] == (struct badtriang *) NULL) {    /* Yes, we are inserting into an empty queue.     */    /*   Will this become the highest-priority queue? */    if (queuenumber > m->firstnonemptyq) {      /* Yes, this is the highest-priority queue. */      m->nextnonemptyq[queuenumber] = m->firstnonemptyq;      m->firstnonemptyq = queuenumber;    } else {      /* No, this is not the highest-priority queue. */      /*   Find the queue with next higher priority. */      i = queuenumber + 1;      while (m->queuefront[i] == (struct badtriang *) NULL) {        i++;      }      /* Mark the newly nonempty queue as following a higher-priority queue. */      m->nextnonemptyq[queuenumber] = m->nextnonemptyq[i];      m->nextnonemptyq[i] = queuenumber;    }    /* Put the bad triangle at the beginning of the (empty) queue. */    m->queuefront[queuenumber] = badtri;  } else {    /* Add the bad triangle to the end of an already nonempty queue. */    m->queuetail[queuenumber]->nexttriang = badtri;  }  /* Maintain a pointer to the last triangle of the queue. */  m->queuetail[queuenumber] = badtri;  /* Newly enqueued bad triangle has no successor in the queue. */  badtri->nexttriang = (struct badtriang *) NULL;}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  enqueuebadtri()   Add a bad triangle to the end of a queue.              *//*                                                                           *//*  Allocates a badtriang data structure for the triangle, then passes it to *//*  enqueuebadtriang().                                                      *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid enqueuebadtri(struct mesh *m, struct behavior *b, struct otri *enqtri,                   REAL minedge, vertex enqapex, vertex enqorg, vertex enqdest)#else /* not ANSI_DECLARATORS */void enqueuebadtri(m, b, enqtri, minedge, enqapex, enqorg, enqdest)struct mesh *m;struct behavior *b;struct otri *enqtri;REAL minedge;vertex enqapex;vertex enqorg;vertex enqdest;#endif /* not ANSI_DECLARATORS */{  struct badtriang *newbad;  /* Allocate space for the bad triangle. */  newbad = (struct badtriang *) poolalloc(&m->badtriangles);  newbad->poortri = encode(*enqtri);  newbad->key = minedge;  newbad->triangapex = enqapex;  newbad->triangorg = enqorg;  newbad->triangdest = enqdest;  enqueuebadtriang(m, b, newbad);}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  dequeuebadtriang()   Remove a triangle from the front of the queue.      *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSstruct badtriang *dequeuebadtriang(struct mesh *m)#else /* not ANSI_DECLARATORS */struct badtriang *dequeuebadtriang(m)struct mesh *m;#endif /* not ANSI_DECLARATORS */{  struct badtriang *result;  /* If no queues are nonempty, return NULL. */  if (m->firstnonemptyq < 0) {    return (struct badtriang *) NULL;  }  /* Find the first triangle of the highest-priority queue. */  result = m->queuefront[m->firstnonemptyq];  /* Remove the triangle from the queue. */  m->queuefront[m->firstnonemptyq] = result->nexttriang;  /* If this queue is now empty, note the new highest-priority */  /*   nonempty queue.                                         */  if (result == m->queuetail[m->firstnonemptyq]) {    m->firstnonemptyq = m->nextnonemptyq[m->firstnonemptyq];  }  return result;}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  checkseg4encroach()   Check a subsegment to see if it is encroached; add *//*                        it to the list if it is.                           *//*                                                                           *//*  A subsegment is encroached if there is a vertex in its diametral lens.   *//*  For Ruppert's algorithm (-D switch), the "diametral lens" is the         *//*  diametral circle.  For Chew's algorithm (default), the diametral lens is *//*  just big enough to enclose two isosceles triangles whose bases are the   *//*  subsegment.  Each of the two isosceles triangles has two angles equal    *//*  to `b->minangle'.                                                        *//*                                                                           *//*  Chew's algorithm does not require diametral lenses at all--but they save *//*  time.  Any vertex inside a subsegment's diametral lens implies that the  *//*  triangle adjoining the subsegment will be too skinny, so it's only a     *//*  matter of time before the encroaching vertex is deleted by Chew's        *//*  algorithm.  It's faster to simply not insert the doomed vertex in the    *//*  first place, which is why I use diametral lenses with Chew's algorithm.  *//*                                                                           *//*  Returns a nonzero value if the subsegment is encroached.                 *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSint checkseg4encroach(struct mesh *m, struct behavior *b,                      struct osub *testsubseg)#else /* not ANSI_DECLARATORS */int checkseg4encroach(m, b, testsubseg)struct mesh *m;struct behavior *b;struct osub *testsubseg;#endif /* not ANSI_DECLARATORS */{  struct otri neighbortri;  struct osub testsym;  struct badsubseg *encroachedseg;  REAL dotproduct;  int encroached;  int sides;  vertex eorg, edest, eapex;  triangle ptr;                     /* Temporary variable used by stpivot(). */  encroached = 0;  sides = 0;  sorg(*testsubseg, eorg);  sdest(*testsubseg, edest);  /* Check one neighbor of the subsegment. */  stpivot(*testsubseg, neighbortri);  /* Does the neighbor exist, or is this a boundary edge? */  if (neighbortri.tri != m->dummytri) {    sides++;    /* Find a vertex opposite this subsegment. */    apex(neighbortri, eapex);    /* Check whether the apex is in the diametral lens of the subsegment */    /*   (the diametral circle if `conformdel' is set).  A dot product   */    /*   of two sides of the triangle is used to check whether the angle */    /*   at the apex is greater than (180 - 2 `minangle') degrees (for   */    /*   lenses; 90 degrees for diametral circles).                      */    dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +                 (eorg[1] - eapex[1]) * (edest[1] - eapex[1]);    if (dotproduct < 0.0) {      if (b->conformdel ||          (dotproduct * dotproduct >=           (2.0 * b->goodangle - 1.0) * (2.0 * b->goodangle - 1.0) *           ((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) +            (eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) *           ((edest[0] - eapex[0]) * (edest[0] - eapex[0]) +            (edest[1] - eapex[1]) * (edest[1] - eapex[1])))) {        encroached = 1;      }    }  }  /* Check the other neighbor of the subsegment. */  ssym(*testsubseg, testsym);  stpivot(testsym, neighbortri);  /* Does the neighbor exist, or is this a boundary edge? */  if (neighbortri.tri != m->dummytri) {    sides++;    /* Find the other vertex opposite this subsegment. */    apex(neighbortri, eapex);    /* Check whether the apex is in the diametral lens of the subsegment */    /*   (or the diametral circle, if `conformdel' is set).              */    dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +                 (eorg[1] - eapex[1]) * (edest[1] - eapex[1]);    if (dotproduct < 0.0) {      if (b->conformdel ||          (dotproduct * dotproduct >=           (2.0 * b->goodangle - 1.0) * (2.0 * b->goodangle - 1.0) *           ((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) +            (eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) *           ((edest[0] - eapex[0]) * (edest[0] - eapex[0]) +            (edest[1] - eapex[1]) * (edest[1] - eapex[1])))) {        encroached += 2;      }    }  }  if (encroached && (!b->nobisect || ((b->nobisect == 1) && (sides == 2)))) {    if (b->verbose > 2) {      printf(        "  Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",        eorg[0], eorg[1], edest[0], edest[1]);    }    /* Add the subsegment to the list of encroached subsegments. */    /*   Be sure to get the orientation right.                   */    encroachedseg = (struct badsubseg *) poolalloc(&m->badsubsegs);    if (encroached == 1) {      encroachedseg->encsubseg = sencode(*testsubseg);      encroachedseg->subsegorg = eorg;      encroachedseg->subsegdest = edest;    } else {      encroachedseg->encsubseg = sencode(testsym);      encroachedseg->subsegorg = edest;      encroachedseg->subsegdest = eorg;    }  }  return encroached;}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  testtriangle()   Test a triangle for quality and size.                   *//*                                                                           *//*  Tests a triangle to see if it satisfies the minimum angle condition and  *//*  the maximum area condition.  Triangles that aren't up to spec are added  *//*  to the bad triangle queue.                                               *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid testtriangle(struct mesh *m, struct behavior *b, struct otri *testtri)#else /* not ANSI_DECLARATORS */void testtriangle(m, b, testtri)struct mesh *m;struct behavior *b;struct otri *testtri;#endif /* not ANSI_DECLARATORS */{  struct otri tri1, tri2;  struct osub testsub;  vertex torg, tdest, tapex;  vertex base1, base2;  vertex org1, dest1, org2, dest2;  vertex joinvertex;  REAL dxod, dyod, dxda, dyda, dxao, dyao;  REAL dxod2, dyod2, dxda2, dyda2, dxao2, dyao2;  REAL apexlen, orglen, destlen, minedge;  REAL angle;  REAL area;  REAL dist1, dist2;  subseg sptr;                      /* Temporary variable used by tspivot(). */  triangle ptr;           /* Temporary variable used by oprev() and dnext(). */  org(*testtri, torg);  dest(*testtri, tdest);  apex(*testtri, tapex);  dxod = torg[0] - tdest[0];  dyod = torg[1] - tdest[1];  dxda = tdest[0] - tapex[0];  dyda = tdest[1] - tapex[1];  dxao = tapex[0] - torg[0];  dyao = tapex[1] - torg[1];  dxod2 = dxod * dxod;  dyod2 = dyod * dyod;  dxda2 = dxda * dxda;  dyda2 = dyda * dyda;  dxao2 = dxao * dxao;  dyao2 = dyao * dyao;  /* Find the lengths of the triangle's three edges. */  apexlen = dxod2 + dyod2;  orglen = dxda2 + dyda2;  destlen = dxao2 + dyao2;  if ((apexlen < orglen) && (apexlen < destlen)) {    /* The edge opposite the apex is shortest. */    minedge = apexlen;    /* Find the square of the cosine of the angle at the apex. */    angle = dxda * dxao + dyda * dyao;    angle = angle * angle / (orglen * destlen);    base1 = torg;    base2 = tdest;    otricopy(*testtri, tri1);  } else if (orglen < destlen) {    /* The edge opposite the origin is shortest. */    minedge = orglen;    /* Find the square of the cosine of the angle at the origin. */    angle = dxod * dxao + dyod * dyao;    angle = angle * angle / (apexlen * destlen);    base1 = tdest;    base2 = tapex;    lnext(*testtri, tri1);  } else {    /* The edge opposite the destination is shortest. */    minedge = destlen;    /* Find the square of the cosine of the angle at the destination. */    angle = dxod * dxda + dyod * dyda;    angle = angle * angle / (apexlen * orglen);    base1 = tapex;    base2 = torg;    lprev(*testtri, tri1);  }  if (b->vararea || b->fixedarea || b->usertest) {    /* Check whether the area is larger than permitted. */    area = 0.5 * (dxod * dyda - dyod * dxda);    if (b->fixedarea && (area > b->maxarea)) {      /* Add this triangle to the list of bad triangles. */      enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);      return;    }    /* Nonpositive area constraints are treated as unconstrained. */    if ((b->vararea) && (area > areabound(*testtri)) &&        (areabound(*testtri) > 0.0)) {      /* Add this triangle to the list of bad triangles. */      enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);      return;    }    if (b->usertest) {      /* Check whether the user thinks this triangle is too large. */      if (triunsuitable(torg, tdest, tapex, area)) {        enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);        return;      }    }  }  /* Check whether the angle is smaller than permitted. */  if (angle > b->goodangle) {    /* Use the rules of Miller, Pav, and Walkington to decide that certain */    /*   triangles should not be split, even if they have bad angles.      */    /*   A skinny triangle is not split if its shortest edge subtends a    */    /*   small input angle, and both endpoints of the edge lie on a        */    /*   concentric circular shell.  For convenience, I make a small       */    /*   adjustment to that rule:  I check if the endpoints of the edge    */    /*   both lie in segment interiors, equidistant from the apex where    */    /*   the two segments meet.                                            */    /* First, check if both points lie in segment interiors.               */    if ((vertextype(base1) == SEGMENTVERTEX) &&        (vertextype(base2) == SEGMENTVERTEX)) {      /* Check if both points lie in a common segment.  If they do, the */      /*   skinny triangle is enqueued to be split as usual.            */      tspivot(tri1, testsub);      if (testsub.ss == m->dummysub) {        /* No common segment.  Find a subsegment that contains `torg'. */        otricopy(tri1, tri2);        do {          oprevself(tri1);          tspivot(tri1, testsub);        } while (testsub.ss == m->dummysub);        /* Find the endpoints of the containing segment. */        segorg(testsub, org1);        segdest(testsub, dest1);        /* Find a subsegment that contains `tdest'. */        do {          dnextself(tri2);          tspivot(tri2, testsub);        } while (testsub.ss == m->dummysub);        /* Find the endpoints of the containing segment. */        segorg(testsub, org2);        segdest(testsub, dest2);        /* Check if the two containing segments have an endpoint in common. */        joinvertex = (vertex) NULL;        if ((dest1[0] == org2[0]) && (dest1[1] == org2[1])) {          joinvertex = dest1;        } else if ((org1[0] == dest2[0]) && (org1[1] == dest2[1])) {          joinvertex = org1;        }        if (joinvertex != (vertex) NULL) {          /* Compute the distance from the common endpoint (of the two  */          /*   segments) to each of the endpoints of the shortest edge. */          dist1 = ((base1[0] - joinvertex[0]) * (base1[0] - joinvertex[0]) +                   (base1[1] - joinvertex[1]) * (base1[1] - joinvertex[1]));          dist2 = ((base2[0] - joinvertex[0]) * (base2[0] - joinvertex[0]) +                   (base2[1] - joinvertex[1]) * (base2[1] - joinvertex[1]));          /* If the two distances are equal, don't split the triangle. */          if ((dist1 < 1.001 * dist2) && (dist1 > 0.999 * dist2)) {            /* Return now to avoid enqueueing the bad triangle. */            return;          }        }      }    }    /* Add this triangle to the list of bad triangles. */    enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);  }}#endif /* not CDT_ONLY *//**                                                                         **//**                                                                         **//********* Mesh quality testing routines end here                    *********//********* Point location routines begin here                        *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  makevertexmap()   Construct a mapping from vertices to triangles to      *//*                    improve the speed of point location for segment        *//*                    insertion.                                             *//*                                                                           *//*  Traverses all the triangles, and provides each corner of each triangle   *//*  with a pointer to that triangle.  Of course, pointers will be            *//*  overwritten by other pointers because (almost) each vertex is a corner   *//*  of several triangles, but in the end every vertex will point to some     *//*  triangle that contains it.                                               *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid makevertexmap(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void makevertexmap(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri triangleloop;  vertex triorg;  if (b->verbose) {    printf("    Constructing mapping from vertices to triangles.\n");  }  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  while (triangleloop.tri != (triangle *) NULL) {    /* Check all three vertices of the triangle. */    for (triangleloop.orient = 0; triangleloop.orient < 3;         triangleloop.orient++) {      org(triangleloop, triorg);      setvertex2tri(triorg, encode(triangleloop));    }    triangleloop.tri = triangletraverse(m);  }}/*****************************************************************************//*                                                                           *//*  preciselocate()   Find a triangle or edge containing a given point.      *//*                                                                           *//*  Begins its search from `searchtri'.  It is important that `searchtri'    *//*  be a handle with the property that `searchpoint' is strictly to the left *//*  of the edge denoted by `searchtri', or is collinear with that edge and   *//*  does not intersect that edge.  (In particular, `searchpoint' should not  *//*  be the origin or destination of that edge.)                              *//*                                                                           *//*  These conditions are imposed because preciselocate() is normally used in *//*  one of two situations:                                                   *//*                                                                           *//*  (1)  To try to find the location to insert a new point.  Normally, we    *//*       know an edge that the point is strictly to the left of.  In the     *//*       incremental Delaunay algorithm, that edge is a bounding box edge.   *//*       In Ruppert's Delaunay refinement algorithm for quality meshing,     *//*       that edge is the shortest edge of the triangle whose circumcenter   *//*       is being inserted.                                                  *//*                                                                           *//*  (2)  To try to find an existing point.  In this case, any edge on the    *//*       convex hull is a good starting edge.  You must screen out the       *//*       possibility that the vertex sought is an endpoint of the starting   *//*       edge before you call preciselocate().                               *//*                                                                           *//*  On completion, `searchtri' is a triangle that contains `searchpoint'.    *//*                                                                           *//*  This implementation differs from that given by Guibas and Stolfi.  It    *//*  walks from triangle to triangle, crossing an edge only if `searchpoint'  *//*  is on the other side of the line containing that edge.  After entering   *//*  a triangle, there are two edges by which one can leave that triangle.    *//*  If both edges are valid (`searchpoint' is on the other side of both      *//*  edges), one of the two is chosen by drawing a line perpendicular to      *//*  the entry edge (whose endpoints are `forg' and `fdest') passing through  *//*  `fapex'.  Depending on which side of this perpendicular `searchpoint'    *//*  falls on, an exit edge is chosen.                                        *//*                                                                           *//*  This implementation is empirically faster than the Guibas and Stolfi     *//*  point location routine (which I originally used), which tends to spiral  *//*  in toward its target.                                                    *//*                                                                           *//*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   *//*  is a handle whose origin is the existing vertex.                         *//*                                                                           *//*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       *//*  handle whose primary edge is the edge on which the point lies.           *//*                                                                           *//*  Returns INTRIANGLE if the point lies strictly within a triangle.         *//*  `searchtri' is a handle on the triangle that contains the point.         *//*                                                                           *//*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    *//*  handle whose primary edge the point is to the right of.  This might      *//*  occur when the circumcenter of a triangle falls just slightly outside    *//*  the mesh due to floating-point roundoff error.  It also occurs when      *//*  seeking a hole or region point that a foolish user has placed outside    *//*  the mesh.                                                                *//*                                                                           *//*  If `stopatsubsegment' is nonzero, the search will stop if it tries to    *//*  walk through a subsegment, and will return OUTSIDE.                      *//*                                                                           *//*  WARNING:  This routine is designed for convex triangulations, and will   *//*  not generally work after the holes and concavities have been carved.     *//*  However, it can still be used to find the circumcenter of a triangle, as *//*  long as the search is begun from the triangle in question.               *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSenum locateresult preciselocate(struct mesh *m, struct behavior *b,                                vertex searchpoint, struct otri *searchtri,                                int stopatsubsegment)#else /* not ANSI_DECLARATORS */enum locateresult preciselocate(m, b, searchpoint, searchtri, stopatsubsegment)struct mesh *m;struct behavior *b;vertex searchpoint;struct otri *searchtri;int stopatsubsegment;#endif /* not ANSI_DECLARATORS */{  struct otri backtracktri;  struct osub checkedge;  vertex forg, fdest, fapex;  REAL orgorient, destorient;  int moveleft;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  if (b->verbose > 2) {    printf("  Searching for point (%.12g, %.12g).\n",           searchpoint[0], searchpoint[1]);  }  /* Where are we? */  org(*searchtri, forg);  dest(*searchtri, fdest);  apex(*searchtri, fapex);  while (1) {    if (b->verbose > 2) {      printf("    At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",             forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);    }    /* Check whether the apex is the point we seek. */    if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {      lprevself(*searchtri);      return ONVERTEX;    }    /* Does the point lie on the other side of the line defined by the */    /*   triangle edge opposite the triangle's destination?            */    destorient = counterclockwise(m, b, forg, fapex, searchpoint);    /* Does the point lie on the other side of the line defined by the */    /*   triangle edge opposite the triangle's origin?                 */    orgorient = counterclockwise(m, b, fapex, fdest, searchpoint);    if (destorient > 0.0) {      if (orgorient > 0.0) {        /* Move left if the inner product of (fapex - searchpoint) and  */        /*   (fdest - forg) is positive.  This is equivalent to drawing */        /*   a line perpendicular to the line (forg, fdest) and passing */        /*   through `fapex', and determining which side of this line   */        /*   `searchpoint' falls on.                                    */        moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +                   (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;      } else {        moveleft = 1;      }    } else {      if (orgorient > 0.0) {        moveleft = 0;      } else {        /* The point we seek must be on the boundary of or inside this */        /*   triangle.                                                 */        if (destorient == 0.0) {          lprevself(*searchtri);          return ONEDGE;        }        if (orgorient == 0.0) {          lnextself(*searchtri);          return ONEDGE;        }        return INTRIANGLE;      }    }    /* Move to another triangle.  Leave a trace `backtracktri' in case */    /*   floating-point roundoff or some such bogey causes us to walk  */    /*   off a boundary of the triangulation.                          */    if (moveleft) {      lprev(*searchtri, backtracktri);      fdest = fapex;    } else {      lnext(*searchtri, backtracktri);      forg = fapex;    }    sym(backtracktri, *searchtri);    if (m->checksegments && stopatsubsegment) {      /* Check for walking through a subsegment. */      tspivot(backtracktri, checkedge);      if (checkedge.ss != m->dummysub) {        /* Go back to the last triangle. */        otricopy(backtracktri, *searchtri);        return OUTSIDE;      }    }    /* Check for walking right out of the triangulation. */    if (searchtri->tri == m->dummytri) {      /* Go back to the last triangle. */      otricopy(backtracktri, *searchtri);      return OUTSIDE;    }    apex(*searchtri, fapex);  }}/*****************************************************************************//*                                                                           *//*  locate()   Find a triangle or edge containing a given point.             *//*                                                                           *//*  Searching begins from one of:  the input `searchtri', a recently         *//*  encountered triangle `recenttri', or from a triangle chosen from a       *//*  random sample.  The choice is made by determining which triangle's       *//*  origin is closest to the point we are searching for.  Normally,          *//*  `searchtri' should be a handle on the convex hull of the triangulation.  *//*                                                                           *//*  Details on the random sampling method can be found in the Mucke, Saias,  *//*  and Zhu paper cited in the header of this code.                          *//*                                                                           *//*  On completion, `searchtri' is a triangle that contains `searchpoint'.    *//*                                                                           *//*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   *//*  is a handle whose origin is the existing vertex.                         *//*                                                                           *//*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       *//*  handle whose primary edge is the edge on which the point lies.           *//*                                                                           *//*  Returns INTRIANGLE if the point lies strictly within a triangle.         *//*  `searchtri' is a handle on the triangle that contains the point.         *//*                                                                           *//*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    *//*  handle whose primary edge the point is to the right of.  This might      *//*  occur when the circumcenter of a triangle falls just slightly outside    *//*  the mesh due to floating-point roundoff error.  It also occurs when      *//*  seeking a hole or region point that a foolish user has placed outside    *//*  the mesh.                                                                *//*                                                                           *//*  WARNING:  This routine is designed for convex triangulations, and will   *//*  not generally work after the holes and concavities have been carved.     *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSenum locateresult locate(struct mesh *m, struct behavior *b,                         vertex searchpoint, struct otri *searchtri)#else /* not ANSI_DECLARATORS */enum locateresult locate(m, b, searchpoint, searchtri)struct mesh *m;struct behavior *b;vertex searchpoint;struct otri *searchtri;#endif /* not ANSI_DECLARATORS */{  VOID **sampleblock;  char *firsttri;  struct otri sampletri;  vertex torg, tdest;  unsigned long alignptr;  REAL searchdist, dist;  REAL ahead;  long samplesperblock, totalsamplesleft, samplesleft;  long population, totalpopulation;  triangle ptr;                         /* Temporary variable used by sym(). */  if (b->verbose > 2) {    printf("  Randomly sampling for a triangle near point (%.12g, %.12g).\n",           searchpoint[0], searchpoint[1]);  }  /* Record the distance from the suggested starting triangle to the */  /*   point we seek.                                                */  org(*searchtri, torg);  searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +               (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);  if (b->verbose > 2) {    printf("    Boundary triangle has origin (%.12g, %.12g).\n",           torg[0], torg[1]);  }  /* If a recently encountered triangle has been recorded and has not been */  /*   deallocated, test it as a good starting point.                      */  if (m->recenttri.tri != (triangle *) NULL) {    if (!deadtri(m->recenttri.tri)) {      org(m->recenttri, torg);      if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {        otricopy(m->recenttri, *searchtri);        return ONVERTEX;      }      dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +             (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);      if (dist < searchdist) {        otricopy(m->recenttri, *searchtri);        searchdist = dist;        if (b->verbose > 2) {          printf("    Choosing recent triangle with origin (%.12g, %.12g).\n",                 torg[0], torg[1]);        }      }    }  }  /* The number of random samples taken is proportional to the cube root of */  /*   the number of triangles in the mesh.  The next bit of code assumes   */  /*   that the number of triangles increases monotonically (or at least    */  /*   doesn't decrease enough to matter).                                  */  while (SAMPLEFACTOR * m->samples * m->samples * m->samples <         m->triangles.items) {    m->samples++;  }  /* We'll draw ceiling(samples * TRIPERBLOCK / maxitems) random samples  */  /*   from each block of triangles (except the first)--until we meet the */  /*   sample quota.  The ceiling means that blocks at the end might be   */  /*   neglected, but I don't care.                                       */  samplesperblock = (m->samples * TRIPERBLOCK - 1) / m->triangles.maxitems + 1;  /* We'll draw ceiling(samples * itemsfirstblock / maxitems) random samples */  /*   from the first block of triangles.                                    */  samplesleft = (m->samples * m->triangles.itemsfirstblock - 1) /                m->triangles.maxitems + 1;  totalsamplesleft = m->samples;  population = m->triangles.itemsfirstblock;  totalpopulation = m->triangles.maxitems;  sampleblock = m->triangles.firstblock;  sampletri.orient = 0;  while (totalsamplesleft > 0) {    /* If we're in the last block, `population' needs to be corrected. */    if (population > totalpopulation) {      population = totalpopulation;    }    /* Find a pointer to the first triangle in the block. */    alignptr = (unsigned long) (sampleblock + 1);    firsttri = (char *) (alignptr +                         (unsigned long) m->triangles.alignbytes -                         (alignptr %                          (unsigned long) m->triangles.alignbytes));    /* Choose `samplesleft' randomly sampled triangles in this block. */    do {      sampletri.tri = (triangle *) (firsttri +                                    (randomnation((unsigned int) population) *                                     m->triangles.itembytes));      if (!deadtri(sampletri.tri)) {        org(sampletri, torg);        dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +               (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);        if (dist < searchdist) {          otricopy(sampletri, *searchtri);          searchdist = dist;          if (b->verbose > 2) {            printf("    Choosing triangle with origin (%.12g, %.12g).\n",                   torg[0], torg[1]);          }        }      }      samplesleft--;      totalsamplesleft--;    } while ((samplesleft > 0) && (totalsamplesleft > 0));    if (totalsamplesleft > 0) {      sampleblock = (VOID **) *sampleblock;      samplesleft = samplesperblock;      totalpopulation -= population;      population = TRIPERBLOCK;    }  }  /* Where are we? */  org(*searchtri, torg);  dest(*searchtri, tdest);  /* Check the starting triangle's vertices. */  if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {    return ONVERTEX;  }  if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {    lnextself(*searchtri);    return ONVERTEX;  }  /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */  ahead = counterclockwise(m, b, torg, tdest, searchpoint);  if (ahead < 0.0) {    /* Turn around so that `searchpoint' is to the left of the */    /*   edge specified by `searchtri'.                        */    symself(*searchtri);  } else if (ahead == 0.0) {    /* Check if `searchpoint' is between `torg' and `tdest'. */    if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0])) &&        ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {      return ONEDGE;    }  }  return preciselocate(m, b, searchpoint, searchtri, 0);}/**                                                                         **//**                                                                         **//********* Point location routines end here                          *********//********* Mesh transformation routines begin here                   *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  insertsubseg()   Create a new subsegment and insert it between two       *//*                   triangles.                                              *//*                                                                           *//*  The new subsegment is inserted at the edge described by the handle       *//*  `tri'.  Its vertices are properly initialized.  The marker `subsegmark'  *//*  is applied to the subsegment and, if appropriate, its vertices.          *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid insertsubseg(struct mesh *m, struct behavior *b, struct otri *tri,                  int subsegmark)#else /* not ANSI_DECLARATORS */void insertsubseg(m, b, tri, subsegmark)struct mesh *m;struct behavior *b;struct otri *tri;             /* Edge at which to insert the new subsegment. */int subsegmark;                            /* Marker for the new subsegment. */#endif /* not ANSI_DECLARATORS */{  struct otri oppotri;  struct osub newsubseg;  vertex triorg, tridest;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  org(*tri, triorg);  dest(*tri, tridest);  /* Mark vertices if possible. */  if (vertexmark(triorg) == 0) {    setvertexmark(triorg, subsegmark);  }  if (vertexmark(tridest) == 0) {    setvertexmark(tridest, subsegmark);  }  /* Check if there's already a subsegment here. */  tspivot(*tri, newsubseg);  if (newsubseg.ss == m->dummysub) {    /* Make new subsegment and initialize its vertices. */    makesubseg(m, &newsubseg);    setsorg(newsubseg, tridest);    setsdest(newsubseg, triorg);    setsegorg(newsubseg, tridest);    setsegdest(newsubseg, triorg);    /* Bond new subsegment to the two triangles it is sandwiched between. */    /*   Note that the facing triangle `oppotri' might be equal to        */    /*   `dummytri' (outer space), but the new subsegment is bonded to it */    /*   all the same.                                                    */    tsbond(*tri, newsubseg);    sym(*tri, oppotri);    ssymself(newsubseg);    tsbond(oppotri, newsubseg);    setmark(newsubseg, subsegmark);    if (b->verbose > 2) {      printf("  Inserting new ");      printsubseg(m, b, &newsubseg);    }  } else {    if (mark(newsubseg) == 0) {      setmark(newsubseg, subsegmark);    }  }}/*****************************************************************************//*                                                                           *//*  Terminology                                                              *//*                                                                           *//*  A "local transformation" replaces a small set of triangles with another  *//*  set of triangles.  This may or may not involve inserting or deleting a   *//*  vertex.                                                                  *//*                                                                           *//*  The term "casing" is used to describe the set of triangles that are      *//*  attached to the triangles being transformed, but are not transformed     *//*  themselves.  Think of the casing as a fixed hollow structure inside      *//*  which all the action happens.  A "casing" is only defined relative to    *//*  a single transformation; each occurrence of a transformation will        *//*  involve a different casing.                                              *//*                                                                           *//*****************************************************************************//*****************************************************************************//*                                                                           *//*  flip()   Transform two triangles to two different triangles by flipping  *//*           an edge counterclockwise within a quadrilateral.                *//*                                                                           *//*  Imagine the original triangles, abc and bad, oriented so that the        *//*  shared edge ab lies in a horizontal plane, with the vertex b on the left *//*  and the vertex a on the right.  The vertex c lies below the edge, and    *//*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  *//*  ab of triangle abc, and is directed left, from vertex a to vertex b.     *//*                                                                           *//*  The triangles abc and bad are deleted and replaced by the triangles cdb  *//*  and dca.  The triangles that represent abc and bad are NOT deallocated;  *//*  they are reused for dca and cdb, respectively.  Hence, any handles that  *//*  may have held the original triangles are still valid, although not       *//*  directed as they were before.                                            *//*                                                                           *//*  Upon completion of this routine, the `flipedge' handle holds the edge    *//*  dc of triangle dca, and is directed down, from vertex d to vertex c.     *//*  (Hence, the two triangles have rotated counterclockwise.)                *//*                                                                           *//*  WARNING:  This transformation is geometrically valid only if the         *//*  quadrilateral adbc is convex.  Furthermore, this transformation is       *//*  valid only if there is not a subsegment between the triangles abc and    *//*  bad.  This routine does not check either of these preconditions, and     *//*  it is the responsibility of the calling routine to ensure that they are  *//*  met.  If they are not, the streets shall be filled with wailing and      *//*  gnashing of teeth.                                                       *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid flip(struct mesh *m, struct behavior *b, struct otri *flipedge)#else /* not ANSI_DECLARATORS */void flip(m, b, flipedge)struct mesh *m;struct behavior *b;struct otri *flipedge;                    /* Handle for the triangle abc. */#endif /* not ANSI_DECLARATORS */{  struct otri botleft, botright;  struct otri topleft, topright;  struct otri top;  struct otri botlcasing, botrcasing;  struct otri toplcasing, toprcasing;  struct osub botlsubseg, botrsubseg;  struct osub toplsubseg, toprsubseg;  vertex leftvertex, rightvertex, botvertex;  vertex farvertex;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  /* Identify the vertices of the quadrilateral. */  org(*flipedge, rightvertex);  dest(*flipedge, leftvertex);  apex(*flipedge, botvertex);  sym(*flipedge, top);#ifdef SELF_CHECK  if (top.tri == m->dummytri) {    printf("Internal error in flip():  Attempt to flip on boundary.\n");    lnextself(*flipedge);    return;  }  if (m->checksegments) {    tspivot(*flipedge, toplsubseg);    if (toplsubseg.ss != m->dummysub) {      printf("Internal error in flip():  Attempt to flip a segment.\n");      lnextself(*flipedge);      return;    }  }#endif /* SELF_CHECK */  apex(top, farvertex);  /* Identify the casing of the quadrilateral. */  lprev(top, topleft);  sym(topleft, toplcasing);  lnext(top, topright);  sym(topright, toprcasing);  lnext(*flipedge, botleft);  sym(botleft, botlcasing);  lprev(*flipedge, botright);  sym(botright, botrcasing);  /* Rotate the quadrilateral one-quarter turn counterclockwise. */  bond(topleft, botlcasing);  bond(botleft, botrcasing);  bond(botright, toprcasing);  bond(topright, toplcasing);  if (m->checksegments) {    /* Check for subsegments and rebond them to the quadrilateral. */    tspivot(topleft, toplsubseg);    tspivot(botleft, botlsubseg);    tspivot(botright, botrsubseg);    tspivot(topright, toprsubseg);    if (toplsubseg.ss == m->dummysub) {      tsdissolve(topright);    } else {      tsbond(topright, toplsubseg);    }    if (botlsubseg.ss == m->dummysub) {      tsdissolve(topleft);    } else {      tsbond(topleft, botlsubseg);    }    if (botrsubseg.ss == m->dummysub) {      tsdissolve(botleft);    } else {      tsbond(botleft, botrsubseg);    }    if (toprsubseg.ss == m->dummysub) {      tsdissolve(botright);    } else {      tsbond(botright, toprsubseg);    }  }  /* New vertex assignments for the rotated quadrilateral. */  setorg(*flipedge, farvertex);  setdest(*flipedge, botvertex);  setapex(*flipedge, rightvertex);  setorg(top, botvertex);  setdest(top, farvertex);  setapex(top, leftvertex);  if (b->verbose > 2) {    printf("  Edge flip results in left ");    printtriangle(m, b, &top);    printf("  and right ");    printtriangle(m, b, flipedge);  }}/*****************************************************************************//*                                                                           *//*  unflip()   Transform two triangles to two different triangles by         *//*             flipping an edge clockwise within a quadrilateral.  Reverses  *//*             the flip() operation so that the data structures representing *//*             the triangles are back where they were before the flip().     *//*                                                                           *//*  Imagine the original triangles, abc and bad, oriented so that the        *//*  shared edge ab lies in a horizontal plane, with the vertex b on the left *//*  and the vertex a on the right.  The vertex c lies below the edge, and    *//*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  *//*  ab of triangle abc, and is directed left, from vertex a to vertex b.     *//*                                                                           *//*  The triangles abc and bad are deleted and replaced by the triangles cdb  *//*  and dca.  The triangles that represent abc and bad are NOT deallocated;  *//*  they are reused for cdb and dca, respectively.  Hence, any handles that  *//*  may have held the original triangles are still valid, although not       *//*  directed as they were before.                                            *//*                                                                           *//*  Upon completion of this routine, the `flipedge' handle holds the edge    *//*  cd of triangle cdb, and is directed up, from vertex c to vertex d.       *//*  (Hence, the two triangles have rotated clockwise.)                       *//*                                                                           *//*  WARNING:  This transformation is geometrically valid only if the         *//*  quadrilateral adbc is convex.  Furthermore, this transformation is       *//*  valid only if there is not a subsegment between the triangles abc and    *//*  bad.  This routine does not check either of these preconditions, and     *//*  it is the responsibility of the calling routine to ensure that they are  *//*  met.  If they are not, the streets shall be filled with wailing and      *//*  gnashing of teeth.                                                       *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid unflip(struct mesh *m, struct behavior *b, struct otri *flipedge)#else /* not ANSI_DECLARATORS */void unflip(m, b, flipedge)struct mesh *m;struct behavior *b;struct otri *flipedge;                    /* Handle for the triangle abc. */#endif /* not ANSI_DECLARATORS */{  struct otri botleft, botright;  struct otri topleft, topright;  struct otri top;  struct otri botlcasing, botrcasing;  struct otri toplcasing, toprcasing;  struct osub botlsubseg, botrsubseg;  struct osub toplsubseg, toprsubseg;  vertex leftvertex, rightvertex, botvertex;  vertex farvertex;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  /* Identify the vertices of the quadrilateral. */  org(*flipedge, rightvertex);  dest(*flipedge, leftvertex);  apex(*flipedge, botvertex);  sym(*flipedge, top);#ifdef SELF_CHECK  if (top.tri == m->dummytri) {    printf("Internal error in unflip():  Attempt to flip on boundary.\n");    lnextself(*flipedge);    return;  }  if (m->checksegments) {    tspivot(*flipedge, toplsubseg);    if (toplsubseg.ss != m->dummysub) {      printf("Internal error in unflip():  Attempt to flip a subsegment.\n");      lnextself(*flipedge);      return;    }  }#endif /* SELF_CHECK */  apex(top, farvertex);  /* Identify the casing of the quadrilateral. */  lprev(top, topleft);  sym(topleft, toplcasing);  lnext(top, topright);  sym(topright, toprcasing);  lnext(*flipedge, botleft);  sym(botleft, botlcasing);  lprev(*flipedge, botright);  sym(botright, botrcasing);  /* Rotate the quadrilateral one-quarter turn clockwise. */  bond(topleft, toprcasing);  bond(botleft, toplcasing);  bond(botright, botlcasing);  bond(topright, botrcasing);  if (m->checksegments) {    /* Check for subsegments and rebond them to the quadrilateral. */    tspivot(topleft, toplsubseg);    tspivot(botleft, botlsubseg);    tspivot(botright, botrsubseg);    tspivot(topright, toprsubseg);    if (toplsubseg.ss == m->dummysub) {      tsdissolve(botleft);    } else {      tsbond(botleft, toplsubseg);    }    if (botlsubseg.ss == m->dummysub) {      tsdissolve(botright);    } else {      tsbond(botright, botlsubseg);    }    if (botrsubseg.ss == m->dummysub) {      tsdissolve(topright);    } else {      tsbond(topright, botrsubseg);    }    if (toprsubseg.ss == m->dummysub) {      tsdissolve(topleft);    } else {      tsbond(topleft, toprsubseg);    }  }  /* New vertex assignments for the rotated quadrilateral. */  setorg(*flipedge, botvertex);  setdest(*flipedge, farvertex);  setapex(*flipedge, leftvertex);  setorg(top, farvertex);  setdest(top, botvertex);  setapex(top, rightvertex);  if (b->verbose > 2) {    printf("  Edge unflip results in left ");    printtriangle(m, b, flipedge);    printf("  and right ");    printtriangle(m, b, &top);  }}/*****************************************************************************//*                                                                           *//*  insertvertex()   Insert a vertex into a Delaunay triangulation,          *//*                   performing flips as necessary to maintain the Delaunay  *//*                   property.                                               *//*                                                                           *//*  The point `insertvertex' is located.  If `searchtri.tri' is not NULL,    *//*  the search for the containing triangle begins from `searchtri'.  If      *//*  `searchtri.tri' is NULL, a full point location procedure is called.      *//*  If `insertvertex' is found inside a triangle, the triangle is split into *//*  three; if `insertvertex' lies on an edge, the edge is split in two,      *//*  thereby splitting the two adjacent triangles into four.  Edge flips are  *//*  used to restore the Delaunay property.  If `insertvertex' lies on an     *//*  existing vertex, no action is taken, and the value DUPLICATEVERTEX is    *//*  returned.  On return, `searchtri' is set to a handle whose origin is the *//*  existing vertex.                                                         *//*                                                                           *//*  Normally, the parameter `splitseg' is set to NULL, implying that no      *//*  subsegment should be split.  In this case, if `insertvertex' is found to *//*  lie on a segment, no action is taken, and the value VIOLATINGVERTEX is   *//*  returned.  On return, `searchtri' is set to a handle whose primary edge  *//*  is the violated subsegment.                                              *//*                                                                           *//*  If the calling routine wishes to split a subsegment by inserting a       *//*  vertex in it, the parameter `splitseg' should be that subsegment.  In    *//*  this case, `searchtri' MUST be the triangle handle reached by pivoting   *//*  from that subsegment; no point location is done.                         *//*                                                                           *//*  `segmentflaws' and `triflaws' are flags that indicate whether or not     *//*  there should be checks for the creation of encroached subsegments or bad *//*  quality triangles.  If a newly inserted vertex encroaches upon           *//*  subsegments, these subsegments are added to the list of subsegments to   *//*  be split if `segmentflaws' is set.  If bad triangles are created, these  *//*  are added to the queue if `triflaws' is set.                             *//*                                                                           *//*  If a duplicate vertex or violated segment does not prevent the vertex    *//*  from being inserted, the return value will be ENCROACHINGVERTEX if the   *//*  vertex encroaches upon a subsegment (and checking is enabled), or        *//*  SUCCESSFULVERTEX otherwise.  In either case, `searchtri' is set to a     *//*  handle whose origin is the newly inserted vertex.                        *//*                                                                           *//*  insertvertex() does not use flip() for reasons of speed; some            *//*  information can be reused from edge flip to edge flip, like the          *//*  locations of subsegments.                                                *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSenum insertvertexresult insertvertex(struct mesh *m, struct behavior *b,                                     vertex newvertex, struct otri *searchtri,                                     struct osub *splitseg,                                     int segmentflaws, int triflaws)#else /* not ANSI_DECLARATORS */enum insertvertexresult insertvertex(m, b, newvertex, searchtri, splitseg,                                     segmentflaws, triflaws)struct mesh *m;struct behavior *b;vertex newvertex;struct otri *searchtri;struct osub *splitseg;int segmentflaws;int triflaws;#endif /* not ANSI_DECLARATORS */{  struct otri horiz;  struct otri top;  struct otri botleft, botright;  struct otri topleft, topright;  struct otri newbotleft, newbotright;  struct otri newtopright;  struct otri botlcasing, botrcasing;  struct otri toplcasing, toprcasing;  struct otri testtri;  struct osub botlsubseg, botrsubseg;  struct osub toplsubseg, toprsubseg;  struct osub brokensubseg;  struct osub checksubseg;  struct osub rightsubseg;  struct osub newsubseg;  struct badsubseg *encroached;  struct flipstacker *newflip;  vertex first;  vertex leftvertex, rightvertex, botvertex, topvertex, farvertex;  vertex segmentorg, segmentdest;  REAL attrib;  REAL area;  enum insertvertexresult success;  enum locateresult intersect;  int doflip;  int mirrorflag;  int enq;  int i;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;         /* Temporary variable used by spivot() and tspivot(). */  if (b->verbose > 1) {    printf("  Inserting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);  }  if (splitseg == (struct osub *) NULL) {    /* Find the location of the vertex to be inserted.  Check if a good */    /*   starting triangle has already been provided by the caller.     */    if (searchtri->tri == m->dummytri) {      /* Find a boundary triangle. */      horiz.tri = m->dummytri;      horiz.orient = 0;      symself(horiz);      /* Search for a triangle containing `newvertex'. */      intersect = locate(m, b, newvertex, &horiz);    } else {      /* Start searching from the triangle provided by the caller. */      otricopy(*searchtri, horiz);      intersect = preciselocate(m, b, newvertex, &horiz, 1);    }  } else {    /* The calling routine provides the subsegment in which */    /*   the vertex is inserted.                             */    otricopy(*searchtri, horiz);    intersect = ONEDGE;  }  if (intersect == ONVERTEX) {    /* There's already a vertex there.  Return in `searchtri' a triangle */    /*   whose origin is the existing vertex.                            */    otricopy(horiz, *searchtri);    otricopy(horiz, m->recenttri);    return DUPLICATEVERTEX;  }  if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {    /* The vertex falls on an edge or boundary. */    if (m->checksegments && (splitseg == (struct osub *) NULL)) {      /* Check whether the vertex falls on a subsegment. */      tspivot(horiz, brokensubseg);      if (brokensubseg.ss != m->dummysub) {        /* The vertex falls on a subsegment, and hence will not be inserted. */        if (segmentflaws) {          enq = b->nobisect != 2;          if (enq && (b->nobisect == 1)) {            /* This subsegment may be split only if it is an */            /*   internal boundary.                          */            sym(horiz, testtri);            enq = testtri.tri != m->dummytri;          }          if (enq) {            /* Add the subsegment to the list of encroached subsegments. */            encroached = (struct badsubseg *) poolalloc(&m->badsubsegs);            encroached->encsubseg = sencode(brokensubseg);            sorg(brokensubseg, encroached->subsegorg);            sdest(brokensubseg, encroached->subsegdest);            if (b->verbose > 2) {              printf(          "  Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",                     encroached->subsegorg[0], encroached->subsegorg[1],                     encroached->subsegdest[0], encroached->subsegdest[1]);            }          }        }        /* Return a handle whose primary edge contains the vertex, */        /*   which has not been inserted.                          */        otricopy(horiz, *searchtri);        otricopy(horiz, m->recenttri);        return VIOLATINGVERTEX;      }    }    /* Insert the vertex on an edge, dividing one triangle into two (if */    /*   the edge lies on a boundary) or two triangles into four.       */    lprev(horiz, botright);    sym(botright, botrcasing);    sym(horiz, topright);    /* Is there a second triangle?  (Or does this edge lie on a boundary?) */    mirrorflag = topright.tri != m->dummytri;    if (mirrorflag) {      lnextself(topright);      sym(topright, toprcasing);      maketriangle(m, b, &newtopright);    } else {      /* Splitting a boundary edge increases the number of boundary edges. */      m->hullsize++;    }    maketriangle(m, b, &newbotright);    /* Set the vertices of changed and new triangles. */    org(horiz, rightvertex);    dest(horiz, leftvertex);    apex(horiz, botvertex);    setorg(newbotright, botvertex);    setdest(newbotright, rightvertex);    setapex(newbotright, newvertex);    setorg(horiz, newvertex);    for (i = 0; i < m->eextras; i++) {      /* Set the element attributes of a new triangle. */      setelemattribute(newbotright, i, elemattribute(botright, i));    }    if (b->vararea) {      /* Set the area constraint of a new triangle. */      setareabound(newbotright, areabound(botright));    }    if (mirrorflag) {      dest(topright, topvertex);      setorg(newtopright, rightvertex);      setdest(newtopright, topvertex);      setapex(newtopright, newvertex);      setorg(topright, newvertex);      for (i = 0; i < m->eextras; i++) {        /* Set the element attributes of another new triangle. */        setelemattribute(newtopright, i, elemattribute(topright, i));      }      if (b->vararea) {        /* Set the area constraint of another new triangle. */        setareabound(newtopright, areabound(topright));      }    }    /* There may be subsegments that need to be bonded */    /*   to the new triangle(s).                       */    if (m->checksegments) {      tspivot(botright, botrsubseg);      if (botrsubseg.ss != m->dummysub) {        tsdissolve(botright);        tsbond(newbotright, botrsubseg);      }      if (mirrorflag) {        tspivot(topright, toprsubseg);        if (toprsubseg.ss != m->dummysub) {          tsdissolve(topright);          tsbond(newtopright, toprsubseg);        }      }    }    /* Bond the new triangle(s) to the surrounding triangles. */    bond(newbotright, botrcasing);    lprevself(newbotright);    bond(newbotright, botright);    lprevself(newbotright);    if (mirrorflag) {      bond(newtopright, toprcasing);      lnextself(newtopright);      bond(newtopright, topright);      lnextself(newtopright);      bond(newtopright, newbotright);    }    if (splitseg != (struct osub *) NULL) {      /* Split the subsegment into two. */      setsdest(*splitseg, newvertex);      segorg(*splitseg, segmentorg);      segdest(*splitseg, segmentdest);      ssymself(*splitseg);      spivot(*splitseg, rightsubseg);      insertsubseg(m, b, &newbotright, mark(*splitseg));      tspivot(newbotright, newsubseg);      setsegorg(newsubseg, segmentorg);      setsegdest(newsubseg, segmentdest);      sbond(*splitseg, newsubseg);      ssymself(newsubseg);      sbond(newsubseg, rightsubseg);      ssymself(*splitseg);      /* Transfer the subsegment's boundary marker to the vertex */      /*   if required.                                          */      if (vertexmark(newvertex) == 0) {        setvertexmark(newvertex, mark(*splitseg));      }    }    if (m->checkquality) {      poolrestart(&m->flipstackers);      m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);      m->lastflip->flippedtri = encode(horiz);      m->lastflip->prevflip = (struct flipstacker *) &insertvertex;    }#ifdef SELF_CHECK    if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) {      printf("Internal error in insertvertex():\n");      printf(            "  Clockwise triangle prior to edge vertex insertion (bottom).\n");    }    if (mirrorflag) {      if (counterclockwise(m, b, leftvertex, rightvertex, topvertex) < 0.0) {        printf("Internal error in insertvertex():\n");        printf("  Clockwise triangle prior to edge vertex insertion (top).\n");      }      if (counterclockwise(m, b, rightvertex, topvertex, newvertex) < 0.0) {        printf("Internal error in insertvertex():\n");        printf(            "  Clockwise triangle after edge vertex insertion (top right).\n");      }      if (counterclockwise(m, b, topvertex, leftvertex, newvertex) < 0.0) {        printf("Internal error in insertvertex():\n");        printf(            "  Clockwise triangle after edge vertex insertion (top left).\n");      }    }    if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) {      printf("Internal error in insertvertex():\n");      printf(          "  Clockwise triangle after edge vertex insertion (bottom left).\n");    }    if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) {      printf("Internal error in insertvertex():\n");      printf(        "  Clockwise triangle after edge vertex insertion (bottom right).\n");    }#endif /* SELF_CHECK */    if (b->verbose > 2) {      printf("  Updating bottom left ");      printtriangle(m, b, &botright);      if (mirrorflag) {        printf("  Updating top left ");        printtriangle(m, b, &topright);        printf("  Creating top right ");        printtriangle(m, b, &newtopright);      }      printf("  Creating bottom right ");      printtriangle(m, b, &newbotright);    }    /* Position `horiz' on the first edge to check for */    /*   the Delaunay property.                        */    lnextself(horiz);  } else {    /* Insert the vertex in a triangle, splitting it into three. */    lnext(horiz, botleft);    lprev(horiz, botright);    sym(botleft, botlcasing);    sym(botright, botrcasing);    maketriangle(m, b, &newbotleft);    maketriangle(m, b, &newbotright);    /* Set the vertices of changed and new triangles. */    org(horiz, rightvertex);    dest(horiz, leftvertex);    apex(horiz, botvertex);    setorg(newbotleft, leftvertex);    setdest(newbotleft, botvertex);    setapex(newbotleft, newvertex);    setorg(newbotright, botvertex);    setdest(newbotright, rightvertex);    setapex(newbotright, newvertex);    setapex(horiz, newvertex);    for (i = 0; i < m->eextras; i++) {      /* Set the element attributes of the new triangles. */      attrib = elemattribute(horiz, i);      setelemattribute(newbotleft, i, attrib);      setelemattribute(newbotright, i, attrib);    }    if (b->vararea) {      /* Set the area constraint of the new triangles. */      area = areabound(horiz);      setareabound(newbotleft, area);      setareabound(newbotright, area);    }    /* There may be subsegments that need to be bonded */    /*   to the new triangles.                         */    if (m->checksegments) {      tspivot(botleft, botlsubseg);      if (botlsubseg.ss != m->dummysub) {        tsdissolve(botleft);        tsbond(newbotleft, botlsubseg);      }      tspivot(botright, botrsubseg);      if (botrsubseg.ss != m->dummysub) {        tsdissolve(botright);        tsbond(newbotright, botrsubseg);      }    }    /* Bond the new triangles to the surrounding triangles. */    bond(newbotleft, botlcasing);    bond(newbotright, botrcasing);    lnextself(newbotleft);    lprevself(newbotright);    bond(newbotleft, newbotright);    lnextself(newbotleft);    bond(botleft, newbotleft);    lprevself(newbotright);    bond(botright, newbotright);    if (m->checkquality) {      poolrestart(&m->flipstackers);      m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);      m->lastflip->flippedtri = encode(horiz);      m->lastflip->prevflip = (struct flipstacker *) NULL;    }#ifdef SELF_CHECK    if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) {      printf("Internal error in insertvertex():\n");      printf("  Clockwise triangle prior to vertex insertion.\n");    }    if (counterclockwise(m, b, rightvertex, leftvertex, newvertex) < 0.0) {      printf("Internal error in insertvertex():\n");      printf("  Clockwise triangle after vertex insertion (top).\n");    }    if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) {      printf("Internal error in insertvertex():\n");      printf("  Clockwise triangle after vertex insertion (left).\n");    }    if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) {      printf("Internal error in insertvertex():\n");      printf("  Clockwise triangle after vertex insertion (right).\n");    }#endif /* SELF_CHECK */    if (b->verbose > 2) {      printf("  Updating top ");      printtriangle(m, b, &horiz);      printf("  Creating left ");      printtriangle(m, b, &newbotleft);      printf("  Creating right ");      printtriangle(m, b, &newbotright);    }  }  /* The insertion is successful by default, unless an encroached */  /*   subsegment is found.                                       */  success = SUCCESSFULVERTEX;  /* Circle around the newly inserted vertex, checking each edge opposite */  /*   it for the Delaunay property.  Non-Delaunay edges are flipped.     */  /*   `horiz' is always the edge being checked.  `first' marks where to  */  /*   stop circling.                                                     */  org(horiz, first);  rightvertex = first;  dest(horiz, leftvertex);  /* Circle until finished. */  while (1) {    /* By default, the edge will be flipped. */    doflip = 1;    if (m->checksegments) {      /* Check for a subsegment, which cannot be flipped. */      tspivot(horiz, checksubseg);      if (checksubseg.ss != m->dummysub) {        /* The edge is a subsegment and cannot be flipped. */        doflip = 0;#ifndef CDT_ONLY        if (segmentflaws) {          /* Does the new vertex encroach upon this subsegment? */          if (checkseg4encroach(m, b, &checksubseg)) {            success = ENCROACHINGVERTEX;          }        }#endif /* not CDT_ONLY */      }    }    if (doflip) {      /* Check if the edge is a boundary edge. */      sym(horiz, top);      if (top.tri == m->dummytri) {        /* The edge is a boundary edge and cannot be flipped. */        doflip = 0;      } else {        /* Find the vertex on the other side of the edge. */        apex(top, farvertex);        /* In the incremental Delaunay triangulation algorithm, any of      */        /*   `leftvertex', `rightvertex', and `farvertex' could be vertices */        /*   of the triangular bounding box.  These vertices must be        */        /*   treated as if they are infinitely distant, even though their   */        /*   "coordinates" are not.                                         */        if ((leftvertex == m->infvertex1) || (leftvertex == m->infvertex2) ||            (leftvertex == m->infvertex3)) {          /* `leftvertex' is infinitely distant.  Check the convexity of  */          /*   the boundary of the triangulation.  'farvertex' might be   */          /*   infinite as well, but trust me, this same condition should */          /*   be applied.                                                */          doflip = counterclockwise(m, b, newvertex, rightvertex, farvertex)                   > 0.0;        } else if ((rightvertex == m->infvertex1) ||                   (rightvertex == m->infvertex2) ||                   (rightvertex == m->infvertex3)) {          /* `rightvertex' is infinitely distant.  Check the convexity of */          /*   the boundary of the triangulation.  'farvertex' might be   */          /*   infinite as well, but trust me, this same condition should */          /*   be applied.                                                */          doflip = counterclockwise(m, b, farvertex, leftvertex, newvertex)                   > 0.0;        } else if ((farvertex == m->infvertex1) ||                   (farvertex == m->infvertex2) ||                   (farvertex == m->infvertex3)) {          /* `farvertex' is infinitely distant and cannot be inside */          /*   the circumcircle of the triangle `horiz'.            */          doflip = 0;        } else {          /* Test whether the edge is locally Delaunay. */          doflip = incircle(m, b, leftvertex, newvertex, rightvertex,                            farvertex) > 0.0;        }        if (doflip) {          /* We made it!  Flip the edge `horiz' by rotating its containing */          /*   quadrilateral (the two triangles adjacent to `horiz').      */          /* Identify the casing of the quadrilateral. */          lprev(top, topleft);          sym(topleft, toplcasing);          lnext(top, topright);          sym(topright, toprcasing);          lnext(horiz, botleft);          sym(botleft, botlcasing);          lprev(horiz, botright);          sym(botright, botrcasing);          /* Rotate the quadrilateral one-quarter turn counterclockwise. */          bond(topleft, botlcasing);          bond(botleft, botrcasing);          bond(botright, toprcasing);          bond(topright, toplcasing);          if (m->checksegments) {            /* Check for subsegments and rebond them to the quadrilateral. */            tspivot(topleft, toplsubseg);            tspivot(botleft, botlsubseg);            tspivot(botright, botrsubseg);            tspivot(topright, toprsubseg);            if (toplsubseg.ss == m->dummysub) {              tsdissolve(topright);            } else {              tsbond(topright, toplsubseg);            }            if (botlsubseg.ss == m->dummysub) {              tsdissolve(topleft);            } else {              tsbond(topleft, botlsubseg);            }            if (botrsubseg.ss == m->dummysub) {              tsdissolve(botleft);            } else {              tsbond(botleft, botrsubseg);            }            if (toprsubseg.ss == m->dummysub) {              tsdissolve(botright);            } else {              tsbond(botright, toprsubseg);            }          }          /* New vertex assignments for the rotated quadrilateral. */          setorg(horiz, farvertex);          setdest(horiz, newvertex);          setapex(horiz, rightvertex);          setorg(top, newvertex);          setdest(top, farvertex);          setapex(top, leftvertex);          for (i = 0; i < m->eextras; i++) {            /* Take the average of the two triangles' attributes. */            attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));            setelemattribute(top, i, attrib);            setelemattribute(horiz, i, attrib);          }          if (b->vararea) {            if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {              area = -1.0;            } else {              /* Take the average of the two triangles' area constraints.    */              /*   This prevents small area constraints from migrating a     */              /*   long, long way from their original location due to flips. */              area = 0.5 * (areabound(top) + areabound(horiz));            }            setareabound(top, area);            setareabound(horiz, area);          }          if (m->checkquality) {            newflip = (struct flipstacker *) poolalloc(&m->flipstackers);            newflip->flippedtri = encode(horiz);            newflip->prevflip = m->lastflip;            m->lastflip = newflip;          }#ifdef SELF_CHECK          if (newvertex != (vertex) NULL) {            if (counterclockwise(m, b, leftvertex, newvertex, rightvertex) <                0.0) {              printf("Internal error in insertvertex():\n");              printf("  Clockwise triangle prior to edge flip (bottom).\n");            }            /* The following test has been removed because constrainededge() */            /*   sometimes generates inverted triangles that insertvertex()  */            /*   removes.                                                    *//*            if (counterclockwise(m, b, rightvertex, farvertex, leftvertex) <                0.0) {              printf("Internal error in insertvertex():\n");              printf("  Clockwise triangle prior to edge flip (top).\n");            }*/            if (counterclockwise(m, b, farvertex, leftvertex, newvertex) <                0.0) {              printf("Internal error in insertvertex():\n");              printf("  Clockwise triangle after edge flip (left).\n");            }            if (counterclockwise(m, b, newvertex, rightvertex, farvertex) <                0.0) {              printf("Internal error in insertvertex():\n");              printf("  Clockwise triangle after edge flip (right).\n");            }          }#endif /* SELF_CHECK */          if (b->verbose > 2) {            printf("  Edge flip results in left ");            lnextself(topleft);            printtriangle(m, b, &topleft);            printf("  and right ");            printtriangle(m, b, &horiz);          }          /* On the next iterations, consider the two edges that were  */          /*   exposed (this is, are now visible to the newly inserted */          /*   vertex) by the edge flip.                               */          lprevself(horiz);          leftvertex = farvertex;        }      }    }    if (!doflip) {      /* The handle `horiz' is accepted as locally Delaunay. */#ifndef CDT_ONLY      if (triflaws) {        /* Check the triangle `horiz' for quality. */        testtriangle(m, b, &horiz);      }#endif /* not CDT_ONLY */      /* Look for the next edge around the newly inserted vertex. */      lnextself(horiz);      sym(horiz, testtri);      /* Check for finishing a complete revolution about the new vertex, or */      /*   falling outside  of the triangulation.  The latter will happen   */      /*   when a vertex is inserted at a boundary.                         */      if ((leftvertex == first) || (testtri.tri == m->dummytri)) {        /* We're done.  Return a triangle whose origin is the new vertex. */        lnext(horiz, *searchtri);        lnext(horiz, m->recenttri);        return success;      }      /* Finish finding the next edge around the newly inserted vertex. */      lnext(testtri, horiz);      rightvertex = leftvertex;      dest(horiz, leftvertex);    }  }}/*****************************************************************************//*                                                                           *//*  triangulatepolygon()   Find the Delaunay triangulation of a polygon that *//*                         has a certain "nice" shape.  This includes the    *//*                         polygons that result from deletion of a vertex or *//*                         insertion of a segment.                           *//*                                                                           *//*  This is a conceptually difficult routine.  The starting assumption is    *//*  that we have a polygon with n sides.  n - 1 of these sides are currently *//*  represented as edges in the mesh.  One side, called the "base", need not *//*  be.                                                                      *//*                                                                           *//*  Inside the polygon is a structure I call a "fan", consisting of n - 1    *//*  triangles that share a common origin.  For each of these triangles, the  *//*  edge opposite the origin is one of the sides of the polygon.  The        *//*  primary edge of each triangle is the edge directed from the origin to    *//*  the destination; note that this is not the same edge that is a side of   *//*  the polygon.  `firstedge' is the primary edge of the first triangle.     *//*  From there, the triangles follow in counterclockwise order about the     *//*  polygon, until `lastedge', the primary edge of the last triangle.        *//*  `firstedge' and `lastedge' are probably connected to other triangles     *//*  beyond the extremes of the fan, but their identity is not important, as  *//*  long as the fan remains connected to them.                               *//*                                                                           *//*  Imagine the polygon oriented so that its base is at the bottom.  This    *//*  puts `firstedge' on the far right, and `lastedge' on the far left.       *//*  The right vertex of the base is the destination of `firstedge', and the  *//*  left vertex of the base is the apex of `lastedge'.                       *//*                                                                           *//*  The challenge now is to find the right sequence of edge flips to         *//*  transform the fan into a Delaunay triangulation of the polygon.  Each    *//*  edge flip effectively removes one triangle from the fan, committing it   *//*  to the polygon.  The resulting polygon has one fewer edge.  If `doflip'  *//*  is set, the final flip will be performed, resulting in a fan of one      *//*  (useless?) triangle.  If `doflip' is not set, the final flip is not      *//*  performed, resulting in a fan of two triangles, and an unfinished        *//*  triangular polygon that is not yet filled out with a single triangle.    *//*  On completion of the routine, `lastedge' is the last remaining triangle, *//*  or the leftmost of the last two.                                         *//*                                                                           *//*  Although the flips are performed in the order described above, the       *//*  decisions about what flips to perform are made in precisely the reverse  *//*  order.  The recursive triangulatepolygon() procedure makes a decision,   *//*  uses up to two recursive calls to triangulate the "subproblems"          *//*  (polygons with fewer edges), and then performs an edge flip.             *//*                                                                           *//*  The "decision" it makes is which vertex of the polygon should be         *//*  connected to the base.  This decision is made by testing every possible  *//*  vertex.  Once the best vertex is found, the two edges that connect this  *//*  vertex to the base become the bases for two smaller polygons.  These     *//*  are triangulated recursively.  Unfortunately, this approach can take     *//*  O(n^2) time not only in the worst case, but in many common cases.  It's  *//*  rarely a big deal for vertex deletion, where n is rarely larger than     *//*  ten, but it could be a big deal for segment insertion, especially if     *//*  there's a lot of long segments that each cut many triangles.  I ought to *//*  code a faster algorithm some day.                                        *//*                                                                           *//*  The `edgecount' parameter is the number of sides of the polygon,         *//*  including its base.  `triflaws' is a flag that determines whether the    *//*  new triangles should be tested for quality, and enqueued if they are     *//*  bad.                                                                     *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid triangulatepolygon(struct mesh *m, struct behavior *b,                        struct otri *firstedge, struct otri *lastedge,                        int edgecount, int doflip, int triflaws)#else /* not ANSI_DECLARATORS */void triangulatepolygon(m, b, firstedge, lastedge, edgecount, doflip, triflaws)struct mesh *m;struct behavior *b;struct otri *firstedge;struct otri *lastedge;int edgecount;int doflip;int triflaws;#endif /* not ANSI_DECLARATORS */{  struct otri testtri;  struct otri besttri;  struct otri tempedge;  vertex leftbasevertex, rightbasevertex;  vertex testvertex;  vertex bestvertex;  int bestnumber;  int i;  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */  /* Identify the base vertices. */  apex(*lastedge, leftbasevertex);  dest(*firstedge, rightbasevertex);  if (b->verbose > 2) {    printf("  Triangulating interior polygon at edge\n");    printf("    (%.12g, %.12g) (%.12g, %.12g)\n", leftbasevertex[0],           leftbasevertex[1], rightbasevertex[0], rightbasevertex[1]);  }  /* Find the best vertex to connect the base to. */  onext(*firstedge, besttri);  dest(besttri, bestvertex);  otricopy(besttri, testtri);  bestnumber = 1;  for (i = 2; i <= edgecount - 2; i++) {    onextself(testtri);    dest(testtri, testvertex);    /* Is this a better vertex? */    if (incircle(m, b, leftbasevertex, rightbasevertex, bestvertex,                 testvertex) > 0.0) {      otricopy(testtri, besttri);      bestvertex = testvertex;      bestnumber = i;    }  }  if (b->verbose > 2) {    printf("    Connecting edge to (%.12g, %.12g)\n", bestvertex[0],           bestvertex[1]);  }  if (bestnumber > 1) {    /* Recursively triangulate the smaller polygon on the right. */    oprev(besttri, tempedge);    triangulatepolygon(m, b, firstedge, &tempedge, bestnumber + 1, 1,                       triflaws);  }  if (bestnumber < edgecount - 2) {    /* Recursively triangulate the smaller polygon on the left. */    sym(besttri, tempedge);    triangulatepolygon(m, b, &besttri, lastedge, edgecount - bestnumber, 1,                       triflaws);    /* Find `besttri' again; it may have been lost to edge flips. */    sym(tempedge, besttri);  }  if (doflip) {    /* Do one final edge flip. */    flip(m, b, &besttri);#ifndef CDT_ONLY    if (triflaws) {      /* Check the quality of the newly committed triangle. */      sym(besttri, testtri);      testtriangle(m, b, &testtri);    }#endif /* not CDT_ONLY */  }  /* Return the base triangle. */  otricopy(besttri, *lastedge);}/*****************************************************************************//*                                                                           *//*  deletevertex()   Delete a vertex from a Delaunay triangulation, ensuring *//*                   that the triangulation remains Delaunay.                *//*                                                                           *//*  The origin of `deltri' is deleted.  The union of the triangles adjacent  *//*  to this vertex is a polygon, for which the Delaunay triangulation is     *//*  found.  Two triangles are removed from the mesh.                         *//*                                                                           *//*  Only interior vertices that do not lie on segments or boundaries may be  *//*  deleted.                                                                 *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid deletevertex(struct mesh *m, struct behavior *b, struct otri *deltri)#else /* not ANSI_DECLARATORS */void deletevertex(m, b, deltri)struct mesh *m;struct behavior *b;struct otri *deltri;#endif /* not ANSI_DECLARATORS */{  struct otri countingtri;  struct otri firstedge, lastedge;  struct otri deltriright;  struct otri lefttri, righttri;  struct otri leftcasing, rightcasing;  struct osub leftsubseg, rightsubseg;  vertex delvertex;  vertex neworg;  int edgecount;  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  org(*deltri, delvertex);  if (b->verbose > 1) {    printf("  Deleting (%.12g, %.12g).\n", delvertex[0], delvertex[1]);  }  vertexdealloc(m, delvertex);  /* Count the degree of the vertex being deleted. */  onext(*deltri, countingtri);  edgecount = 1;  while (!otriequal(*deltri, countingtri)) {#ifdef SELF_CHECK    if (countingtri.tri == m->dummytri) {      printf("Internal error in deletevertex():\n");      printf("  Attempt to delete boundary vertex.\n");      internalerror();    }#endif /* SELF_CHECK */    edgecount++;    onextself(countingtri);  }#ifdef SELF_CHECK  if (edgecount < 3) {    printf("Internal error in deletevertex():\n  Vertex has degree %d.\n",           edgecount);    internalerror();  }#endif /* SELF_CHECK */  if (edgecount > 3) {    /* Triangulate the polygon defined by the union of all triangles */    /*   adjacent to the vertex being deleted.  Check the quality of */    /*   the resulting triangles.                                    */    onext(*deltri, firstedge);    oprev(*deltri, lastedge);    triangulatepolygon(m, b, &firstedge, &lastedge, edgecount, 0,                       !b->nobisect);  }  /* Splice out two triangles. */  lprev(*deltri, deltriright);  dnext(*deltri, lefttri);  sym(lefttri, leftcasing);  oprev(deltriright, righttri);  sym(righttri, rightcasing);  bond(*deltri, leftcasing);  bond(deltriright, rightcasing);  tspivot(lefttri, leftsubseg);  if (leftsubseg.ss != m->dummysub) {    tsbond(*deltri, leftsubseg);  }  tspivot(righttri, rightsubseg);  if (rightsubseg.ss != m->dummysub) {    tsbond(deltriright, rightsubseg);  }  /* Set the new origin of `deltri' and check its quality. */  org(lefttri, neworg);  setorg(*deltri, neworg);  if (!b->nobisect) {    testtriangle(m, b, deltri);  }  /* Delete the two spliced-out triangles. */  triangledealloc(m, lefttri.tri);  triangledealloc(m, righttri.tri);}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  undovertex()   Undo the most recent vertex insertion.                    *//*                                                                           *//*  Walks through the list of transformations (flips and a vertex insertion) *//*  in the reverse of the order in which they were done, and undoes them.    *//*  The inserted vertex is removed from the triangulation and deallocated.   *//*  Two triangles (possibly just one) are also deallocated.                  *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid undovertex(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void undovertex(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri fliptri;  struct otri botleft, botright, topright;  struct otri botlcasing, botrcasing, toprcasing;  struct otri gluetri;  struct osub botlsubseg, botrsubseg, toprsubseg;  vertex botvertex, rightvertex;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  /* Walk through the list of transformations (flips and a vertex insertion) */  /*   in the reverse of the order in which they were done, and undo them.   */  while (m->lastflip != (struct flipstacker *) NULL) {    /* Find a triangle involved in the last unreversed transformation. */    decode(m->lastflip->flippedtri, fliptri);    /* We are reversing one of three transformations:  a trisection of one */    /*   triangle into three (by inserting a vertex in the triangle), a    */    /*   bisection of two triangles into four (by inserting a vertex in an */    /*   edge), or an edge flip.                                           */    if (m->lastflip->prevflip == (struct flipstacker *) NULL) {      /* Restore a triangle that was split into three triangles, */      /*   so it is again one triangle.                          */      dprev(fliptri, botleft);      lnextself(botleft);      onext(fliptri, botright);      lprevself(botright);      sym(botleft, botlcasing);      sym(botright, botrcasing);      dest(botleft, botvertex);      setapex(fliptri, botvertex);      lnextself(fliptri);      bond(fliptri, botlcasing);      tspivot(botleft, botlsubseg);      tsbond(fliptri, botlsubseg);      lnextself(fliptri);      bond(fliptri, botrcasing);      tspivot(botright, botrsubseg);      tsbond(fliptri, botrsubseg);      /* Delete the two spliced-out triangles. */      triangledealloc(m, botleft.tri);      triangledealloc(m, botright.tri);    } else if (m->lastflip->prevflip == (struct flipstacker *) &insertvertex) {      /* Restore two triangles that were split into four triangles, */      /*   so they are again two triangles.                         */      lprev(fliptri, gluetri);      sym(gluetri, botright);      lnextself(botright);      sym(botright, botrcasing);      dest(botright, rightvertex);      setorg(fliptri, rightvertex);      bond(gluetri, botrcasing);      tspivot(botright, botrsubseg);      tsbond(gluetri, botrsubseg);      /* Delete the spliced-out triangle. */      triangledealloc(m, botright.tri);      sym(fliptri, gluetri);      if (gluetri.tri != m->dummytri) {        lnextself(gluetri);        dnext(gluetri, topright);        sym(topright, toprcasing);        setorg(gluetri, rightvertex);        bond(gluetri, toprcasing);        tspivot(topright, toprsubseg);        tsbond(gluetri, toprsubseg);        /* Delete the spliced-out triangle. */        triangledealloc(m, topright.tri);      }      /* This is the end of the list, sneakily encoded. */      m->lastflip->prevflip = (struct flipstacker *) NULL;    } else {      /* Undo an edge flip. */      unflip(m, b, &fliptri);    }    /* Go on and process the next transformation. */    m->lastflip = m->lastflip->prevflip;  }}#endif /* not CDT_ONLY *//**                                                                         **//**                                                                         **//********* Mesh transformation routines end here                     *********//********* Divide-and-conquer Delaunay triangulation begins here     *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  The divide-and-conquer bounding box                                      *//*                                                                           *//*  I originally implemented the divide-and-conquer and incremental Delaunay *//*  triangulations using the edge-based data structure presented by Guibas   *//*  and Stolfi.  Switching to a triangle-based data structure doubled the    *//*  speed.  However, I had to think of a few extra tricks to maintain the    *//*  elegance of the original algorithms.                                     *//*                                                                           *//*  The "bounding box" used by my variant of the divide-and-conquer          *//*  algorithm uses one triangle for each edge of the convex hull of the      *//*  triangulation.  These bounding triangles all share a common apical       *//*  vertex, which is represented by NULL and which represents nothing.       *//*  The bounding triangles are linked in a circular fan about this NULL      *//*  vertex, and the edges on the convex hull of the triangulation appear     *//*  opposite the NULL vertex.  You might find it easiest to imagine that     *//*  the NULL vertex is a point in 3D space behind the center of the          *//*  triangulation, and that the bounding triangles form a sort of cone.      *//*                                                                           *//*  This bounding box makes it easy to represent degenerate cases.  For      *//*  instance, the triangulation of two vertices is a single edge.  This edge *//*  is represented by two bounding box triangles, one on each "side" of the  *//*  edge.  These triangles are also linked together in a fan about the NULL  *//*  vertex.                                                                  *//*                                                                           *//*  The bounding box also makes it easy to traverse the convex hull, as the  *//*  divide-and-conquer algorithm needs to do.                                *//*                                                                           *//*****************************************************************************//*****************************************************************************//*                                                                           *//*  vertexsort()   Sort an array of vertices by x-coordinate, using the      *//*                 y-coordinate as a secondary key.                          *//*                                                                           *//*  Uses quicksort.  Randomized O(n log n) time.  No, I did not make any of  *//*  the usual quicksort mistakes.                                            *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid vertexsort(vertex *sortarray, int arraysize)#else /* not ANSI_DECLARATORS */void vertexsort(sortarray, arraysize)vertex *sortarray;int arraysize;#endif /* not ANSI_DECLARATORS */{  int left, right;  int pivot;  REAL pivotx, pivoty;  vertex temp;  if (arraysize == 2) {    /* Recursive base case. */    if ((sortarray[0][0] > sortarray[1][0]) ||        ((sortarray[0][0] == sortarray[1][0]) &&         (sortarray[0][1] > sortarray[1][1]))) {      temp = sortarray[1];      sortarray[1] = sortarray[0];      sortarray[0] = temp;    }    return;  }  /* Choose a random pivot to split the array. */  pivot = (int) randomnation((unsigned int) arraysize);  pivotx = sortarray[pivot][0];  pivoty = sortarray[pivot][1];  /* Split the array. */  left = -1;  right = arraysize;  while (left < right) {    /* Search for a vertex whose x-coordinate is too large for the left. */    do {      left++;    } while ((left <= right) && ((sortarray[left][0] < pivotx) ||                                 ((sortarray[left][0] == pivotx) &&                                  (sortarray[left][1] < pivoty))));    /* Search for a vertex whose x-coordinate is too small for the right. */    do {      right--;    } while ((left <= right) && ((sortarray[right][0] > pivotx) ||                                 ((sortarray[right][0] == pivotx) &&                                  (sortarray[right][1] > pivoty))));    if (left < right) {      /* Swap the left and right vertices. */      temp = sortarray[left];      sortarray[left] = sortarray[right];      sortarray[right] = temp;    }  }  if (left > 1) {    /* Recursively sort the left subset. */    vertexsort(sortarray, left);  }  if (right < arraysize - 2) {    /* Recursively sort the right subset. */    vertexsort(&sortarray[right + 1], arraysize - right - 1);  }}/*****************************************************************************//*                                                                           *//*  vertexmedian()   An order statistic algorithm, almost.  Shuffles an      *//*                   array of vertices so that the first `median' vertices   *//*                   occur lexicographically before the remaining vertices.  *//*                                                                           *//*  Uses the x-coordinate as the primary key if axis == 0; the y-coordinate  *//*  if axis == 1.  Very similar to the vertexsort() procedure, but runs in   *//*  randomized linear time.                                                  *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid vertexmedian(vertex *sortarray, int arraysize, int median, int axis)#else /* not ANSI_DECLARATORS */void vertexmedian(sortarray, arraysize, median, axis)vertex *sortarray;int arraysize;int median;int axis;#endif /* not ANSI_DECLARATORS */{  int left, right;  int pivot;  REAL pivot1, pivot2;  vertex temp;  if (arraysize == 2) {    /* Recursive base case. */    if ((sortarray[0][axis] > sortarray[1][axis]) ||        ((sortarray[0][axis] == sortarray[1][axis]) &&         (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {      temp = sortarray[1];      sortarray[1] = sortarray[0];      sortarray[0] = temp;    }    return;  }  /* Choose a random pivot to split the array. */  pivot = (int) randomnation((unsigned int) arraysize);  pivot1 = sortarray[pivot][axis];  pivot2 = sortarray[pivot][1 - axis];  /* Split the array. */  left = -1;  right = arraysize;  while (left < right) {    /* Search for a vertex whose x-coordinate is too large for the left. */    do {      left++;    } while ((left <= right) && ((sortarray[left][axis] < pivot1) ||                                 ((sortarray[left][axis] == pivot1) &&                                  (sortarray[left][1 - axis] < pivot2))));    /* Search for a vertex whose x-coordinate is too small for the right. */    do {      right--;    } while ((left <= right) && ((sortarray[right][axis] > pivot1) ||                                 ((sortarray[right][axis] == pivot1) &&                                  (sortarray[right][1 - axis] > pivot2))));    if (left < right) {      /* Swap the left and right vertices. */      temp = sortarray[left];      sortarray[left] = sortarray[right];      sortarray[right] = temp;    }  }  /* Unlike in vertexsort(), at most one of the following */  /*   conditionals is true.                             */  if (left > median) {    /* Recursively shuffle the left subset. */    vertexmedian(sortarray, left, median, axis);  }  if (right < median - 1) {    /* Recursively shuffle the right subset. */    vertexmedian(&sortarray[right + 1], arraysize - right - 1,                 median - right - 1, axis);  }}/*****************************************************************************//*                                                                           *//*  alternateaxes()   Sorts the vertices as appropriate for the divide-and-  *//*                    conquer algorithm with alternating cuts.               *//*                                                                           *//*  Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1.   *//*  For the base case, subsets containing only two or three vertices are     *//*  always sorted by x-coordinate.                                           *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid alternateaxes(vertex *sortarray, int arraysize, int axis)#else /* not ANSI_DECLARATORS */void alternateaxes(sortarray, arraysize, axis)vertex *sortarray;int arraysize;int axis;#endif /* not ANSI_DECLARATORS */{  int divider;  divider = arraysize >> 1;  if (arraysize <= 3) {    /* Recursive base case:  subsets of two or three vertices will be    */    /*   handled specially, and should always be sorted by x-coordinate. */    axis = 0;  }  /* Partition with a horizontal or vertical cut. */  vertexmedian(sortarray, arraysize, divider, axis);  /* Recursively partition the subsets with a cross cut. */  if (arraysize - divider >= 2) {    if (divider >= 2) {      alternateaxes(sortarray, divider, 1 - axis);    }    alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);  }}/*****************************************************************************//*                                                                           *//*  mergehulls()   Merge two adjacent Delaunay triangulations into a         *//*                 single Delaunay triangulation.                            *//*                                                                           *//*  This is similar to the algorithm given by Guibas and Stolfi, but uses    *//*  a triangle-based, rather than edge-based, data structure.                *//*                                                                           *//*  The algorithm walks up the gap between the two triangulations, knitting  *//*  them together.  As they are merged, some of their bounding triangles     *//*  are converted into real triangles of the triangulation.  The procedure   *//*  pulls each hull's bounding triangles apart, then knits them together     *//*  like the teeth of two gears.  The Delaunay property determines, at each  *//*  step, whether the next "tooth" is a bounding triangle of the left hull   *//*  or the right.  When a bounding triangle becomes real, its apex is        *//*  changed from NULL to a real vertex.                                      *//*                                                                           *//*  Only two new triangles need to be allocated.  These become new bounding  *//*  triangles at the top and bottom of the seam.  They are used to connect   *//*  the remaining bounding triangles (those that have not been converted     *//*  into real triangles) into a single fan.                                  *//*                                                                           *//*  On entry, `farleft' and `innerleft' are bounding triangles of the left   *//*  triangulation.  The origin of `farleft' is the leftmost vertex, and      *//*  the destination of `innerleft' is the rightmost vertex of the            *//*  triangulation.  Similarly, `innerright' and `farright' are bounding      *//*  triangles of the right triangulation.  The origin of `innerright' and    *//*  destination of `farright' are the leftmost and rightmost vertices.       *//*                                                                           *//*  On completion, the origin of `farleft' is the leftmost vertex of the     *//*  merged triangulation, and the destination of `farright' is the rightmost *//*  vertex.                                                                  *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid mergehulls(struct mesh *m, struct behavior *b, struct otri *farleft,                struct otri *innerleft, struct otri *innerright,                struct otri *farright, int axis)#else /* not ANSI_DECLARATORS */void mergehulls(m, b, farleft, innerleft, innerright, farright, axis)struct mesh *m;struct behavior *b;struct otri *farleft;struct otri *innerleft;struct otri *innerright;struct otri *farright;int axis;#endif /* not ANSI_DECLARATORS */{  struct otri leftcand, rightcand;  struct otri baseedge;  struct otri nextedge;  struct otri sidecasing, topcasing, outercasing;  struct otri checkedge;  vertex innerleftdest;  vertex innerrightorg;  vertex innerleftapex, innerrightapex;  vertex farleftpt, farrightpt;  vertex farleftapex, farrightapex;  vertex lowerleft, lowerright;  vertex upperleft, upperright;  vertex nextapex;  vertex checkvertex;  int changemade;  int badedge;  int leftfinished, rightfinished;  triangle ptr;                         /* Temporary variable used by sym(). */  dest(*innerleft, innerleftdest);  apex(*innerleft, innerleftapex);  org(*innerright, innerrightorg);  apex(*innerright, innerrightapex);  /* Special treatment for horizontal cuts. */  if (b->dwyer && (axis == 1)) {    org(*farleft, farleftpt);    apex(*farleft, farleftapex);    dest(*farright, farrightpt);    apex(*farright, farrightapex);    /* The pointers to the extremal vertices are shifted to point to the */    /*   topmost and bottommost vertex of each hull, rather than the     */    /*   leftmost and rightmost vertices.                                */    while (farleftapex[1] < farleftpt[1]) {      lnextself(*farleft);      symself(*farleft);      farleftpt = farleftapex;      apex(*farleft, farleftapex);    }    sym(*innerleft, checkedge);    apex(checkedge, checkvertex);    while (checkvertex[1] > innerleftdest[1]) {      lnext(checkedge, *innerleft);      innerleftapex = innerleftdest;      innerleftdest = checkvertex;      sym(*innerleft, checkedge);      apex(checkedge, checkvertex);    }    while (innerrightapex[1] < innerrightorg[1]) {      lnextself(*innerright);      symself(*innerright);      innerrightorg = innerrightapex;      apex(*innerright, innerrightapex);    }    sym(*farright, checkedge);    apex(checkedge, checkvertex);    while (checkvertex[1] > farrightpt[1]) {      lnext(checkedge, *farright);      farrightapex = farrightpt;      farrightpt = checkvertex;      sym(*farright, checkedge);      apex(checkedge, checkvertex);    }  }  /* Find a line tangent to and below both hulls. */  do {    changemade = 0;    /* Make innerleftdest the "bottommost" vertex of the left hull. */    if (counterclockwise(m, b, innerleftdest, innerleftapex, innerrightorg) >        0.0) {      lprevself(*innerleft);      symself(*innerleft);      innerleftdest = innerleftapex;      apex(*innerleft, innerleftapex);      changemade = 1;    }    /* Make innerrightorg the "bottommost" vertex of the right hull. */    if (counterclockwise(m, b, innerrightapex, innerrightorg, innerleftdest) >        0.0) {      lnextself(*innerright);      symself(*innerright);      innerrightorg = innerrightapex;      apex(*innerright, innerrightapex);      changemade = 1;    }  } while (changemade);  /* Find the two candidates to be the next "gear tooth." */  sym(*innerleft, leftcand);  sym(*innerright, rightcand);  /* Create the bottom new bounding triangle. */  maketriangle(m, b, &baseedge);  /* Connect it to the bounding boxes of the left and right triangulations. */  bond(baseedge, *innerleft);  lnextself(baseedge);  bond(baseedge, *innerright);  lnextself(baseedge);  setorg(baseedge, innerrightorg);  setdest(baseedge, innerleftdest);  /* Apex is intentionally left NULL. */  if (b->verbose > 2) {    printf("  Creating base bounding ");    printtriangle(m, b, &baseedge);  }  /* Fix the extreme triangles if necessary. */  org(*farleft, farleftpt);  if (innerleftdest == farleftpt) {    lnext(baseedge, *farleft);  }  dest(*farright, farrightpt);  if (innerrightorg == farrightpt) {    lprev(baseedge, *farright);  }  /* The vertices of the current knitting edge. */  lowerleft = innerleftdest;  lowerright = innerrightorg;  /* The candidate vertices for knitting. */  apex(leftcand, upperleft);  apex(rightcand, upperright);  /* Walk up the gap between the two triangulations, knitting them together. */  while (1) {    /* Have we reached the top?  (This isn't quite the right question,       */    /*   because even though the left triangulation might seem finished now, */    /*   moving up on the right triangulation might reveal a new vertex of   */    /*   the left triangulation.  And vice-versa.)                           */    leftfinished = counterclockwise(m, b, upperleft, lowerleft, lowerright) <=                   0.0;    rightfinished = counterclockwise(m, b, upperright, lowerleft, lowerright)                 <= 0.0;    if (leftfinished && rightfinished) {      /* Create the top new bounding triangle. */      maketriangle(m, b, &nextedge);      setorg(nextedge, lowerleft);      setdest(nextedge, lowerright);      /* Apex is intentionally left NULL. */      /* Connect it to the bounding boxes of the two triangulations. */      bond(nextedge, baseedge);      lnextself(nextedge);      bond(nextedge, rightcand);      lnextself(nextedge);      bond(nextedge, leftcand);      if (b->verbose > 2) {        printf("  Creating top bounding ");        printtriangle(m, b, &nextedge);      }      /* Special treatment for horizontal cuts. */      if (b->dwyer && (axis == 1)) {        org(*farleft, farleftpt);        apex(*farleft, farleftapex);        dest(*farright, farrightpt);        apex(*farright, farrightapex);        sym(*farleft, checkedge);        apex(checkedge, checkvertex);        /* The pointers to the extremal vertices are restored to the  */        /*   leftmost and rightmost vertices (rather than topmost and */        /*   bottommost).                                             */        while (checkvertex[0] < farleftpt[0]) {          lprev(checkedge, *farleft);          farleftapex = farleftpt;          farleftpt = checkvertex;          sym(*farleft, checkedge);          apex(checkedge, checkvertex);        }        while (farrightapex[0] > farrightpt[0]) {          lprevself(*farright);          symself(*farright);          farrightpt = farrightapex;          apex(*farright, farrightapex);        }      }      return;    }    /* Consider eliminating edges from the left triangulation. */    if (!leftfinished) {      /* What vertex would be exposed if an edge were deleted? */      lprev(leftcand, nextedge);      symself(nextedge);      apex(nextedge, nextapex);      /* If nextapex is NULL, then no vertex would be exposed; the */      /*   triangulation would have been eaten right through.      */      if (nextapex != (vertex) NULL) {        /* Check whether the edge is Delaunay. */        badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) >                  0.0;        while (badedge) {          /* Eliminate the edge with an edge flip.  As a result, the    */          /*   left triangulation will have one more boundary triangle. */          lnextself(nextedge);          sym(nextedge, topcasing);          lnextself(nextedge);          sym(nextedge, sidecasing);          bond(nextedge, topcasing);          bond(leftcand, sidecasing);          lnextself(leftcand);          sym(leftcand, outercasing);          lprevself(nextedge);          bond(nextedge, outercasing);          /* Correct the vertices to reflect the edge flip. */          setorg(leftcand, lowerleft);          setdest(leftcand, NULL);          setapex(leftcand, nextapex);          setorg(nextedge, NULL);          setdest(nextedge, upperleft);          setapex(nextedge, nextapex);          /* Consider the newly exposed vertex. */          upperleft = nextapex;          /* What vertex would be exposed if another edge were deleted? */          otricopy(sidecasing, nextedge);          apex(nextedge, nextapex);          if (nextapex != (vertex) NULL) {            /* Check whether the edge is Delaunay. */            badedge = incircle(m, b, lowerleft, lowerright, upperleft,                               nextapex) > 0.0;          } else {            /* Avoid eating right through the triangulation. */            badedge = 0;          }        }      }    }    /* Consider eliminating edges from the right triangulation. */    if (!rightfinished) {      /* What vertex would be exposed if an edge were deleted? */      lnext(rightcand, nextedge);      symself(nextedge);      apex(nextedge, nextapex);      /* If nextapex is NULL, then no vertex would be exposed; the */      /*   triangulation would have been eaten right through.      */      if (nextapex != (vertex) NULL) {        /* Check whether the edge is Delaunay. */        badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) >                  0.0;        while (badedge) {          /* Eliminate the edge with an edge flip.  As a result, the     */          /*   right triangulation will have one more boundary triangle. */          lprevself(nextedge);          sym(nextedge, topcasing);          lprevself(nextedge);          sym(nextedge, sidecasing);          bond(nextedge, topcasing);          bond(rightcand, sidecasing);          lprevself(rightcand);          sym(rightcand, outercasing);          lnextself(nextedge);          bond(nextedge, outercasing);          /* Correct the vertices to reflect the edge flip. */          setorg(rightcand, NULL);          setdest(rightcand, lowerright);          setapex(rightcand, nextapex);          setorg(nextedge, upperright);          setdest(nextedge, NULL);          setapex(nextedge, nextapex);          /* Consider the newly exposed vertex. */          upperright = nextapex;          /* What vertex would be exposed if another edge were deleted? */          otricopy(sidecasing, nextedge);          apex(nextedge, nextapex);          if (nextapex != (vertex) NULL) {            /* Check whether the edge is Delaunay. */            badedge = incircle(m, b, lowerleft, lowerright, upperright,                               nextapex) > 0.0;          } else {            /* Avoid eating right through the triangulation. */            badedge = 0;          }        }      }    }    if (leftfinished || (!rightfinished &&           (incircle(m, b, upperleft, lowerleft, lowerright, upperright) >            0.0))) {      /* Knit the triangulations, adding an edge from `lowerleft' */      /*   to `upperright'.                                       */      bond(baseedge, rightcand);      lprev(rightcand, baseedge);      setdest(baseedge, lowerleft);      lowerright = upperright;      sym(baseedge, rightcand);      apex(rightcand, upperright);    } else {      /* Knit the triangulations, adding an edge from `upperleft' */      /*   to `lowerright'.                                       */      bond(baseedge, leftcand);      lnext(leftcand, baseedge);      setorg(baseedge, lowerright);      lowerleft = upperleft;      sym(baseedge, leftcand);      apex(leftcand, upperleft);    }    if (b->verbose > 2) {      printf("  Connecting ");      printtriangle(m, b, &baseedge);    }  }}/*****************************************************************************//*                                                                           *//*  divconqrecurse()   Recursively form a Delaunay triangulation by the      *//*                     divide-and-conquer method.                            *//*                                                                           *//*  Recursively breaks down the problem into smaller pieces, which are       *//*  knitted together by mergehulls().  The base cases (problems of two or    *//*  three vertices) are handled specially here.                              *//*                                                                           *//*  On completion, `farleft' and `farright' are bounding triangles such that *//*  the origin of `farleft' is the leftmost vertex (breaking ties by         *//*  choosing the highest leftmost vertex), and the destination of            *//*  `farright' is the rightmost vertex (breaking ties by choosing the        *//*  lowest rightmost vertex).                                                *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid divconqrecurse(struct mesh *m, struct behavior *b, vertex *sortarray,                    int vertices, int axis,                    struct otri *farleft, struct otri *farright)#else /* not ANSI_DECLARATORS */void divconqrecurse(m, b, sortarray, vertices, axis, farleft, farright)struct mesh *m;struct behavior *b;vertex *sortarray;int vertices;int axis;struct otri *farleft;struct otri *farright;#endif /* not ANSI_DECLARATORS */{  struct otri midtri, tri1, tri2, tri3;  struct otri innerleft, innerright;  REAL area;  int divider;  if (b->verbose > 2) {    printf("  Triangulating %d vertices.\n", vertices);  }  if (vertices == 2) {    /* The triangulation of two vertices is an edge.  An edge is */    /*   represented by two bounding triangles.                  */    maketriangle(m, b, farleft);    setorg(*farleft, sortarray[0]);    setdest(*farleft, sortarray[1]);    /* The apex is intentionally left NULL. */    maketriangle(m, b, farright);    setorg(*farright, sortarray[1]);    setdest(*farright, sortarray[0]);    /* The apex is intentionally left NULL. */    bond(*farleft, *farright);    lprevself(*farleft);    lnextself(*farright);    bond(*farleft, *farright);    lprevself(*farleft);    lnextself(*farright);    bond(*farleft, *farright);    if (b->verbose > 2) {      printf("  Creating ");      printtriangle(m, b, farleft);      printf("  Creating ");      printtriangle(m, b, farright);    }    /* Ensure that the origin of `farleft' is sortarray[0]. */    lprev(*farright, *farleft);    return;  } else if (vertices == 3) {    /* The triangulation of three vertices is either a triangle (with */    /*   three bounding triangles) or two edges (with four bounding   */    /*   triangles).  In either case, four triangles are created.     */    maketriangle(m, b, &midtri);    maketriangle(m, b, &tri1);    maketriangle(m, b, &tri2);    maketriangle(m, b, &tri3);    area = counterclockwise(m, b, sortarray[0], sortarray[1], sortarray[2]);    if (area == 0.0) {      /* Three collinear vertices; the triangulation is two edges. */      setorg(midtri, sortarray[0]);      setdest(midtri, sortarray[1]);      setorg(tri1, sortarray[1]);      setdest(tri1, sortarray[0]);      setorg(tri2, sortarray[2]);      setdest(tri2, sortarray[1]);      setorg(tri3, sortarray[1]);      setdest(tri3, sortarray[2]);      /* All apices are intentionally left NULL. */      bond(midtri, tri1);      bond(tri2, tri3);      lnextself(midtri);      lprevself(tri1);      lnextself(tri2);      lprevself(tri3);      bond(midtri, tri3);      bond(tri1, tri2);      lnextself(midtri);      lprevself(tri1);      lnextself(tri2);      lprevself(tri3);      bond(midtri, tri1);      bond(tri2, tri3);      /* Ensure that the origin of `farleft' is sortarray[0]. */      otricopy(tri1, *farleft);      /* Ensure that the destination of `farright' is sortarray[2]. */      otricopy(tri2, *farright);    } else {      /* The three vertices are not collinear; the triangulation is one */      /*   triangle, namely `midtri'.                                   */      setorg(midtri, sortarray[0]);      setdest(tri1, sortarray[0]);      setorg(tri3, sortarray[0]);      /* Apices of tri1, tri2, and tri3 are left NULL. */      if (area > 0.0) {        /* The vertices are in counterclockwise order. */        setdest(midtri, sortarray[1]);        setorg(tri1, sortarray[1]);        setdest(tri2, sortarray[1]);        setapex(midtri, sortarray[2]);        setorg(tri2, sortarray[2]);        setdest(tri3, sortarray[2]);      } else {        /* The vertices are in clockwise order. */        setdest(midtri, sortarray[2]);        setorg(tri1, sortarray[2]);        setdest(tri2, sortarray[2]);        setapex(midtri, sortarray[1]);        setorg(tri2, sortarray[1]);        setdest(tri3, sortarray[1]);      }      /* The topology does not depend on how the vertices are ordered. */      bond(midtri, tri1);      lnextself(midtri);      bond(midtri, tri2);      lnextself(midtri);      bond(midtri, tri3);      lprevself(tri1);      lnextself(tri2);      bond(tri1, tri2);      lprevself(tri1);      lprevself(tri3);      bond(tri1, tri3);      lnextself(tri2);      lprevself(tri3);      bond(tri2, tri3);      /* Ensure that the origin of `farleft' is sortarray[0]. */      otricopy(tri1, *farleft);      /* Ensure that the destination of `farright' is sortarray[2]. */      if (area > 0.0) {        otricopy(tri2, *farright);      } else {        lnext(*farleft, *farright);      }    }    if (b->verbose > 2) {      printf("  Creating ");      printtriangle(m, b, &midtri);      printf("  Creating ");      printtriangle(m, b, &tri1);      printf("  Creating ");      printtriangle(m, b, &tri2);      printf("  Creating ");      printtriangle(m, b, &tri3);    }    return;  } else {    /* Split the vertices in half. */    divider = vertices >> 1;    /* Recursively triangulate each half. */    divconqrecurse(m, b, sortarray, divider, 1 - axis, farleft, &innerleft);    divconqrecurse(m, b, &sortarray[divider], vertices - divider, 1 - axis,                   &innerright, farright);    if (b->verbose > 1) {      printf("  Joining triangulations with %d and %d vertices.\n", divider,             vertices - divider);    }    /* Merge the two triangulations into one. */    mergehulls(m, b, farleft, &innerleft, &innerright, farright, axis);  }}#ifdef ANSI_DECLARATORSlong removeghosts(struct mesh *m, struct behavior *b, struct otri *startghost)#else /* not ANSI_DECLARATORS */long removeghosts(m, b, startghost)struct mesh *m;struct behavior *b;struct otri *startghost;#endif /* not ANSI_DECLARATORS */{  struct otri searchedge;  struct otri dissolveedge;  struct otri deadtriangle;  vertex markorg;  long hullsize;  triangle ptr;                         /* Temporary variable used by sym(). */  if (b->verbose) {    printf("  Removing ghost triangles.\n");  }  /* Find an edge on the convex hull to start point location from. */  lprev(*startghost, searchedge);  symself(searchedge);  m->dummytri[0] = encode(searchedge);  /* Remove the bounding box and count the convex hull edges. */  otricopy(*startghost, dissolveedge);  hullsize = 0;  do {    hullsize++;    lnext(dissolveedge, deadtriangle);    lprevself(dissolveedge);    symself(dissolveedge);    /* If no PSLG is involved, set the boundary markers of all the vertices */    /*   on the convex hull.  If a PSLG is used, this step is done later.   */    if (!b->poly) {      /* Watch out for the case where all the input vertices are collinear. */      if (dissolveedge.tri != m->dummytri) {        org(dissolveedge, markorg);        if (vertexmark(markorg) == 0) {          setvertexmark(markorg, 1);        }      }    }    /* Remove a bounding triangle from a convex hull triangle. */    dissolve(dissolveedge);    /* Find the next bounding triangle. */    sym(deadtriangle, dissolveedge);    /* Delete the bounding triangle. */    triangledealloc(m, deadtriangle.tri);  } while (!otriequal(dissolveedge, *startghost));  return hullsize;}/*****************************************************************************//*                                                                           *//*  divconqdelaunay()   Form a Delaunay triangulation by the divide-and-     *//*                      conquer method.                                      *//*                                                                           *//*  Sorts the vertices, calls a recursive procedure to triangulate them, and *//*  removes the bounding box, setting boundary markers as appropriate.       *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSlong divconqdelaunay(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */long divconqdelaunay(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  vertex *sortarray;  struct otri hullleft, hullright;  int divider;  int i, j;  if (b->verbose) {    printf("  Sorting vertices.\n");  }  /* Allocate an array of pointers to vertices for sorting. */  sortarray = (vertex *) trimalloc(m->invertices * (int) sizeof(vertex));  traversalinit(&m->vertices);  for (i = 0; i < m->invertices; i++) {    sortarray[i] = vertextraverse(m);  }  /* Sort the vertices. */  vertexsort(sortarray, m->invertices);  /* Discard duplicate vertices, which can really mess up the algorithm. */  i = 0;  for (j = 1; j < m->invertices; j++) {    if ((sortarray[i][0] == sortarray[j][0])        && (sortarray[i][1] == sortarray[j][1])) {      if (!b->quiet) {        printf("Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",               sortarray[j][0], sortarray[j][1]);      }      setvertextype(sortarray[j], UNDEADVERTEX);      m->undeads++;    } else {      i++;      sortarray[i] = sortarray[j];    }  }  i++;  if (b->dwyer) {    /* Re-sort the array of vertices to accommodate alternating cuts. */    divider = i >> 1;    if (i - divider >= 2) {      if (divider >= 2) {        alternateaxes(sortarray, divider, 1);      }      alternateaxes(&sortarray[divider], i - divider, 1);    }  }  if (b->verbose) {    printf("  Forming triangulation.\n");  }  /* Form the Delaunay triangulation. */  divconqrecurse(m, b, sortarray, i, 0, &hullleft, &hullright);  trifree((VOID *) sortarray);  return removeghosts(m, b, &hullleft);}/**                                                                         **//**                                                                         **//********* Divide-and-conquer Delaunay triangulation ends here       *********//********* Incremental Delaunay triangulation begins here            *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  boundingbox()   Form an "infinite" bounding triangle to insert vertices  *//*                  into.                                                    *//*                                                                           *//*  The vertices at "infinity" are assigned finite coordinates, which are    *//*  used by the point location routines, but (mostly) ignored by the         *//*  Delaunay edge flip routines.                                             *//*                                                                           *//*****************************************************************************/#ifndef REDUCED#ifdef ANSI_DECLARATORSvoid boundingbox(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void boundingbox(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri inftri;          /* Handle for the triangular bounding box. */  REAL width;  if (b->verbose) {    printf("  Creating triangular bounding box.\n");  }  /* Find the width (or height, whichever is larger) of the triangulation. */  width = m->xmax - m->xmin;  if (m->ymax - m->ymin > width) {    width = m->ymax - m->ymin;  }  if (width == 0.0) {    width = 1.0;  }  /* Create the vertices of the bounding box. */  m->infvertex1 = (vertex) trimalloc(m->vertices.itembytes);  m->infvertex2 = (vertex) trimalloc(m->vertices.itembytes);  m->infvertex3 = (vertex) trimalloc(m->vertices.itembytes);  m->infvertex1[0] = m->xmin - 50.0 * width;  m->infvertex1[1] = m->ymin - 40.0 * width;  m->infvertex2[0] = m->xmax + 50.0 * width;  m->infvertex2[1] = m->ymin - 40.0 * width;  m->infvertex3[0] = 0.5 * (m->xmin + m->xmax);  m->infvertex3[1] = m->ymax + 60.0 * width;  /* Create the bounding box. */  maketriangle(m, b, &inftri);  setorg(inftri, m->infvertex1);  setdest(inftri, m->infvertex2);  setapex(inftri, m->infvertex3);  /* Link dummytri to the bounding box so we can always find an */  /*   edge to begin searching (point location) from.           */  m->dummytri[0] = (triangle) inftri.tri;  if (b->verbose > 2) {    printf("  Creating ");    printtriangle(m, b, &inftri);  }}#endif /* not REDUCED *//*****************************************************************************//*                                                                           *//*  removebox()   Remove the "infinite" bounding triangle, setting boundary  *//*                markers as appropriate.                                    *//*                                                                           *//*  The triangular bounding box has three boundary triangles (one for each   *//*  side of the bounding box), and a bunch of triangles fanning out from     *//*  the three bounding box vertices (one triangle for each edge of the       *//*  convex hull of the inner mesh).  This routine removes these triangles.   *//*                                                                           *//*  Returns the number of edges on the convex hull of the triangulation.     *//*                                                                           *//*****************************************************************************/#ifndef REDUCED#ifdef ANSI_DECLARATORSlong removebox(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */long removebox(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri deadtriangle;  struct otri searchedge;  struct otri checkedge;  struct otri nextedge, finaledge, dissolveedge;  vertex markorg;  long hullsize;  triangle ptr;                         /* Temporary variable used by sym(). */  if (b->verbose) {    printf("  Removing triangular bounding box.\n");  }  /* Find a boundary triangle. */  nextedge.tri = m->dummytri;  nextedge.orient = 0;  symself(nextedge);  /* Mark a place to stop. */  lprev(nextedge, finaledge);  lnextself(nextedge);  symself(nextedge);  /* Find a triangle (on the boundary of the vertex set) that isn't */  /*   a bounding box triangle.                                     */  lprev(nextedge, searchedge);  symself(searchedge);  /* Check whether nextedge is another boundary triangle */  /*   adjacent to the first one.                        */  lnext(nextedge, checkedge);  symself(checkedge);  if (checkedge.tri == m->dummytri) {    /* Go on to the next triangle.  There are only three boundary   */    /*   triangles, and this next triangle cannot be the third one, */    /*   so it's safe to stop here.                                 */    lprevself(searchedge);    symself(searchedge);  }  /* Find a new boundary edge to search from, as the current search */  /*   edge lies on a bounding box triangle and will be deleted.    */  m->dummytri[0] = encode(searchedge);  hullsize = -2l;  while (!otriequal(nextedge, finaledge)) {    hullsize++;    lprev(nextedge, dissolveedge);    symself(dissolveedge);    /* If not using a PSLG, the vertices should be marked now. */    /*   (If using a PSLG, markhull() will do the job.)        */    if (!b->poly) {      /* Be careful!  One must check for the case where all the input     */      /*   vertices are collinear, and thus all the triangles are part of */      /*   the bounding box.  Otherwise, the setvertexmark() call below   */      /*   will cause a bad pointer reference.                            */      if (dissolveedge.tri != m->dummytri) {        org(dissolveedge, markorg);        if (vertexmark(markorg) == 0) {          setvertexmark(markorg, 1);        }      }    }    /* Disconnect the bounding box triangle from the mesh triangle. */    dissolve(dissolveedge);    lnext(nextedge, deadtriangle);    sym(deadtriangle, nextedge);    /* Get rid of the bounding box triangle. */    triangledealloc(m, deadtriangle.tri);    /* Do we need to turn the corner? */    if (nextedge.tri == m->dummytri) {      /* Turn the corner. */      otricopy(dissolveedge, nextedge);    }  }  triangledealloc(m, finaledge.tri);  trifree((VOID *) m->infvertex1);  /* Deallocate the bounding box vertices. */  trifree((VOID *) m->infvertex2);  trifree((VOID *) m->infvertex3);  return hullsize;}#endif /* not REDUCED *//*****************************************************************************//*                                                                           *//*  incrementaldelaunay()   Form a Delaunay triangulation by incrementally   *//*                          inserting vertices.                              *//*                                                                           *//*  Returns the number of edges on the convex hull of the triangulation.     *//*                                                                           *//*****************************************************************************/#ifndef REDUCED#ifdef ANSI_DECLARATORSlong incrementaldelaunay(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */long incrementaldelaunay(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri starttri;  vertex vertexloop;  /* Create a triangular bounding box. */  boundingbox(m, b);  if (b->verbose) {    printf("  Incrementally inserting vertices.\n");  }  traversalinit(&m->vertices);  vertexloop = vertextraverse(m);  while (vertexloop != (vertex) NULL) {    starttri.tri = m->dummytri;    if (insertvertex(m, b, vertexloop, &starttri, (struct osub *) NULL, 0, 0)        == DUPLICATEVERTEX) {      if (!b->quiet) {        printf("Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",               vertexloop[0], vertexloop[1]);      }      setvertextype(vertexloop, UNDEADVERTEX);      m->undeads++;    }    vertexloop = vertextraverse(m);  }  /* Remove the bounding box. */  return removebox(m, b);}#endif /* not REDUCED *//**                                                                         **//**                                                                         **//********* Incremental Delaunay triangulation ends here              *********//********* Sweepline Delaunay triangulation begins here              *********//**                                                                         **//**                                                                         **/#ifndef REDUCED#ifdef ANSI_DECLARATORSvoid eventheapinsert(struct event **heap, int heapsize, struct event *newevent)#else /* not ANSI_DECLARATORS */void eventheapinsert(heap, heapsize, newevent)struct event **heap;int heapsize;struct event *newevent;#endif /* not ANSI_DECLARATORS */{  REAL eventx, eventy;  int eventnum;  int parent;  int notdone;  eventx = newevent->xkey;  eventy = newevent->ykey;  eventnum = heapsize;  notdone = eventnum > 0;  while (notdone) {    parent = (eventnum - 1) >> 1;    if ((heap[parent]->ykey < eventy) ||        ((heap[parent]->ykey == eventy)         && (heap[parent]->xkey <= eventx))) {      notdone = 0;    } else {      heap[eventnum] = heap[parent];      heap[eventnum]->heapposition = eventnum;      eventnum = parent;      notdone = eventnum > 0;    }  }  heap[eventnum] = newevent;  newevent->heapposition = eventnum;}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSvoid eventheapify(struct event **heap, int heapsize, int eventnum)#else /* not ANSI_DECLARATORS */void eventheapify(heap, heapsize, eventnum)struct event **heap;int heapsize;int eventnum;#endif /* not ANSI_DECLARATORS */{  struct event *thisevent;  REAL eventx, eventy;  int leftchild, rightchild;  int smallest;  int notdone;  thisevent = heap[eventnum];  eventx = thisevent->xkey;  eventy = thisevent->ykey;  leftchild = 2 * eventnum + 1;  notdone = leftchild < heapsize;  while (notdone) {    if ((heap[leftchild]->ykey < eventy) ||        ((heap[leftchild]->ykey == eventy)         && (heap[leftchild]->xkey < eventx))) {      smallest = leftchild;    } else {      smallest = eventnum;    }    rightchild = leftchild + 1;    if (rightchild < heapsize) {      if ((heap[rightchild]->ykey < heap[smallest]->ykey) ||          ((heap[rightchild]->ykey == heap[smallest]->ykey)           && (heap[rightchild]->xkey < heap[smallest]->xkey))) {        smallest = rightchild;      }    }    if (smallest == eventnum) {      notdone = 0;    } else {      heap[eventnum] = heap[smallest];      heap[eventnum]->heapposition = eventnum;      heap[smallest] = thisevent;      thisevent->heapposition = smallest;      eventnum = smallest;      leftchild = 2 * eventnum + 1;      notdone = leftchild < heapsize;    }  }}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSvoid eventheapdelete(struct event **heap, int heapsize, int eventnum)#else /* not ANSI_DECLARATORS */void eventheapdelete(heap, heapsize, eventnum)struct event **heap;int heapsize;int eventnum;#endif /* not ANSI_DECLARATORS */{  struct event *moveevent;  REAL eventx, eventy;  int parent;  int notdone;  moveevent = heap[heapsize - 1];  if (eventnum > 0) {    eventx = moveevent->xkey;    eventy = moveevent->ykey;    do {      parent = (eventnum - 1) >> 1;      if ((heap[parent]->ykey < eventy) ||          ((heap[parent]->ykey == eventy)           && (heap[parent]->xkey <= eventx))) {        notdone = 0;      } else {        heap[eventnum] = heap[parent];        heap[eventnum]->heapposition = eventnum;        eventnum = parent;        notdone = eventnum > 0;      }    } while (notdone);  }  heap[eventnum] = moveevent;  moveevent->heapposition = eventnum;  eventheapify(heap, heapsize - 1, eventnum);}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSvoid createeventheap(struct mesh *m, struct event ***eventheap,                     struct event **events, struct event **freeevents)#else /* not ANSI_DECLARATORS */void createeventheap(m, eventheap, events, freeevents)struct mesh *m;struct event ***eventheap;struct event **events;struct event **freeevents;#endif /* not ANSI_DECLARATORS */{  vertex thisvertex;  int maxevents;  int i;  maxevents = (3 * m->invertices) / 2;  *eventheap = (struct event **) trimalloc(maxevents *                                           (int) sizeof(struct event *));  *events = (struct event *) trimalloc(maxevents * (int) sizeof(struct event));  traversalinit(&m->vertices);  for (i = 0; i < m->invertices; i++) {    thisvertex = vertextraverse(m);    (*events)[i].eventptr = (VOID *) thisvertex;    (*events)[i].xkey = thisvertex[0];    (*events)[i].ykey = thisvertex[1];    eventheapinsert(*eventheap, i, *events + i);  }  *freeevents = (struct event *) NULL;  for (i = maxevents - 1; i >= m->invertices; i--) {    (*events)[i].eventptr = (VOID *) *freeevents;    *freeevents = *events + i;  }}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSint rightofhyperbola(struct mesh *m, struct otri *fronttri, vertex newsite)#else /* not ANSI_DECLARATORS */int rightofhyperbola(m, fronttri, newsite)struct mesh *m;struct otri *fronttri;vertex newsite;#endif /* not ANSI_DECLARATORS */{  vertex leftvertex, rightvertex;  REAL dxa, dya, dxb, dyb;  m->hyperbolacount++;  dest(*fronttri, leftvertex);  apex(*fronttri, rightvertex);  if ((leftvertex[1] < rightvertex[1]) ||      ((leftvertex[1] == rightvertex[1]) &&       (leftvertex[0] < rightvertex[0]))) {    if (newsite[0] >= rightvertex[0]) {      return 1;    }  } else {    if (newsite[0] <= leftvertex[0]) {      return 0;    }  }  dxa = leftvertex[0] - newsite[0];  dya = leftvertex[1] - newsite[1];  dxb = rightvertex[0] - newsite[0];  dyb = rightvertex[1] - newsite[1];  return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSREAL circletop(struct mesh *m, vertex pa, vertex pb, vertex pc, REAL ccwabc)#else /* not ANSI_DECLARATORS */REAL circletop(m, pa, pb, pc, ccwabc)struct mesh *m;vertex pa;vertex pb;vertex pc;REAL ccwabc;#endif /* not ANSI_DECLARATORS */{  REAL xac, yac, xbc, ybc, xab, yab;  REAL aclen2, bclen2, ablen2;  m->circletopcount++;  xac = pa[0] - pc[0];  yac = pa[1] - pc[1];  xbc = pb[0] - pc[0];  ybc = pb[1] - pc[1];  xab = pa[0] - pb[0];  yab = pa[1] - pb[1];  aclen2 = xac * xac + yac * yac;  bclen2 = xbc * xbc + ybc * ybc;  ablen2 = xab * xab + yab * yab;  return pc[1] + (xac * bclen2 - xbc * aclen2 + sqrt(aclen2 * bclen2 * ablen2))               / (2.0 * ccwabc);}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSvoid check4deadevent(struct otri *checktri, struct event **freeevents,                     struct event **eventheap, int *heapsize)#else /* not ANSI_DECLARATORS */void check4deadevent(checktri, freeevents, eventheap, heapsize)struct otri *checktri;struct event **freeevents;struct event **eventheap;int *heapsize;#endif /* not ANSI_DECLARATORS */{  struct event *deadevent;  vertex eventvertex;  int eventnum;  org(*checktri, eventvertex);  if (eventvertex != (vertex) NULL) {    deadevent = (struct event *) eventvertex;    eventnum = deadevent->heapposition;    deadevent->eventptr = (VOID *) *freeevents;    *freeevents = deadevent;    eventheapdelete(eventheap, *heapsize, eventnum);    (*heapsize)--;    setorg(*checktri, NULL);  }}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSstruct splaynode *splay(struct mesh *m, struct splaynode *splaytree,                        vertex searchpoint, struct otri *searchtri)#else /* not ANSI_DECLARATORS */struct splaynode *splay(m, splaytree, searchpoint, searchtri)struct mesh *m;struct splaynode *splaytree;vertex searchpoint;struct otri *searchtri;#endif /* not ANSI_DECLARATORS */{  struct splaynode *child, *grandchild;  struct splaynode *lefttree, *righttree;  struct splaynode *leftright;  vertex checkvertex;  int rightofroot, rightofchild;  if (splaytree == (struct splaynode *) NULL) {    return (struct splaynode *) NULL;  }  dest(splaytree->keyedge, checkvertex);  if (checkvertex == splaytree->keydest) {    rightofroot = rightofhyperbola(m, &splaytree->keyedge, searchpoint);    if (rightofroot) {      otricopy(splaytree->keyedge, *searchtri);      child = splaytree->rchild;    } else {      child = splaytree->lchild;    }    if (child == (struct splaynode *) NULL) {      return splaytree;    }    dest(child->keyedge, checkvertex);    if (checkvertex != child->keydest) {      child = splay(m, child, searchpoint, searchtri);      if (child == (struct splaynode *) NULL) {        if (rightofroot) {          splaytree->rchild = (struct splaynode *) NULL;        } else {          splaytree->lchild = (struct splaynode *) NULL;        }        return splaytree;      }    }    rightofchild = rightofhyperbola(m, &child->keyedge, searchpoint);    if (rightofchild) {      otricopy(child->keyedge, *searchtri);      grandchild = splay(m, child->rchild, searchpoint, searchtri);      child->rchild = grandchild;    } else {      grandchild = splay(m, child->lchild, searchpoint, searchtri);      child->lchild = grandchild;    }    if (grandchild == (struct splaynode *) NULL) {      if (rightofroot) {        splaytree->rchild = child->lchild;        child->lchild = splaytree;      } else {        splaytree->lchild = child->rchild;        child->rchild = splaytree;      }      return child;    }    if (rightofchild) {      if (rightofroot) {        splaytree->rchild = child->lchild;        child->lchild = splaytree;      } else {        splaytree->lchild = grandchild->rchild;        grandchild->rchild = splaytree;      }      child->rchild = grandchild->lchild;      grandchild->lchild = child;    } else {      if (rightofroot) {        splaytree->rchild = grandchild->lchild;        grandchild->lchild = splaytree;      } else {        splaytree->lchild = child->rchild;        child->rchild = splaytree;      }      child->lchild = grandchild->rchild;      grandchild->rchild = child;    }    return grandchild;  } else {    lefttree = splay(m, splaytree->lchild, searchpoint, searchtri);    righttree = splay(m, splaytree->rchild, searchpoint, searchtri);    pooldealloc(&m->splaynodes, (VOID *) splaytree);    if (lefttree == (struct splaynode *) NULL) {      return righttree;    } else if (righttree == (struct splaynode *) NULL) {      return lefttree;    } else if (lefttree->rchild == (struct splaynode *) NULL) {      lefttree->rchild = righttree->lchild;      righttree->lchild = lefttree;      return righttree;    } else if (righttree->lchild == (struct splaynode *) NULL) {      righttree->lchild = lefttree->rchild;      lefttree->rchild = righttree;      return lefttree;    } else {/*      printf("Holy Toledo!!!\n"); */      leftright = lefttree->rchild;      while (leftright->rchild != (struct splaynode *) NULL) {        leftright = leftright->rchild;      }      leftright->rchild = righttree;      return lefttree;    }  }}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSstruct splaynode *splayinsert(struct mesh *m, struct splaynode *splayroot,                              struct otri *newkey, vertex searchpoint)#else /* not ANSI_DECLARATORS */struct splaynode *splayinsert(m, splayroot, newkey, searchpoint)struct mesh *m;struct splaynode *splayroot;struct otri *newkey;vertex searchpoint;#endif /* not ANSI_DECLARATORS */{  struct splaynode *newsplaynode;  newsplaynode = (struct splaynode *) poolalloc(&m->splaynodes);  otricopy(*newkey, newsplaynode->keyedge);  dest(*newkey, newsplaynode->keydest);  if (splayroot == (struct splaynode *) NULL) {    newsplaynode->lchild = (struct splaynode *) NULL;    newsplaynode->rchild = (struct splaynode *) NULL;  } else if (rightofhyperbola(m, &splayroot->keyedge, searchpoint)) {    newsplaynode->lchild = splayroot;    newsplaynode->rchild = splayroot->rchild;    splayroot->rchild = (struct splaynode *) NULL;  } else {    newsplaynode->lchild = splayroot->lchild;    newsplaynode->rchild = splayroot;    splayroot->lchild = (struct splaynode *) NULL;  }  return newsplaynode;}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSstruct splaynode *circletopinsert(struct mesh *m, struct behavior *b,                                  struct splaynode *splayroot,                                  struct otri *newkey,                                  vertex pa, vertex pb, vertex pc, REAL topy)#else /* not ANSI_DECLARATORS */struct splaynode *circletopinsert(m, b, splayroot, newkey, pa, pb, pc, topy)struct mesh *m;struct behavior *b;struct splaynode *splayroot;struct otri *newkey;vertex pa;vertex pb;vertex pc;REAL topy;#endif /* not ANSI_DECLARATORS */{  REAL ccwabc;  REAL xac, yac, xbc, ybc;  REAL aclen2, bclen2;  REAL searchpoint[2];  struct otri dummytri;  ccwabc = counterclockwise(m, b, pa, pb, pc);  xac = pa[0] - pc[0];  yac = pa[1] - pc[1];  xbc = pb[0] - pc[0];  ybc = pb[1] - pc[1];  aclen2 = xac * xac + yac * yac;  bclen2 = xbc * xbc + ybc * ybc;  searchpoint[0] = pc[0] - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);  searchpoint[1] = topy;  return splayinsert(m, splay(m, splayroot, (vertex) searchpoint, &dummytri),                     newkey, (vertex) searchpoint);}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSstruct splaynode *frontlocate(struct mesh *m, struct splaynode *splayroot,                              struct otri *bottommost, vertex searchvertex,                              struct otri *searchtri, int *farright)#else /* not ANSI_DECLARATORS */struct splaynode *frontlocate(m, splayroot, bottommost, searchvertex,                              searchtri, farright)struct mesh *m;struct splaynode *splayroot;struct otri *bottommost;vertex searchvertex;struct otri *searchtri;int *farright;#endif /* not ANSI_DECLARATORS */{  int farrightflag;  triangle ptr;                       /* Temporary variable used by onext(). */  otricopy(*bottommost, *searchtri);  splayroot = splay(m, splayroot, searchvertex, searchtri);  farrightflag = 0;  while (!farrightflag && rightofhyperbola(m, searchtri, searchvertex)) {    onextself(*searchtri);    farrightflag = otriequal(*searchtri, *bottommost);  }  *farright = farrightflag;  return splayroot;}#endif /* not REDUCED */#ifndef REDUCED#ifdef ANSI_DECLARATORSlong sweeplinedelaunay(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */long sweeplinedelaunay(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct event **eventheap;  struct event *events;  struct event *freeevents;  struct event *nextevent;  struct event *newevent;  struct splaynode *splayroot;  struct otri bottommost;  struct otri searchtri;  struct otri fliptri;  struct otri lefttri, righttri, farlefttri, farrighttri;  struct otri inserttri;  vertex firstvertex, secondvertex;  vertex nextvertex, lastvertex;  vertex connectvertex;  vertex leftvertex, midvertex, rightvertex;  REAL lefttest, righttest;  int heapsize;  int check4events, farrightflag;  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */  poolinit(&m->splaynodes, sizeof(struct splaynode), SPLAYNODEPERBLOCK,           SPLAYNODEPERBLOCK, 0);  splayroot = (struct splaynode *) NULL;  if (b->verbose) {    printf("  Placing vertices in event heap.\n");  }  createeventheap(m, &eventheap, &events, &freeevents);  heapsize = m->invertices;  if (b->verbose) {    printf("  Forming triangulation.\n");  }  maketriangle(m, b, &lefttri);  maketriangle(m, b, &righttri);  bond(lefttri, righttri);  lnextself(lefttri);  lprevself(righttri);  bond(lefttri, righttri);  lnextself(lefttri);  lprevself(righttri);  bond(lefttri, righttri);  firstvertex = (vertex) eventheap[0]->eventptr;  eventheap[0]->eventptr = (VOID *) freeevents;  freeevents = eventheap[0];  eventheapdelete(eventheap, heapsize, 0);  heapsize--;  do {    if (heapsize == 0) {      printf("Error:  Input vertices are all identical.\n");      triexit(1);    }    secondvertex = (vertex) eventheap[0]->eventptr;    eventheap[0]->eventptr = (VOID *) freeevents;    freeevents = eventheap[0];    eventheapdelete(eventheap, heapsize, 0);    heapsize--;    if ((firstvertex[0] == secondvertex[0]) &&        (firstvertex[1] == secondvertex[1])) {      if (!b->quiet) {        printf("Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",               secondvertex[0], secondvertex[1]);      }      setvertextype(secondvertex, UNDEADVERTEX);      m->undeads++;    }  } while ((firstvertex[0] == secondvertex[0]) &&           (firstvertex[1] == secondvertex[1]));  setorg(lefttri, firstvertex);  setdest(lefttri, secondvertex);  setorg(righttri, secondvertex);  setdest(righttri, firstvertex);  lprev(lefttri, bottommost);  lastvertex = secondvertex;  while (heapsize > 0) {    nextevent = eventheap[0];    eventheapdelete(eventheap, heapsize, 0);    heapsize--;    check4events = 1;    if (nextevent->xkey < m->xmin) {      decode(nextevent->eventptr, fliptri);      oprev(fliptri, farlefttri);      check4deadevent(&farlefttri, &freeevents, eventheap, &heapsize);      onext(fliptri, farrighttri);      check4deadevent(&farrighttri, &freeevents, eventheap, &heapsize);      if (otriequal(farlefttri, bottommost)) {        lprev(fliptri, bottommost);      }      flip(m, b, &fliptri);      setapex(fliptri, NULL);      lprev(fliptri, lefttri);      lnext(fliptri, righttri);      sym(lefttri, farlefttri);      if (randomnation(SAMPLERATE) == 0) {        symself(fliptri);        dest(fliptri, leftvertex);        apex(fliptri, midvertex);        org(fliptri, rightvertex);        splayroot = circletopinsert(m, b, splayroot, &lefttri, leftvertex,                                    midvertex, rightvertex, nextevent->ykey);      }    } else {      nextvertex = (vertex) nextevent->eventptr;      if ((nextvertex[0] == lastvertex[0]) &&          (nextvertex[1] == lastvertex[1])) {        if (!b->quiet) {          printf("Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",                 nextvertex[0], nextvertex[1]);        }        setvertextype(nextvertex, UNDEADVERTEX);        m->undeads++;        check4events = 0;      } else {        lastvertex = nextvertex;        splayroot = frontlocate(m, splayroot, &bottommost, nextvertex,                                &searchtri, &farrightflag);/*        otricopy(bottommost, searchtri);        farrightflag = 0;        while (!farrightflag && rightofhyperbola(m, &searchtri, nextvertex)) {          onextself(searchtri);          farrightflag = otriequal(searchtri, bottommost);        }*/        check4deadevent(&searchtri, &freeevents, eventheap, &heapsize);        otricopy(searchtri, farrighttri);        sym(searchtri, farlefttri);        maketriangle(m, b, &lefttri);        maketriangle(m, b, &righttri);        dest(farrighttri, connectvertex);        setorg(lefttri, connectvertex);        setdest(lefttri, nextvertex);        setorg(righttri, nextvertex);        setdest(righttri, connectvertex);        bond(lefttri, righttri);        lnextself(lefttri);        lprevself(righttri);        bond(lefttri, righttri);        lnextself(lefttri);        lprevself(righttri);        bond(lefttri, farlefttri);        bond(righttri, farrighttri);        if (!farrightflag && otriequal(farrighttri, bottommost)) {          otricopy(lefttri, bottommost);        }        if (randomnation(SAMPLERATE) == 0) {          splayroot = splayinsert(m, splayroot, &lefttri, nextvertex);        } else if (randomnation(SAMPLERATE) == 0) {          lnext(righttri, inserttri);          splayroot = splayinsert(m, splayroot, &inserttri, nextvertex);        }      }    }    nextevent->eventptr = (VOID *) freeevents;    freeevents = nextevent;    if (check4events) {      apex(farlefttri, leftvertex);      dest(lefttri, midvertex);      apex(lefttri, rightvertex);      lefttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex);      if (lefttest > 0.0) {        newevent = freeevents;        freeevents = (struct event *) freeevents->eventptr;        newevent->xkey = m->xminextreme;        newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex,                                   lefttest);        newevent->eventptr = (VOID *) encode(lefttri);        eventheapinsert(eventheap, heapsize, newevent);        heapsize++;        setorg(lefttri, newevent);      }      apex(righttri, leftvertex);      org(righttri, midvertex);      apex(farrighttri, rightvertex);      righttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex);      if (righttest > 0.0) {        newevent = freeevents;        freeevents = (struct event *) freeevents->eventptr;        newevent->xkey = m->xminextreme;        newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex,                                   righttest);        newevent->eventptr = (VOID *) encode(farrighttri);        eventheapinsert(eventheap, heapsize, newevent);        heapsize++;        setorg(farrighttri, newevent);      }    }  }  pooldeinit(&m->splaynodes);  lprevself(bottommost);  return removeghosts(m, b, &bottommost);}#endif /* not REDUCED *//**                                                                         **//**                                                                         **//********* Sweepline Delaunay triangulation ends here                *********//********* General mesh construction routines begin here             *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  delaunay()   Form a Delaunay triangulation.                              *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSlong delaunay(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */long delaunay(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  long hulledges;  m->eextras = 0;  initializetrisubpools(m, b);#ifdef REDUCED  if (!b->quiet) {    printf(      "Constructing Delaunay triangulation by divide-and-conquer method.\n");  }  hulledges = divconqdelaunay(m, b);#else /* not REDUCED */  if (!b->quiet) {    printf("Constructing Delaunay triangulation ");    if (b->incremental) {      printf("by incremental method.\n");    } else if (b->sweepline) {      printf("by sweepline method.\n");    } else {      printf("by divide-and-conquer method.\n");    }  }  if (b->incremental) {    hulledges = incrementaldelaunay(m, b);  } else if (b->sweepline) {    hulledges = sweeplinedelaunay(m, b);  } else {    hulledges = divconqdelaunay(m, b);  }#endif /* not REDUCED */  if (m->triangles.items == 0) {    /* The input vertices were all collinear, so there are no triangles. */    return 0l;  } else {    return hulledges;  }}/*****************************************************************************//*                                                                           *//*  reconstruct()   Reconstruct a triangulation from its .ele (and possibly  *//*                  .poly) file.  Used when the -r switch is used.           *//*                                                                           *//*  Reads an .ele file and reconstructs the original mesh.  If the -p switch *//*  is used, this procedure will also read a .poly file and reconstruct the  *//*  subsegments of the original mesh.  If the -a switch is used, this        *//*  procedure will also read an .area file and set a maximum area constraint *//*  on each triangle.                                                        *//*                                                                           *//*  Vertices that are not corners of triangles, such as nodes on edges of    *//*  subparametric elements, are discarded.                                   *//*                                                                           *//*  This routine finds the adjacencies between triangles (and subsegments)   *//*  by forming one stack of triangles for each vertex.  Each triangle is on  *//*  three different stacks simultaneously.  Each triangle's subsegment       *//*  pointers are used to link the items in each stack.  This memory-saving   *//*  feature makes the code harder to read.  The most important thing to keep *//*  in mind is that each triangle is removed from a stack precisely when     *//*  the corresponding pointer is adjusted to refer to a subsegment rather    *//*  than the next triangle of the stack.                                     *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef TRILIBRARY#ifdef ANSI_DECLARATORSint reconstruct(struct mesh *m, struct behavior *b, int *trianglelist,                REAL *triangleattriblist, REAL *trianglearealist,                int elements, int corners, int attribs,                int *segmentlist,int *segmentmarkerlist, int numberofsegments)#else /* not ANSI_DECLARATORS */int reconstruct(m, b, trianglelist, triangleattriblist, trianglearealist,                elements, corners, attribs, segmentlist, segmentmarkerlist,                numberofsegments)struct mesh *m;struct behavior *b;int *trianglelist;REAL *triangleattriblist;REAL *trianglearealist;int elements;int corners;int attribs;int *segmentlist;int *segmentmarkerlist;int numberofsegments;#endif /* not ANSI_DECLARATORS */#else /* not TRILIBRARY */#ifdef ANSI_DECLARATORSlong reconstruct(struct mesh *m, struct behavior *b, char *elefilename,                 char *areafilename, char *polyfilename, FILE *polyfile)#else /* not ANSI_DECLARATORS */long reconstruct(m, b, elefilename, areafilename, polyfilename, polyfile)struct mesh *m;struct behavior *b;char *elefilename;char *areafilename;char *polyfilename;FILE *polyfile;#endif /* not ANSI_DECLARATORS */#endif /* not TRILIBRARY */{#ifdef TRILIBRARY  int vertexindex;  int attribindex;#else /* not TRILIBRARY */  FILE *elefile;  FILE *areafile;  char inputline[INPUTLINESIZE];  char *stringptr;  int areaelements;#endif /* not TRILIBRARY */  struct otri triangleloop;  struct otri triangleleft;  struct otri checktri;  struct otri checkleft;  struct otri checkneighbor;  struct osub subsegloop;  triangle *vertexarray;  triangle *prevlink;  triangle nexttri;  vertex tdest, tapex;  vertex checkdest, checkapex;  vertex shorg;  vertex killvertex;  vertex segmentorg, segmentdest;  REAL area;  int corner[3];  int end[2];  int killvertexindex;  int incorners;  int segmentmarkers;  int boundmarker;  int aroundvertex;  long hullsize;  int notfound;  long elementnumber, segmentnumber;  int i, j;  triangle ptr;                         /* Temporary variable used by sym(). */#ifdef TRILIBRARY  m->inelements = elements;  incorners = corners;  if (incorners < 3) {    printf("Error:  Triangles must have at least 3 vertices.\n");    triexit(1);  }  m->eextras = attribs;#else /* not TRILIBRARY */  /* Read the triangles from an .ele file. */  if (!b->quiet) {    printf("Opening %s.\n", elefilename);  }  elefile = fopen(elefilename, "r");  if (elefile == (FILE *) NULL) {    printf("  Error:  Cannot access file %s.\n", elefilename);    triexit(1);  }  /* Read number of triangles, number of vertices per triangle, and */  /*   number of triangle attributes from .ele file.                */  stringptr = readline(inputline, elefile, elefilename);  m->inelements = (int) strtol(stringptr, &stringptr, 0);  stringptr = findfield(stringptr);  if (*stringptr == '\0') {    incorners = 3;  } else {    incorners = (int) strtol(stringptr, &stringptr, 0);    if (incorners < 3) {      printf("Error:  Triangles in %s must have at least 3 vertices.\n",             elefilename);      triexit(1);    }  }  stringptr = findfield(stringptr);  if (*stringptr == '\0') {    m->eextras = 0;  } else {    m->eextras = (int) strtol(stringptr, &stringptr, 0);  }#endif /* not TRILIBRARY */  initializetrisubpools(m, b);  /* Create the triangles. */  for (elementnumber = 1; elementnumber <= m->inelements; elementnumber++) {    maketriangle(m, b, &triangleloop);    /* Mark the triangle as living. */    triangleloop.tri[3] = (triangle) triangleloop.tri;  }  segmentmarkers = 0;  if (b->poly) {#ifdef TRILIBRARY    m->insegments = numberofsegments;    segmentmarkers = segmentmarkerlist != (int *) NULL;#else /* not TRILIBRARY */    /* Read number of segments and number of segment */    /*   boundary markers from .poly file.           */    stringptr = readline(inputline, polyfile, b->inpolyfilename);    m->insegments = (int) strtol(stringptr, &stringptr, 0);    stringptr = findfield(stringptr);    if (*stringptr != '\0') {      segmentmarkers = (int) strtol(stringptr, &stringptr, 0);    }#endif /* not TRILIBRARY */    /* Create the subsegments. */    for (segmentnumber = 1; segmentnumber <= m->insegments; segmentnumber++) {      makesubseg(m, &subsegloop);      /* Mark the subsegment as living. */      subsegloop.ss[2] = (subseg) subsegloop.ss;    }  }#ifdef TRILIBRARY  vertexindex = 0;  attribindex = 0;#else /* not TRILIBRARY */  if (b->vararea) {    /* Open an .area file, check for consistency with the .ele file. */    if (!b->quiet) {      printf("Opening %s.\n", areafilename);    }    areafile = fopen(areafilename, "r");    if (areafile == (FILE *) NULL) {      printf("  Error:  Cannot access file %s.\n", areafilename);      triexit(1);    }    stringptr = readline(inputline, areafile, areafilename);    areaelements = (int) strtol(stringptr, &stringptr, 0);    if (areaelements != m->inelements) {      printf("Error:  %s and %s disagree on number of triangles.\n",             elefilename, areafilename);      triexit(1);    }  }#endif /* not TRILIBRARY */  if (!b->quiet) {    printf("Reconstructing mesh.\n");  }  /* Allocate a temporary array that maps each vertex to some adjacent */  /*   triangle.  I took care to allocate all the permanent memory for */  /*   triangles and subsegments first.                                */  vertexarray = (triangle *) trimalloc(m->vertices.items *                                       (int) sizeof(triangle));  /* Each vertex is initially unrepresented. */  for (i = 0; i < m->vertices.items; i++) {    vertexarray[i] = (triangle) m->dummytri;  }  if (b->verbose) {    printf("  Assembling triangles.\n");  }  /* Read the triangles from the .ele file, and link */  /*   together those that share an edge.            */  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  elementnumber = b->firstnumber;  while (triangleloop.tri != (triangle *) NULL) {#ifdef TRILIBRARY    /* Copy the triangle's three corners. */    for (j = 0; j < 3; j++) {      corner[j] = trianglelist[vertexindex++];      if ((corner[j] < b->firstnumber) ||          (corner[j] >= b->firstnumber + m->invertices)) {        printf("Error:  Triangle %ld has an invalid vertex index.\n",               elementnumber);        triexit(1);      }    }#else /* not TRILIBRARY */    /* Read triangle number and the triangle's three corners. */    stringptr = readline(inputline, elefile, elefilename);    for (j = 0; j < 3; j++) {      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        printf("Error:  Triangle %ld is missing vertex %d in %s.\n",               elementnumber, j + 1, elefilename);        triexit(1);      } else {        corner[j] = (int) strtol(stringptr, &stringptr, 0);        if ((corner[j] < b->firstnumber) ||            (corner[j] >= b->firstnumber + m->invertices)) {          printf("Error:  Triangle %ld has an invalid vertex index.\n",                 elementnumber);          triexit(1);        }      }    }#endif /* not TRILIBRARY */    /* Find out about (and throw away) extra nodes. */    for (j = 3; j < incorners; j++) {#ifdef TRILIBRARY      killvertexindex = trianglelist[vertexindex++];#else /* not TRILIBRARY */      stringptr = findfield(stringptr);      if (*stringptr != '\0') {        killvertexindex = (int) strtol(stringptr, &stringptr, 0);#endif /* not TRILIBRARY */        if ((killvertexindex >= b->firstnumber) &&            (killvertexindex < b->firstnumber + m->invertices)) {          /* Delete the non-corner vertex if it's not already deleted. */          killvertex = getvertex(m, b, killvertexindex);          if (vertextype(killvertex) != DEADVERTEX) {            vertexdealloc(m, killvertex);          }        }#ifndef TRILIBRARY      }#endif /* not TRILIBRARY */    }    /* Read the triangle's attributes. */    for (j = 0; j < m->eextras; j++) {#ifdef TRILIBRARY      setelemattribute(triangleloop, j, triangleattriblist[attribindex++]);#else /* not TRILIBRARY */      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        setelemattribute(triangleloop, j, 0);      } else {        setelemattribute(triangleloop, j,                         (REAL) strtod(stringptr, &stringptr));      }#endif /* not TRILIBRARY */    }    if (b->vararea) {#ifdef TRILIBRARY      area = trianglearealist[elementnumber - b->firstnumber];#else /* not TRILIBRARY */      /* Read an area constraint from the .area file. */      stringptr = readline(inputline, areafile, areafilename);      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        area = -1.0;                      /* No constraint on this triangle. */      } else {        area = (REAL) strtod(stringptr, &stringptr);      }#endif /* not TRILIBRARY */      setareabound(triangleloop, area);    }    /* Set the triangle's vertices. */    triangleloop.orient = 0;    setorg(triangleloop, getvertex(m, b, corner[0]));    setdest(triangleloop, getvertex(m, b, corner[1]));    setapex(triangleloop, getvertex(m, b, corner[2]));    /* Try linking the triangle to others that share these vertices. */    for (triangleloop.orient = 0; triangleloop.orient < 3;         triangleloop.orient++) {      /* Take the number for the origin of triangleloop. */      aroundvertex = corner[triangleloop.orient];      /* Look for other triangles having this vertex. */      nexttri = vertexarray[aroundvertex - b->firstnumber];      /* Link the current triangle to the next one in the stack. */      triangleloop.tri[6 + triangleloop.orient] = nexttri;      /* Push the current triangle onto the stack. */      vertexarray[aroundvertex - b->firstnumber] = encode(triangleloop);      decode(nexttri, checktri);      if (checktri.tri != m->dummytri) {        dest(triangleloop, tdest);        apex(triangleloop, tapex);        /* Look for other triangles that share an edge. */        do {          dest(checktri, checkdest);          apex(checktri, checkapex);          if (tapex == checkdest) {            /* The two triangles share an edge; bond them together. */            lprev(triangleloop, triangleleft);            bond(triangleleft, checktri);          }          if (tdest == checkapex) {            /* The two triangles share an edge; bond them together. */            lprev(checktri, checkleft);            bond(triangleloop, checkleft);          }          /* Find the next triangle in the stack. */          nexttri = checktri.tri[6 + checktri.orient];          decode(nexttri, checktri);        } while (checktri.tri != m->dummytri);      }    }    triangleloop.tri = triangletraverse(m);    elementnumber++;  }#ifdef TRILIBRARY  vertexindex = 0;#else /* not TRILIBRARY */  fclose(elefile);  if (b->vararea) {    fclose(areafile);  }#endif /* not TRILIBRARY */  hullsize = 0;                      /* Prepare to count the boundary edges. */  if (b->poly) {    if (b->verbose) {      printf("  Marking segments in triangulation.\n");    }    /* Read the segments from the .poly file, and link them */    /*   to their neighboring triangles.                    */    boundmarker = 0;    traversalinit(&m->subsegs);    subsegloop.ss = subsegtraverse(m);    segmentnumber = b->firstnumber;    while (subsegloop.ss != (subseg *) NULL) {#ifdef TRILIBRARY      end[0] = segmentlist[vertexindex++];      end[1] = segmentlist[vertexindex++];      if (segmentmarkers) {        boundmarker = segmentmarkerlist[segmentnumber - b->firstnumber];      }#else /* not TRILIBRARY */      /* Read the endpoints of each segment, and possibly a boundary marker. */      stringptr = readline(inputline, polyfile, b->inpolyfilename);      /* Skip the first (segment number) field. */      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        printf("Error:  Segment %ld has no endpoints in %s.\n", segmentnumber,               polyfilename);        triexit(1);      } else {        end[0] = (int) strtol(stringptr, &stringptr, 0);      }      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        printf("Error:  Segment %ld is missing its second endpoint in %s.\n",               segmentnumber, polyfilename);        triexit(1);      } else {        end[1] = (int) strtol(stringptr, &stringptr, 0);      }      if (segmentmarkers) {        stringptr = findfield(stringptr);        if (*stringptr == '\0') {          boundmarker = 0;        } else {          boundmarker = (int) strtol(stringptr, &stringptr, 0);        }      }#endif /* not TRILIBRARY */      for (j = 0; j < 2; j++) {        if ((end[j] < b->firstnumber) ||            (end[j] >= b->firstnumber + m->invertices)) {          printf("Error:  Segment %ld has an invalid vertex index.\n",                  segmentnumber);          triexit(1);        }      }      /* set the subsegment's vertices. */      subsegloop.ssorient = 0;      segmentorg = getvertex(m, b, end[0]);      segmentdest = getvertex(m, b, end[1]);      setsorg(subsegloop, segmentorg);      setsdest(subsegloop, segmentdest);      setsegorg(subsegloop, segmentorg);      setsegdest(subsegloop, segmentdest);      setmark(subsegloop, boundmarker);      /* Try linking the subsegment to triangles that share these vertices. */      for (subsegloop.ssorient = 0; subsegloop.ssorient < 2;           subsegloop.ssorient++) {        /* Take the number for the destination of subsegloop. */        aroundvertex = end[1 - subsegloop.ssorient];        /* Look for triangles having this vertex. */        prevlink = &vertexarray[aroundvertex - b->firstnumber];        nexttri = vertexarray[aroundvertex - b->firstnumber];        decode(nexttri, checktri);        sorg(subsegloop, shorg);        notfound = 1;        /* Look for triangles having this edge.  Note that I'm only       */        /*   comparing each triangle's destination with the subsegment;   */        /*   each triangle's apex is handled through a different vertex.  */        /*   Because each triangle appears on three vertices' lists, each */        /*   occurrence of a triangle on a list can (and does) represent  */        /*   an edge.  In this way, most edges are represented twice, and */        /*   every triangle-subsegment bond is represented once.          */        while (notfound && (checktri.tri != m->dummytri)) {          dest(checktri, checkdest);          if (shorg == checkdest) {            /* We have a match.  Remove this triangle from the list. */            *prevlink = checktri.tri[6 + checktri.orient];            /* Bond the subsegment to the triangle. */            tsbond(checktri, subsegloop);            /* Check if this is a boundary edge. */            sym(checktri, checkneighbor);            if (checkneighbor.tri == m->dummytri) {              /* The next line doesn't insert a subsegment (because there's */              /*   already one there), but it sets the boundary markers of  */              /*   the existing subsegment and its vertices.                */              insertsubseg(m, b, &checktri, 1);              hullsize++;            }            notfound = 0;          }          /* Find the next triangle in the stack. */          prevlink = &checktri.tri[6 + checktri.orient];          nexttri = checktri.tri[6 + checktri.orient];          decode(nexttri, checktri);        }      }      subsegloop.ss = subsegtraverse(m);      segmentnumber++;    }  }  /* Mark the remaining edges as not being attached to any subsegment. */  /* Also, count the (yet uncounted) boundary edges.                   */  for (i = 0; i < m->vertices.items; i++) {    /* Search the stack of triangles adjacent to a vertex. */    nexttri = vertexarray[i];    decode(nexttri, checktri);    while (checktri.tri != m->dummytri) {      /* Find the next triangle in the stack before this */      /*   information gets overwritten.                 */      nexttri = checktri.tri[6 + checktri.orient];      /* No adjacent subsegment.  (This overwrites the stack info.) */      tsdissolve(checktri);      sym(checktri, checkneighbor);      if (checkneighbor.tri == m->dummytri) {        insertsubseg(m, b, &checktri, 1);        hullsize++;      }      decode(nexttri, checktri);    }  }  trifree((VOID *) vertexarray);  return hullsize;}#endif /* not CDT_ONLY *//**                                                                         **//**                                                                         **//********* General mesh construction routines end here               *********//********* Segment insertion begins here                             *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  finddirection()   Find the first triangle on the path from one point     *//*                    to another.                                            *//*                                                                           *//*  Finds the triangle that intersects a line segment drawn from the         *//*  origin of `searchtri' to the point `searchpoint', and returns the result *//*  in `searchtri'.  The origin of `searchtri' does not change, even though  *//*  the triangle returned may differ from the one passed in.  This routine   *//*  is used to find the direction to move in to get from one point to        *//*  another.                                                                 *//*                                                                           *//*  The return value notes whether the destination or apex of the found      *//*  triangle is collinear with the two points in question.                   *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSenum finddirectionresult finddirection(struct mesh *m, struct behavior *b,                                       struct otri *searchtri,                                       vertex searchpoint)#else /* not ANSI_DECLARATORS */enum finddirectionresult finddirection(m, b, searchtri, searchpoint)struct mesh *m;struct behavior *b;struct otri *searchtri;vertex searchpoint;#endif /* not ANSI_DECLARATORS */{  struct otri checktri;  vertex startvertex;  vertex leftvertex, rightvertex;  REAL leftccw, rightccw;  int leftflag, rightflag;  triangle ptr;           /* Temporary variable used by onext() and oprev(). */  org(*searchtri, startvertex);  dest(*searchtri, rightvertex);  apex(*searchtri, leftvertex);  /* Is `searchpoint' to the left? */  leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);  leftflag = leftccw > 0.0;  /* Is `searchpoint' to the right? */  rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);  rightflag = rightccw > 0.0;  if (leftflag && rightflag) {    /* `searchtri' faces directly away from `searchpoint'.  We could go left */    /*   or right.  Ask whether it's a triangle or a boundary on the left.   */    onext(*searchtri, checktri);    if (checktri.tri == m->dummytri) {      leftflag = 0;    } else {      rightflag = 0;    }  }  while (leftflag) {    /* Turn left until satisfied. */    onextself(*searchtri);    if (searchtri->tri == m->dummytri) {      printf("Internal error in finddirection():  Unable to find a\n");      printf("  triangle leading from (%.12g, %.12g) to", startvertex[0],             startvertex[1]);      printf("  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);      internalerror();    }    apex(*searchtri, leftvertex);    rightccw = leftccw;    leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);    leftflag = leftccw > 0.0;  }  while (rightflag) {    /* Turn right until satisfied. */    oprevself(*searchtri);    if (searchtri->tri == m->dummytri) {      printf("Internal error in finddirection():  Unable to find a\n");      printf("  triangle leading from (%.12g, %.12g) to", startvertex[0],             startvertex[1]);      printf("  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);      internalerror();    }    dest(*searchtri, rightvertex);    leftccw = rightccw;    rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);    rightflag = rightccw > 0.0;  }  if (leftccw == 0.0) {    return LEFTCOLLINEAR;  } else if (rightccw == 0.0) {    return RIGHTCOLLINEAR;  } else {    return WITHIN;  }}/*****************************************************************************//*                                                                           *//*  segmentintersection()   Find the intersection of an existing segment     *//*                          and a segment that is being inserted.  Insert    *//*                          a vertex at the intersection, splitting an       *//*                          existing subsegment.                             *//*                                                                           *//*  The segment being inserted connects the apex of splittri to endpoint2.   *//*  splitsubseg is the subsegment being split, and MUST adjoin splittri.     *//*  Hence, endpoints of the subsegment being split are the origin and        *//*  destination of splittri.                                                 *//*                                                                           *//*  On completion, splittri is a handle having the newly inserted            *//*  intersection point as its origin, and endpoint1 as its destination.      *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid segmentintersection(struct mesh *m, struct behavior *b,                         struct otri *splittri, struct osub *splitsubseg,                         vertex endpoint2)#else /* not ANSI_DECLARATORS */void segmentintersection(m, b, splittri, splitsubseg, endpoint2)struct mesh *m;struct behavior *b;struct otri *splittri;struct osub *splitsubseg;vertex endpoint2;#endif /* not ANSI_DECLARATORS */{  struct osub opposubseg;  vertex endpoint1;  vertex torg, tdest;  vertex leftvertex, rightvertex;  vertex newvertex;  enum insertvertexresult success;  enum finddirectionresult collinear;  REAL ex, ey;  REAL tx, ty;  REAL etx, ety;  REAL split, denom;  int i;  triangle ptr;                       /* Temporary variable used by onext(). */  subseg sptr;                        /* Temporary variable used by snext(). */  /* Find the other three segment endpoints. */  apex(*splittri, endpoint1);  org(*splittri, torg);  dest(*splittri, tdest);  /* Segment intersection formulae; see the Antonio reference. */  tx = tdest[0] - torg[0];  ty = tdest[1] - torg[1];  ex = endpoint2[0] - endpoint1[0];  ey = endpoint2[1] - endpoint1[1];  etx = torg[0] - endpoint2[0];  ety = torg[1] - endpoint2[1];  denom = ty * ex - tx * ey;  if (denom == 0.0) {    printf("Internal error in segmentintersection():");    printf("  Attempt to find intersection of parallel segments.\n");    internalerror();  }  split = (ey * etx - ex * ety) / denom;  /* Create the new vertex. */  newvertex = (vertex) poolalloc(&m->vertices);  /* Interpolate its coordinate and attributes. */  for (i = 0; i < 2 + m->nextras; i++) {    newvertex[i] = torg[i] + split * (tdest[i] - torg[i]);  }  setvertexmark(newvertex, mark(*splitsubseg));  setvertextype(newvertex, INPUTVERTEX);  if (b->verbose > 1) {    printf(  "  Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",           torg[0], torg[1], tdest[0], tdest[1], newvertex[0], newvertex[1]);  }  /* Insert the intersection vertex.  This should always succeed. */  success = insertvertex(m, b, newvertex, splittri, splitsubseg, 0, 0);  if (success != SUCCESSFULVERTEX) {    printf("Internal error in segmentintersection():\n");    printf("  Failure to split a segment.\n");    internalerror();  }  /* Record a triangle whose origin is the new vertex. */  setvertex2tri(newvertex, encode(*splittri));  if (m->steinerleft > 0) {    m->steinerleft--;  }  /* Divide the segment into two, and correct the segment endpoints. */  ssymself(*splitsubseg);  spivot(*splitsubseg, opposubseg);  sdissolve(*splitsubseg);  sdissolve(opposubseg);  do {    setsegorg(*splitsubseg, newvertex);    snextself(*splitsubseg);  } while (splitsubseg->ss != m->dummysub);  do {    setsegorg(opposubseg, newvertex);    snextself(opposubseg);  } while (opposubseg.ss != m->dummysub);  /* Inserting the vertex may have caused edge flips.  We wish to rediscover */  /*   the edge connecting endpoint1 to the new intersection vertex.         */  collinear = finddirection(m, b, splittri, endpoint1);  dest(*splittri, rightvertex);  apex(*splittri, leftvertex);  if ((leftvertex[0] == endpoint1[0]) && (leftvertex[1] == endpoint1[1])) {    onextself(*splittri);  } else if ((rightvertex[0] != endpoint1[0]) ||             (rightvertex[1] != endpoint1[1])) {    printf("Internal error in segmentintersection():\n");    printf("  Topological inconsistency after splitting a segment.\n");    internalerror();  }  /* `splittri' should have destination endpoint1. */}/*****************************************************************************//*                                                                           *//*  scoutsegment()   Scout the first triangle on the path from one endpoint  *//*                   to another, and check for completion (reaching the      *//*                   second endpoint), a collinear vertex, or the            *//*                   intersection of two segments.                           *//*                                                                           *//*  Returns one if the entire segment is successfully inserted, and zero if  *//*  the job must be finished by conformingedge() or constrainededge().       *//*                                                                           *//*  If the first triangle on the path has the second endpoint as its         *//*  destination or apex, a subsegment is inserted and the job is done.       *//*                                                                           *//*  If the first triangle on the path has a destination or apex that lies on *//*  the segment, a subsegment is inserted connecting the first endpoint to   *//*  the collinear vertex, and the search is continued from the collinear     *//*  vertex.                                                                  *//*                                                                           *//*  If the first triangle on the path has a subsegment opposite its origin,  *//*  then there is a segment that intersects the segment being inserted.      *//*  Their intersection vertex is inserted, splitting the subsegment.         *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSint scoutsegment(struct mesh *m, struct behavior *b, struct otri *searchtri,                 vertex endpoint2, int newmark)#else /* not ANSI_DECLARATORS */int scoutsegment(m, b, searchtri, endpoint2, newmark)struct mesh *m;struct behavior *b;struct otri *searchtri;vertex endpoint2;int newmark;#endif /* not ANSI_DECLARATORS */{  struct otri crosstri;  struct osub crosssubseg;  vertex leftvertex, rightvertex;  enum finddirectionresult collinear;  subseg sptr;                      /* Temporary variable used by tspivot(). */  collinear = finddirection(m, b, searchtri, endpoint2);  dest(*searchtri, rightvertex);  apex(*searchtri, leftvertex);  if (((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) ||      ((rightvertex[0] == endpoint2[0]) && (rightvertex[1] == endpoint2[1]))) {    /* The segment is already an edge in the mesh. */    if ((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) {      lprevself(*searchtri);    }    /* Insert a subsegment, if there isn't already one there. */    insertsubseg(m, b, searchtri, newmark);    return 1;  } else if (collinear == LEFTCOLLINEAR) {    /* We've collided with a vertex between the segment's endpoints. */    /* Make the collinear vertex be the triangle's origin. */    lprevself(*searchtri);    insertsubseg(m, b, searchtri, newmark);    /* Insert the remainder of the segment. */    return scoutsegment(m, b, searchtri, endpoint2, newmark);  } else if (collinear == RIGHTCOLLINEAR) {    /* We've collided with a vertex between the segment's endpoints. */    insertsubseg(m, b, searchtri, newmark);    /* Make the collinear vertex be the triangle's origin. */    lnextself(*searchtri);    /* Insert the remainder of the segment. */    return scoutsegment(m, b, searchtri, endpoint2, newmark);  } else {    lnext(*searchtri, crosstri);    tspivot(crosstri, crosssubseg);    /* Check for a crossing segment. */    if (crosssubseg.ss == m->dummysub) {      return 0;    } else {      /* Insert a vertex at the intersection. */      segmentintersection(m, b, &crosstri, &crosssubseg, endpoint2);      otricopy(crosstri, *searchtri);      insertsubseg(m, b, searchtri, newmark);      /* Insert the remainder of the segment. */      return scoutsegment(m, b, searchtri, endpoint2, newmark);    }  }}/*****************************************************************************//*                                                                           *//*  conformingedge()   Force a segment into a conforming Delaunay            *//*                     triangulation by inserting a vertex at its midpoint,  *//*                     and recursively forcing in the two half-segments if   *//*                     necessary.                                            *//*                                                                           *//*  Generates a sequence of subsegments connecting `endpoint1' to            *//*  `endpoint2'.  `newmark' is the boundary marker of the segment, assigned  *//*  to each new splitting vertex and subsegment.                             *//*                                                                           *//*  Note that conformingedge() does not always maintain the conforming       *//*  Delaunay property.  Once inserted, segments are locked into place;       *//*  vertices inserted later (to force other segments in) may render these    *//*  fixed segments non-Delaunay.  The conforming Delaunay property will be   *//*  restored by enforcequality() by splitting encroached subsegments.        *//*                                                                           *//*****************************************************************************/#ifndef REDUCED#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid conformingedge(struct mesh *m, struct behavior *b,                    vertex endpoint1, vertex endpoint2, int newmark)#else /* not ANSI_DECLARATORS */void conformingedge(m, b, endpoint1, endpoint2, newmark)struct mesh *m;struct behavior *b;vertex endpoint1;vertex endpoint2;int newmark;#endif /* not ANSI_DECLARATORS */{  struct otri searchtri1, searchtri2;  struct osub brokensubseg;  vertex newvertex;  vertex midvertex1, midvertex2;  enum insertvertexresult success;  int i;  subseg sptr;                      /* Temporary variable used by tspivot(). */  if (b->verbose > 2) {    printf("Forcing segment into triangulation by recursive splitting:\n");    printf("  (%.12g, %.12g) (%.12g, %.12g)\n", endpoint1[0], endpoint1[1],           endpoint2[0], endpoint2[1]);  }  /* Create a new vertex to insert in the middle of the segment. */  newvertex = (vertex) poolalloc(&m->vertices);  /* Interpolate coordinates and attributes. */  for (i = 0; i < 2 + m->nextras; i++) {    newvertex[i] = 0.5 * (endpoint1[i] + endpoint2[i]);  }  setvertexmark(newvertex, newmark);  setvertextype(newvertex, SEGMENTVERTEX);  /* No known triangle to search from. */  searchtri1.tri = m->dummytri;  /* Attempt to insert the new vertex. */  success = insertvertex(m, b, newvertex, &searchtri1, (struct osub *) NULL,                         0, 0);  if (success == DUPLICATEVERTEX) {    if (b->verbose > 2) {      printf("  Segment intersects existing vertex (%.12g, %.12g).\n",             newvertex[0], newvertex[1]);    }    /* Use the vertex that's already there. */    vertexdealloc(m, newvertex);    org(searchtri1, newvertex);  } else {    if (success == VIOLATINGVERTEX) {      if (b->verbose > 2) {        printf("  Two segments intersect at (%.12g, %.12g).\n",               newvertex[0], newvertex[1]);      }      /* By fluke, we've landed right on another segment.  Split it. */      tspivot(searchtri1, brokensubseg);      success = insertvertex(m, b, newvertex, &searchtri1, &brokensubseg,                             0, 0);      if (success != SUCCESSFULVERTEX) {        printf("Internal error in conformingedge():\n");        printf("  Failure to split a segment.\n");        internalerror();      }    }    /* The vertex has been inserted successfully. */    if (m->steinerleft > 0) {      m->steinerleft--;    }  }  otricopy(searchtri1, searchtri2);  /* `searchtri1' and `searchtri2' are fastened at their origins to         */  /*   `newvertex', and will be directed toward `endpoint1' and `endpoint2' */  /*   respectively.  First, we must get `searchtri2' out of the way so it  */  /*   won't be invalidated during the insertion of the first half of the   */  /*   segment.                                                             */  finddirection(m, b, &searchtri2, endpoint2);  if (!scoutsegment(m, b, &searchtri1, endpoint1, newmark)) {    /* The origin of searchtri1 may have changed if a collision with an */    /*   intervening vertex on the segment occurred.                    */    org(searchtri1, midvertex1);    conformingedge(m, b, midvertex1, endpoint1, newmark);  }  if (!scoutsegment(m, b, &searchtri2, endpoint2, newmark)) {    /* The origin of searchtri2 may have changed if a collision with an */    /*   intervening vertex on the segment occurred.                    */    org(searchtri2, midvertex2);    conformingedge(m, b, midvertex2, endpoint2, newmark);  }}#endif /* not CDT_ONLY */#endif /* not REDUCED *//*****************************************************************************//*                                                                           *//*  delaunayfixup()   Enforce the Delaunay condition at an edge, fanning out *//*                    recursively from an existing vertex.  Pay special      *//*                    attention to stacking inverted triangles.              *//*                                                                           *//*  This is a support routine for inserting segments into a constrained      *//*  Delaunay triangulation.                                                  *//*                                                                           *//*  The origin of fixuptri is treated as if it has just been inserted, and   *//*  the local Delaunay condition needs to be enforced.  It is only enforced  *//*  in one sector, however, that being the angular range defined by          *//*  fixuptri.                                                                *//*                                                                           *//*  This routine also needs to make decisions regarding the "stacking" of    *//*  triangles.  (Read the description of constrainededge() below before      *//*  reading on here, so you understand the algorithm.)  If the position of   *//*  the new vertex (the origin of fixuptri) indicates that the vertex before *//*  it on the polygon is a reflex vertex, then "stack" the triangle by       *//*  doing nothing.  (fixuptri is an inverted triangle, which is how stacked  *//*  triangles are identified.)                                               *//*                                                                           *//*  Otherwise, check whether the vertex before that was a reflex vertex.     *//*  If so, perform an edge flip, thereby eliminating an inverted triangle    *//*  (popping it off the stack).  The edge flip may result in the creation    *//*  of a new inverted triangle, depending on whether or not the new vertex   *//*  is visible to the vertex three edges behind on the polygon.              *//*                                                                           *//*  If neither of the two vertices behind the new vertex are reflex          *//*  vertices, fixuptri and fartri, the triangle opposite it, are not         *//*  inverted; hence, ensure that the edge between them is locally Delaunay.  *//*                                                                           *//*  `leftside' indicates whether or not fixuptri is to the left of the       *//*  segment being inserted.  (Imagine that the segment is pointing up from   *//*  endpoint1 to endpoint2.)                                                 *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid delaunayfixup(struct mesh *m, struct behavior *b,                   struct otri *fixuptri, int leftside)#else /* not ANSI_DECLARATORS */void delaunayfixup(m, b, fixuptri, leftside)struct mesh *m;struct behavior *b;struct otri *fixuptri;int leftside;#endif /* not ANSI_DECLARATORS */{  struct otri neartri;  struct otri fartri;  struct osub faredge;  vertex nearvertex, leftvertex, rightvertex, farvertex;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  lnext(*fixuptri, neartri);  sym(neartri, fartri);  /* Check if the edge opposite the origin of fixuptri can be flipped. */  if (fartri.tri == m->dummytri) {    return;  }  tspivot(neartri, faredge);  if (faredge.ss != m->dummysub) {    return;  }  /* Find all the relevant vertices. */  apex(neartri, nearvertex);  org(neartri, leftvertex);  dest(neartri, rightvertex);  apex(fartri, farvertex);  /* Check whether the previous polygon vertex is a reflex vertex. */  if (leftside) {    if (counterclockwise(m, b, nearvertex, leftvertex, farvertex) <= 0.0) {      /* leftvertex is a reflex vertex too.  Nothing can */      /*   be done until a convex section is found.      */      return;    }  } else {    if (counterclockwise(m, b, farvertex, rightvertex, nearvertex) <= 0.0) {      /* rightvertex is a reflex vertex too.  Nothing can */      /*   be done until a convex section is found.       */      return;    }  }  if (counterclockwise(m, b, rightvertex, leftvertex, farvertex) > 0.0) {    /* fartri is not an inverted triangle, and farvertex is not a reflex */    /*   vertex.  As there are no reflex vertices, fixuptri isn't an     */    /*   inverted triangle, either.  Hence, test the edge between the    */    /*   triangles to ensure it is locally Delaunay.                     */    if (incircle(m, b, leftvertex, farvertex, rightvertex, nearvertex) <=        0.0) {      return;    }    /* Not locally Delaunay; go on to an edge flip. */  }        /* else fartri is inverted; remove it from the stack by flipping. */  flip(m, b, &neartri);  lprevself(*fixuptri);    /* Restore the origin of fixuptri after the flip. */  /* Recursively process the two triangles that result from the flip. */  delaunayfixup(m, b, fixuptri, leftside);  delaunayfixup(m, b, &fartri, leftside);}/*****************************************************************************//*                                                                           *//*  constrainededge()   Force a segment into a constrained Delaunay          *//*                      triangulation by deleting the triangles it           *//*                      intersects, and triangulating the polygons that      *//*                      form on each side of it.                             *//*                                                                           *//*  Generates a single subsegment connecting `endpoint1' to `endpoint2'.     *//*  The triangle `starttri' has `endpoint1' as its origin.  `newmark' is the *//*  boundary marker of the segment.                                          *//*                                                                           *//*  To insert a segment, every triangle whose interior intersects the        *//*  segment is deleted.  The union of these deleted triangles is a polygon   *//*  (which is not necessarily monotone, but is close enough), which is       *//*  divided into two polygons by the new segment.  This routine's task is    *//*  to generate the Delaunay triangulation of these two polygons.            *//*                                                                           *//*  You might think of this routine's behavior as a two-step process.  The   *//*  first step is to walk from endpoint1 to endpoint2, flipping each edge    *//*  encountered.  This step creates a fan of edges connected to endpoint1,   *//*  including the desired edge to endpoint2.  The second step enforces the   *//*  Delaunay condition on each side of the segment in an incremental manner: *//*  proceeding along the polygon from endpoint1 to endpoint2 (this is done   *//*  independently on each side of the segment), each vertex is "enforced"    *//*  as if it had just been inserted, but affecting only the previous         *//*  vertices.  The result is the same as if the vertices had been inserted   *//*  in the order they appear on the polygon, so the result is Delaunay.      *//*                                                                           *//*  In truth, constrainededge() interleaves these two steps.  The procedure  *//*  walks from endpoint1 to endpoint2, and each time an edge is encountered  *//*  and flipped, the newly exposed vertex (at the far end of the flipped     *//*  edge) is "enforced" upon the previously flipped edges, usually affecting *//*  only one side of the polygon (depending upon which side of the segment   *//*  the vertex falls on).                                                    *//*                                                                           *//*  The algorithm is complicated by the need to handle polygons that are not *//*  convex.  Although the polygon is not necessarily monotone, it can be     *//*  triangulated in a manner similar to the stack-based algorithms for       *//*  monotone polygons.  For each reflex vertex (local concavity) of the      *//*  polygon, there will be an inverted triangle formed by one of the edge    *//*  flips.  (An inverted triangle is one with negative area - that is, its   *//*  vertices are arranged in clockwise order - and is best thought of as a   *//*  wrinkle in the fabric of the mesh.)  Each inverted triangle can be       *//*  thought of as a reflex vertex pushed on the stack, waiting to be fixed   *//*  later.                                                                   *//*                                                                           *//*  A reflex vertex is popped from the stack when a vertex is inserted that  *//*  is visible to the reflex vertex.  (However, if the vertex behind the     *//*  reflex vertex is not visible to the reflex vertex, a new inverted        *//*  triangle will take its place on the stack.)  These details are handled   *//*  by the delaunayfixup() routine above.                                    *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid constrainededge(struct mesh *m, struct behavior *b,                     struct otri *starttri, vertex endpoint2, int newmark)#else /* not ANSI_DECLARATORS */void constrainededge(m, b, starttri, endpoint2, newmark)struct mesh *m;struct behavior *b;struct otri *starttri;vertex endpoint2;int newmark;#endif /* not ANSI_DECLARATORS */{  struct otri fixuptri, fixuptri2;  struct osub crosssubseg;  vertex endpoint1;  vertex farvertex;  REAL area;  int collision;  int done;  triangle ptr;             /* Temporary variable used by sym() and oprev(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  org(*starttri, endpoint1);  lnext(*starttri, fixuptri);  flip(m, b, &fixuptri);  /* `collision' indicates whether we have found a vertex directly */  /*   between endpoint1 and endpoint2.                            */  collision = 0;  done = 0;  do {    org(fixuptri, farvertex);    /* `farvertex' is the extreme point of the polygon we are "digging" */    /*   to get from endpoint1 to endpoint2.                           */    if ((farvertex[0] == endpoint2[0]) && (farvertex[1] == endpoint2[1])) {      oprev(fixuptri, fixuptri2);      /* Enforce the Delaunay condition around endpoint2. */      delaunayfixup(m, b, &fixuptri, 0);      delaunayfixup(m, b, &fixuptri2, 1);      done = 1;    } else {      /* Check whether farvertex is to the left or right of the segment */      /*   being inserted, to decide which edge of fixuptri to dig      */      /*   through next.                                                */      area = counterclockwise(m, b, endpoint1, endpoint2, farvertex);      if (area == 0.0) {        /* We've collided with a vertex between endpoint1 and endpoint2. */        collision = 1;        oprev(fixuptri, fixuptri2);        /* Enforce the Delaunay condition around farvertex. */        delaunayfixup(m, b, &fixuptri, 0);        delaunayfixup(m, b, &fixuptri2, 1);        done = 1;      } else {        if (area > 0.0) {        /* farvertex is to the left of the segment. */          oprev(fixuptri, fixuptri2);          /* Enforce the Delaunay condition around farvertex, on the */          /*   left side of the segment only.                        */          delaunayfixup(m, b, &fixuptri2, 1);          /* Flip the edge that crosses the segment.  After the edge is */          /*   flipped, one of its endpoints is the fan vertex, and the */          /*   destination of fixuptri is the fan vertex.               */          lprevself(fixuptri);        } else {                /* farvertex is to the right of the segment. */          delaunayfixup(m, b, &fixuptri, 0);          /* Flip the edge that crosses the segment.  After the edge is */          /*   flipped, one of its endpoints is the fan vertex, and the */          /*   destination of fixuptri is the fan vertex.               */          oprevself(fixuptri);        }        /* Check for two intersecting segments. */        tspivot(fixuptri, crosssubseg);        if (crosssubseg.ss == m->dummysub) {          flip(m, b, &fixuptri);    /* May create inverted triangle at left. */        } else {          /* We've collided with a segment between endpoint1 and endpoint2. */          collision = 1;          /* Insert a vertex at the intersection. */          segmentintersection(m, b, &fixuptri, &crosssubseg, endpoint2);          done = 1;        }      }    }  } while (!done);  /* Insert a subsegment to make the segment permanent. */  insertsubseg(m, b, &fixuptri, newmark);  /* If there was a collision with an interceding vertex, install another */  /*   segment connecting that vertex with endpoint2.                     */  if (collision) {    /* Insert the remainder of the segment. */    if (!scoutsegment(m, b, &fixuptri, endpoint2, newmark)) {      constrainededge(m, b, &fixuptri, endpoint2, newmark);    }  }}/*****************************************************************************//*                                                                           *//*  insertsegment()   Insert a PSLG segment into a triangulation.            *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid insertsegment(struct mesh *m, struct behavior *b,                   vertex endpoint1, vertex endpoint2, int newmark)#else /* not ANSI_DECLARATORS */void insertsegment(m, b, endpoint1, endpoint2, newmark)struct mesh *m;struct behavior *b;vertex endpoint1;vertex endpoint2;int newmark;#endif /* not ANSI_DECLARATORS */{  struct otri searchtri1, searchtri2;  triangle encodedtri;  vertex checkvertex;  triangle ptr;                         /* Temporary variable used by sym(). */  if (b->verbose > 1) {    printf("  Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",           endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);  }  /* Find a triangle whose origin is the segment's first endpoint. */  checkvertex = (vertex) NULL;  encodedtri = vertex2tri(endpoint1);  if (encodedtri != (triangle) NULL) {    decode(encodedtri, searchtri1);    org(searchtri1, checkvertex);  }  if (checkvertex != endpoint1) {    /* Find a boundary triangle to search from. */    searchtri1.tri = m->dummytri;    searchtri1.orient = 0;    symself(searchtri1);    /* Search for the segment's first endpoint by point location. */    if (locate(m, b, endpoint1, &searchtri1) != ONVERTEX) {      printf(        "Internal error in insertsegment():  Unable to locate PSLG vertex\n");      printf("  (%.12g, %.12g) in triangulation.\n",             endpoint1[0], endpoint1[1]);      internalerror();    }  }  /* Remember this triangle to improve subsequent point location. */  otricopy(searchtri1, m->recenttri);  /* Scout the beginnings of a path from the first endpoint */  /*   toward the second.                                   */  if (scoutsegment(m, b, &searchtri1, endpoint2, newmark)) {    /* The segment was easily inserted. */    return;  }  /* The first endpoint may have changed if a collision with an intervening */  /*   vertex on the segment occurred.                                      */  org(searchtri1, endpoint1);  /* Find a triangle whose origin is the segment's second endpoint. */  checkvertex = (vertex) NULL;  encodedtri = vertex2tri(endpoint2);  if (encodedtri != (triangle) NULL) {    decode(encodedtri, searchtri2);    org(searchtri2, checkvertex);  }  if (checkvertex != endpoint2) {    /* Find a boundary triangle to search from. */    searchtri2.tri = m->dummytri;    searchtri2.orient = 0;    symself(searchtri2);    /* Search for the segment's second endpoint by point location. */    if (locate(m, b, endpoint2, &searchtri2) != ONVERTEX) {      printf(        "Internal error in insertsegment():  Unable to locate PSLG vertex\n");      printf("  (%.12g, %.12g) in triangulation.\n",             endpoint2[0], endpoint2[1]);      internalerror();    }  }  /* Remember this triangle to improve subsequent point location. */  otricopy(searchtri2, m->recenttri);  /* Scout the beginnings of a path from the second endpoint */  /*   toward the first.                                     */  if (scoutsegment(m, b, &searchtri2, endpoint1, newmark)) {    /* The segment was easily inserted. */    return;  }  /* The second endpoint may have changed if a collision with an intervening */  /*   vertex on the segment occurred.                                       */  org(searchtri2, endpoint2);#ifndef REDUCED#ifndef CDT_ONLY  if (b->splitseg) {    /* Insert vertices to force the segment into the triangulation. */    conformingedge(m, b, endpoint1, endpoint2, newmark);  } else {#endif /* not CDT_ONLY */#endif /* not REDUCED */    /* Insert the segment directly into the triangulation. */    constrainededge(m, b, &searchtri1, endpoint2, newmark);#ifndef REDUCED#ifndef CDT_ONLY  }#endif /* not CDT_ONLY */#endif /* not REDUCED */}/*****************************************************************************//*                                                                           *//*  markhull()   Cover the convex hull of a triangulation with subsegments.  *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid markhull(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void markhull(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri hulltri;  struct otri nexttri;  struct otri starttri;  triangle ptr;             /* Temporary variable used by sym() and oprev(). */  /* Find a triangle handle on the hull. */  hulltri.tri = m->dummytri;  hulltri.orient = 0;  symself(hulltri);  /* Remember where we started so we know when to stop. */  otricopy(hulltri, starttri);  /* Go once counterclockwise around the convex hull. */  do {    /* Create a subsegment if there isn't already one here. */    insertsubseg(m, b, &hulltri, 1);    /* To find the next hull edge, go clockwise around the next vertex. */    lnextself(hulltri);    oprev(hulltri, nexttri);    while (nexttri.tri != m->dummytri) {      otricopy(nexttri, hulltri);      oprev(hulltri, nexttri);    }  } while (!otriequal(hulltri, starttri));}/*****************************************************************************//*                                                                           *//*  formskeleton()   Create the segments of a triangulation, including PSLG  *//*                   segments and edges on the convex hull.                  *//*                                                                           *//*  The PSLG segments are read from a .poly file.  The return value is the   *//*  number of segments in the file.                                          *//*                                                                           *//*****************************************************************************/#ifdef TRILIBRARY#ifdef ANSI_DECLARATORSvoid formskeleton(struct mesh *m, struct behavior *b, int *segmentlist,                  int *segmentmarkerlist, int numberofsegments)#else /* not ANSI_DECLARATORS */void formskeleton(m, b, segmentlist, segmentmarkerlist, numberofsegments)struct mesh *m;struct behavior *b;int *segmentlist;int *segmentmarkerlist;int numberofsegments;#endif /* not ANSI_DECLARATORS */#else /* not TRILIBRARY */#ifdef ANSI_DECLARATORSvoid formskeleton(struct mesh *m, struct behavior *b,                  FILE *polyfile, char *polyfilename)#else /* not ANSI_DECLARATORS */void formskeleton(m, b, polyfile, polyfilename)struct mesh *m;struct behavior *b;FILE *polyfile;char *polyfilename;#endif /* not ANSI_DECLARATORS */#endif /* not TRILIBRARY */{#ifdef TRILIBRARY  char polyfilename[6];  int index;#else /* not TRILIBRARY */  char inputline[INPUTLINESIZE];  char *stringptr;#endif /* not TRILIBRARY */  vertex endpoint1, endpoint2;  int segmentmarkers;  int end1, end2;  int boundmarker;  int i;  if (b->poly) {    if (!b->quiet) {      printf("Recovering segments in Delaunay triangulation.\n");    }#ifdef TRILIBRARY    strcpy(polyfilename, "input");    m->insegments = numberofsegments;    segmentmarkers = segmentmarkerlist != (int *) NULL;    index = 0;#else /* not TRILIBRARY */    /* Read the segments from a .poly file. */    /* Read number of segments and number of boundary markers. */    stringptr = readline(inputline, polyfile, polyfilename);    m->insegments = (int) strtol(stringptr, &stringptr, 0);    stringptr = findfield(stringptr);    if (*stringptr == '\0') {      segmentmarkers = 0;    } else {      segmentmarkers = (int) strtol(stringptr, &stringptr, 0);    }#endif /* not TRILIBRARY */    /* If the input vertices are collinear, there is no triangulation, */    /*   so don't try to insert segments.                              */    if (m->triangles.items == 0) {      return;    }    /* If segments are to be inserted, compute a mapping */    /*   from vertices to triangles.                     */    if (m->insegments > 0) {      makevertexmap(m, b);      if (b->verbose) {        printf("  Recovering PSLG segments.\n");      }    }    boundmarker = 0;    /* Read and insert the segments. */    for (i = 0; i < m->insegments; i++) {#ifdef TRILIBRARY      end1 = segmentlist[index++];      end2 = segmentlist[index++];      if (segmentmarkers) {        boundmarker = segmentmarkerlist[i];      }#else /* not TRILIBRARY */      stringptr = readline(inputline, polyfile, b->inpolyfilename);      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        printf("Error:  Segment %d has no endpoints in %s.\n",               b->firstnumber + i, polyfilename);        triexit(1);      } else {        end1 = (int) strtol(stringptr, &stringptr, 0);      }      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        printf("Error:  Segment %d is missing its second endpoint in %s.\n",               b->firstnumber + i, polyfilename);        triexit(1);      } else {        end2 = (int) strtol(stringptr, &stringptr, 0);      }      if (segmentmarkers) {        stringptr = findfield(stringptr);        if (*stringptr == '\0') {          boundmarker = 0;        } else {          boundmarker = (int) strtol(stringptr, &stringptr, 0);        }      }#endif /* not TRILIBRARY */      if ((end1 < b->firstnumber) ||          (end1 >= b->firstnumber + m->invertices)) {        if (!b->quiet) {          printf("Warning:  Invalid first endpoint of segment %d in %s.\n",                 b->firstnumber + i, polyfilename);        }      } else if ((end2 < b->firstnumber) ||                 (end2 >= b->firstnumber + m->invertices)) {        if (!b->quiet) {          printf("Warning:  Invalid second endpoint of segment %d in %s.\n",                 b->firstnumber + i, polyfilename);        }      } else {        /* Find the vertices numbered `end1' and `end2'. */        endpoint1 = getvertex(m, b, end1);        endpoint2 = getvertex(m, b, end2);        if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {          if (!b->quiet) {            printf("Warning:  Endpoints of segment %d are coincident in %s.\n",                   b->firstnumber + i, polyfilename);          }        } else {          insertsegment(m, b, endpoint1, endpoint2, boundmarker);        }      }    }  } else {    m->insegments = 0;  }  if (b->convex || !b->poly) {    /* Enclose the convex hull with subsegments. */    if (b->verbose) {      printf("  Enclosing convex hull with segments.\n");    }    markhull(m, b);  }}/**                                                                         **//**                                                                         **//********* Segment insertion ends here                               *********//********* Carving out holes and concavities begins here             *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  infecthull()   Virally infect all of the triangles of the convex hull    *//*                 that are not protected by subsegments.  Where there are   *//*                 subsegments, set boundary markers as appropriate.         *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid infecthull(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void infecthull(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri hulltri;  struct otri nexttri;  struct otri starttri;  struct osub hullsubseg;  triangle **deadtriangle;  vertex horg, hdest;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  if (b->verbose) {    printf("  Marking concavities (external triangles) for elimination.\n");  }  /* Find a triangle handle on the hull. */  hulltri.tri = m->dummytri;  hulltri.orient = 0;  symself(hulltri);  /* Remember where we started so we know when to stop. */  otricopy(hulltri, starttri);  /* Go once counterclockwise around the convex hull. */  do {    /* Ignore triangles that are already infected. */    if (!infected(hulltri)) {      /* Is the triangle protected by a subsegment? */      tspivot(hulltri, hullsubseg);      if (hullsubseg.ss == m->dummysub) {        /* The triangle is not protected; infect it. */        if (!infected(hulltri)) {          infect(hulltri);          deadtriangle = (triangle **) poolalloc(&m->viri);          *deadtriangle = hulltri.tri;        }      } else {        /* The triangle is protected; set boundary markers if appropriate. */        if (mark(hullsubseg) == 0) {          setmark(hullsubseg, 1);          org(hulltri, horg);          dest(hulltri, hdest);          if (vertexmark(horg) == 0) {            setvertexmark(horg, 1);          }          if (vertexmark(hdest) == 0) {            setvertexmark(hdest, 1);          }        }      }    }    /* To find the next hull edge, go clockwise around the next vertex. */    lnextself(hulltri);    oprev(hulltri, nexttri);    while (nexttri.tri != m->dummytri) {      otricopy(nexttri, hulltri);      oprev(hulltri, nexttri);    }  } while (!otriequal(hulltri, starttri));}/*****************************************************************************//*                                                                           *//*  plague()   Spread the virus from all infected triangles to any neighbors *//*             not protected by subsegments.  Delete all infected triangles. *//*                                                                           *//*  This is the procedure that actually creates holes and concavities.       *//*                                                                           *//*  This procedure operates in two phases.  The first phase identifies all   *//*  the triangles that will die, and marks them as infected.  They are       *//*  marked to ensure that each triangle is added to the virus pool only      *//*  once, so the procedure will terminate.                                   *//*                                                                           *//*  The second phase actually eliminates the infected triangles.  It also    *//*  eliminates orphaned vertices.                                            *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid plague(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void plague(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri testtri;  struct otri neighbor;  triangle **virusloop;  triangle **deadtriangle;  struct osub neighborsubseg;  vertex testvertex;  vertex norg, ndest;  vertex deadorg, deaddest, deadapex;  int killorg;  triangle ptr;             /* Temporary variable used by sym() and onext(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  if (b->verbose) {    printf("  Marking neighbors of marked triangles.\n");  }  /* Loop through all the infected triangles, spreading the virus to */  /*   their neighbors, then to their neighbors' neighbors.          */  traversalinit(&m->viri);  virusloop = (triangle **) traverse(&m->viri);  while (virusloop != (triangle **) NULL) {    testtri.tri = *virusloop;    /* A triangle is marked as infected by messing with one of its pointers */    /*   to subsegments, setting it to an illegal value.  Hence, we have to */    /*   temporarily uninfect this triangle so that we can examine its      */    /*   adjacent subsegments.                                              */    uninfect(testtri);    if (b->verbose > 2) {      /* Assign the triangle an orientation for convenience in */      /*   checking its vertices.                              */      testtri.orient = 0;      org(testtri, deadorg);      dest(testtri, deaddest);      apex(testtri, deadapex);      printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",             deadorg[0], deadorg[1], deaddest[0], deaddest[1],             deadapex[0], deadapex[1]);    }    /* Check each of the triangle's three neighbors. */    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {      /* Find the neighbor. */      sym(testtri, neighbor);      /* Check for a subsegment between the triangle and its neighbor. */      tspivot(testtri, neighborsubseg);      /* Check if the neighbor is nonexistent or already infected. */      if ((neighbor.tri == m->dummytri) || infected(neighbor)) {        if (neighborsubseg.ss != m->dummysub) {          /* There is a subsegment separating the triangle from its      */          /*   neighbor, but both triangles are dying, so the subsegment */          /*   dies too.                                                 */          subsegdealloc(m, neighborsubseg.ss);          if (neighbor.tri != m->dummytri) {            /* Make sure the subsegment doesn't get deallocated again */            /*   later when the infected neighbor is visited.         */            uninfect(neighbor);            tsdissolve(neighbor);            infect(neighbor);          }        }      } else {                   /* The neighbor exists and is not infected. */        if (neighborsubseg.ss == m->dummysub) {          /* There is no subsegment protecting the neighbor, so */          /*   the neighbor becomes infected.                   */          if (b->verbose > 2) {            org(neighbor, deadorg);            dest(neighbor, deaddest);            apex(neighbor, deadapex);            printf(              "    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",                   deadorg[0], deadorg[1], deaddest[0], deaddest[1],                   deadapex[0], deadapex[1]);          }          infect(neighbor);          /* Ensure that the neighbor's neighbors will be infected. */          deadtriangle = (triangle **) poolalloc(&m->viri);          *deadtriangle = neighbor.tri;        } else {               /* The neighbor is protected by a subsegment. */          /* Remove this triangle from the subsegment. */          stdissolve(neighborsubseg);          /* The subsegment becomes a boundary.  Set markers accordingly. */          if (mark(neighborsubseg) == 0) {            setmark(neighborsubseg, 1);          }          org(neighbor, norg);          dest(neighbor, ndest);          if (vertexmark(norg) == 0) {            setvertexmark(norg, 1);          }          if (vertexmark(ndest) == 0) {            setvertexmark(ndest, 1);          }        }      }    }    /* Remark the triangle as infected, so it doesn't get added to the */    /*   virus pool again.                                             */    infect(testtri);    virusloop = (triangle **) traverse(&m->viri);  }  if (b->verbose) {    printf("  Deleting marked triangles.\n");  }  traversalinit(&m->viri);  virusloop = (triangle **) traverse(&m->viri);  while (virusloop != (triangle **) NULL) {    testtri.tri = *virusloop;    /* Check each of the three corners of the triangle for elimination. */    /*   This is done by walking around each vertex, checking if it is  */    /*   still connected to at least one live triangle.                 */    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {      org(testtri, testvertex);      /* Check if the vertex has already been tested. */      if (testvertex != (vertex) NULL) {        killorg = 1;        /* Mark the corner of the triangle as having been tested. */        setorg(testtri, NULL);        /* Walk counterclockwise about the vertex. */        onext(testtri, neighbor);        /* Stop upon reaching a boundary or the starting triangle. */        while ((neighbor.tri != m->dummytri) &&               (!otriequal(neighbor, testtri))) {          if (infected(neighbor)) {            /* Mark the corner of this triangle as having been tested. */            setorg(neighbor, NULL);          } else {            /* A live triangle.  The vertex survives. */            killorg = 0;          }          /* Walk counterclockwise about the vertex. */          onextself(neighbor);        }        /* If we reached a boundary, we must walk clockwise as well. */        if (neighbor.tri == m->dummytri) {          /* Walk clockwise about the vertex. */          oprev(testtri, neighbor);          /* Stop upon reaching a boundary. */          while (neighbor.tri != m->dummytri) {            if (infected(neighbor)) {            /* Mark the corner of this triangle as having been tested. */              setorg(neighbor, NULL);            } else {              /* A live triangle.  The vertex survives. */              killorg = 0;            }            /* Walk clockwise about the vertex. */            oprevself(neighbor);          }        }        if (killorg) {          if (b->verbose > 1) {            printf("    Deleting vertex (%.12g, %.12g)\n",                   testvertex[0], testvertex[1]);          }          setvertextype(testvertex, UNDEADVERTEX);          m->undeads++;        }      }    }    /* Record changes in the number of boundary edges, and disconnect */    /*   dead triangles from their neighbors.                         */    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {      sym(testtri, neighbor);      if (neighbor.tri == m->dummytri) {        /* There is no neighboring triangle on this edge, so this edge    */        /*   is a boundary edge.  This triangle is being deleted, so this */        /*   boundary edge is deleted.                                    */        m->hullsize--;      } else {        /* Disconnect the triangle from its neighbor. */        dissolve(neighbor);        /* There is a neighboring triangle on this edge, so this edge */        /*   becomes a boundary edge when this triangle is deleted.   */        m->hullsize++;      }    }    /* Return the dead triangle to the pool of triangles. */    triangledealloc(m, testtri.tri);    virusloop = (triangle **) traverse(&m->viri);  }  /* Empty the virus pool. */  poolrestart(&m->viri);}/*****************************************************************************//*                                                                           *//*  regionplague()   Spread regional attributes and/or area constraints      *//*                   (from a .poly file) throughout the mesh.                *//*                                                                           *//*  This procedure operates in two phases.  The first phase spreads an       *//*  attribute and/or an area constraint through a (segment-bounded) region.  *//*  The triangles are marked to ensure that each triangle is added to the    *//*  virus pool only once, so the procedure will terminate.                   *//*                                                                           *//*  The second phase uninfects all infected triangles, returning them to     *//*  normal.                                                                  *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid regionplague(struct mesh *m, struct behavior *b,                  REAL attribute, REAL area)#else /* not ANSI_DECLARATORS */void regionplague(m, b, attribute, area)struct mesh *m;struct behavior *b;REAL attribute;REAL area;#endif /* not ANSI_DECLARATORS */{  struct otri testtri;  struct otri neighbor;  triangle **virusloop;  triangle **regiontri;  struct osub neighborsubseg;  vertex regionorg, regiondest, regionapex;  triangle ptr;             /* Temporary variable used by sym() and onext(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  if (b->verbose > 1) {    printf("  Marking neighbors of marked triangles.\n");  }  /* Loop through all the infected triangles, spreading the attribute      */  /*   and/or area constraint to their neighbors, then to their neighbors' */  /*   neighbors.                                                          */  traversalinit(&m->viri);  virusloop = (triangle **) traverse(&m->viri);  while (virusloop != (triangle **) NULL) {    testtri.tri = *virusloop;    /* A triangle is marked as infected by messing with one of its pointers */    /*   to subsegments, setting it to an illegal value.  Hence, we have to */    /*   temporarily uninfect this triangle so that we can examine its      */    /*   adjacent subsegments.                                              */    uninfect(testtri);    if (b->regionattrib) {      /* Set an attribute. */      setelemattribute(testtri, m->eextras, attribute);    }    if (b->vararea) {      /* Set an area constraint. */      setareabound(testtri, area);    }    if (b->verbose > 2) {      /* Assign the triangle an orientation for convenience in */      /*   checking its vertices.                              */      testtri.orient = 0;      org(testtri, regionorg);      dest(testtri, regiondest);      apex(testtri, regionapex);      printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",             regionorg[0], regionorg[1], regiondest[0], regiondest[1],             regionapex[0], regionapex[1]);    }    /* Check each of the triangle's three neighbors. */    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {      /* Find the neighbor. */      sym(testtri, neighbor);      /* Check for a subsegment between the triangle and its neighbor. */      tspivot(testtri, neighborsubseg);      /* Make sure the neighbor exists, is not already infected, and */      /*   isn't protected by a subsegment.                          */      if ((neighbor.tri != m->dummytri) && !infected(neighbor)          && (neighborsubseg.ss == m->dummysub)) {        if (b->verbose > 2) {          org(neighbor, regionorg);          dest(neighbor, regiondest);          apex(neighbor, regionapex);          printf("    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",                 regionorg[0], regionorg[1], regiondest[0], regiondest[1],                 regionapex[0], regionapex[1]);        }        /* Infect the neighbor. */        infect(neighbor);        /* Ensure that the neighbor's neighbors will be infected. */        regiontri = (triangle **) poolalloc(&m->viri);        *regiontri = neighbor.tri;      }    }    /* Remark the triangle as infected, so it doesn't get added to the */    /*   virus pool again.                                             */    infect(testtri);    virusloop = (triangle **) traverse(&m->viri);  }  /* Uninfect all triangles. */  if (b->verbose > 1) {    printf("  Unmarking marked triangles.\n");  }  traversalinit(&m->viri);  virusloop = (triangle **) traverse(&m->viri);  while (virusloop != (triangle **) NULL) {    testtri.tri = *virusloop;    uninfect(testtri);    virusloop = (triangle **) traverse(&m->viri);  }  /* Empty the virus pool. */  poolrestart(&m->viri);}/*****************************************************************************//*                                                                           *//*  carveholes()   Find the holes and infect them.  Find the area            *//*                 constraints and infect them.  Infect the convex hull.     *//*                 Spread the infection and kill triangles.  Spread the      *//*                 area constraints.                                         *//*                                                                           *//*  This routine mainly calls other routines to carry out all these          *//*  functions.                                                               *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid carveholes(struct mesh *m, struct behavior *b, REAL *holelist, int holes,                REAL *regionlist, int regions)#else /* not ANSI_DECLARATORS */void carveholes(m, b, holelist, holes, regionlist, regions)struct mesh *m;struct behavior *b;REAL *holelist;int holes;REAL *regionlist;int regions;#endif /* not ANSI_DECLARATORS */{  struct otri searchtri;  struct otri triangleloop;  struct otri *regiontris;  triangle **holetri;  triangle **regiontri;  vertex searchorg, searchdest;  enum locateresult intersect;  int i;  triangle ptr;                         /* Temporary variable used by sym(). */  if (!(b->quiet || (b->noholes && b->convex))) {    printf("Removing unwanted triangles.\n");    if (b->verbose && (holes > 0)) {      printf("  Marking holes for elimination.\n");    }  }  if (regions > 0) {    /* Allocate storage for the triangles in which region points fall. */    regiontris = (struct otri *) trimalloc(regions *                                           (int) sizeof(struct otri));  } else {    regiontris = (struct otri *) NULL;  }  if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {    /* Initialize a pool of viri to be used for holes, concavities, */    /*   regional attributes, and/or regional area constraints.     */    poolinit(&m->viri, sizeof(triangle *), VIRUSPERBLOCK, VIRUSPERBLOCK, 0);  }  if (!b->convex) {    /* Mark as infected any unprotected triangles on the boundary. */    /*   This is one way by which concavities are created.         */    infecthull(m, b);  }  if ((holes > 0) && !b->noholes) {    /* Infect each triangle in which a hole lies. */    for (i = 0; i < 2 * holes; i += 2) {      /* Ignore holes that aren't within the bounds of the mesh. */      if ((holelist[i] >= m->xmin) && (holelist[i] <= m->xmax)          && (holelist[i + 1] >= m->ymin) && (holelist[i + 1] <= m->ymax)) {        /* Start searching from some triangle on the outer boundary. */        searchtri.tri = m->dummytri;        searchtri.orient = 0;        symself(searchtri);        /* Ensure that the hole is to the left of this boundary edge; */        /*   otherwise, locate() will falsely report that the hole    */        /*   falls within the starting triangle.                      */        org(searchtri, searchorg);        dest(searchtri, searchdest);        if (counterclockwise(m, b, searchorg, searchdest, &holelist[i]) >            0.0) {          /* Find a triangle that contains the hole. */          intersect = locate(m, b, &holelist[i], &searchtri);          if ((intersect != OUTSIDE) && (!infected(searchtri))) {            /* Infect the triangle.  This is done by marking the triangle  */            /*   as infected and including the triangle in the virus pool. */            infect(searchtri);            holetri = (triangle **) poolalloc(&m->viri);            *holetri = searchtri.tri;          }        }      }    }  }  /* Now, we have to find all the regions BEFORE we carve the holes, because */  /*   locate() won't work when the triangulation is no longer convex.       */  /*   (Incidentally, this is the reason why regional attributes and area    */  /*   constraints can't be used when refining a preexisting mesh, which     */  /*   might not be convex; they can only be used with a freshly             */  /*   triangulated PSLG.)                                                   */  if (regions > 0) {    /* Find the starting triangle for each region. */    for (i = 0; i < regions; i++) {      regiontris[i].tri = m->dummytri;      /* Ignore region points that aren't within the bounds of the mesh. */      if ((regionlist[4 * i] >= m->xmin) && (regionlist[4 * i] <= m->xmax) &&          (regionlist[4 * i + 1] >= m->ymin) &&          (regionlist[4 * i + 1] <= m->ymax)) {        /* Start searching from some triangle on the outer boundary. */        searchtri.tri = m->dummytri;        searchtri.orient = 0;        symself(searchtri);        /* Ensure that the region point is to the left of this boundary */        /*   edge; otherwise, locate() will falsely report that the     */        /*   region point falls within the starting triangle.           */        org(searchtri, searchorg);        dest(searchtri, searchdest);        if (counterclockwise(m, b, searchorg, searchdest, &regionlist[4 * i]) >            0.0) {          /* Find a triangle that contains the region point. */          intersect = locate(m, b, &regionlist[4 * i], &searchtri);          if ((intersect != OUTSIDE) && (!infected(searchtri))) {            /* Record the triangle for processing after the */            /*   holes have been carved.                    */            otricopy(searchtri, regiontris[i]);          }        }      }    }  }  if (m->viri.items > 0) {    /* Carve the holes and concavities. */    plague(m, b);  }  /* The virus pool should be empty now. */  if (regions > 0) {    if (!b->quiet) {      if (b->regionattrib) {        if (b->vararea) {          printf("Spreading regional attributes and area constraints.\n");        } else {          printf("Spreading regional attributes.\n");        }      } else {         printf("Spreading regional area constraints.\n");      }    }    if (b->regionattrib && !b->refine) {      /* Assign every triangle a regional attribute of zero. */      traversalinit(&m->triangles);      triangleloop.orient = 0;      triangleloop.tri = triangletraverse(m);      while (triangleloop.tri != (triangle *) NULL) {        setelemattribute(triangleloop, m->eextras, 0.0);        triangleloop.tri = triangletraverse(m);      }    }    for (i = 0; i < regions; i++) {      if (regiontris[i].tri != m->dummytri) {        /* Make sure the triangle under consideration still exists. */        /*   It may have been eaten by the virus.                   */        if (!deadtri(regiontris[i].tri)) {          /* Put one triangle in the virus pool. */          infect(regiontris[i]);          regiontri = (triangle **) poolalloc(&m->viri);          *regiontri = regiontris[i].tri;          /* Apply one region's attribute and/or area constraint. */          regionplague(m, b, regionlist[4 * i + 2], regionlist[4 * i + 3]);          /* The virus pool should be empty now. */        }      }    }    if (b->regionattrib && !b->refine) {      /* Note the fact that each triangle has an additional attribute. */      m->eextras++;    }  }  /* Free up memory. */  if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {    pooldeinit(&m->viri);  }  if (regions > 0) {    trifree((VOID *) regiontris);  }}/**                                                                         **//**                                                                         **//********* Carving out holes and concavities ends here               *********//********* Mesh quality maintenance begins here                      *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  tallyencs()   Traverse the entire list of subsegments, and check each    *//*                to see if it is encroached.  If so, add it to the list.    *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid tallyencs(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void tallyencs(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct osub subsegloop;  int dummy;  traversalinit(&m->subsegs);  subsegloop.ssorient = 0;  subsegloop.ss = subsegtraverse(m);  while (subsegloop.ss != (subseg *) NULL) {    /* If the segment is encroached, add it to the list. */    dummy = checkseg4encroach(m, b, &subsegloop);    subsegloop.ss = subsegtraverse(m);  }}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  precisionerror()  Print an error message for precision problems.         *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLYvoid precisionerror(){  printf("Try increasing the area criterion and/or reducing the minimum\n");  printf("  allowable angle so that tiny triangles are not created.\n");#ifdef SINGLE  printf("Alternatively, try recompiling me with double precision\n");  printf("  arithmetic (by removing \"#define SINGLE\" from the\n");  printf("  source file or \"-DSINGLE\" from the makefile).\n");#endif /* SINGLE */}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  splitencsegs()   Split all the encroached subsegments.                   *//*                                                                           *//*  Each encroached subsegment is repaired by splitting it - inserting a     *//*  vertex at or near its midpoint.  Newly inserted vertices may encroach    *//*  upon other subsegments; these are also repaired.                         *//*                                                                           *//*  `triflaws' is a flag that specifies whether one should take note of new  *//*  bad triangles that result from inserting vertices to repair encroached   *//*  subsegments.                                                             *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid splitencsegs(struct mesh *m, struct behavior *b, int triflaws)#else /* not ANSI_DECLARATORS */void splitencsegs(m, b, triflaws)struct mesh *m;struct behavior *b;int triflaws;#endif /* not ANSI_DECLARATORS */{  struct otri enctri;  struct otri testtri;  struct osub testsh;  struct osub currentenc;  struct badsubseg *encloop;  vertex eorg, edest, eapex;  vertex newvertex;  enum insertvertexresult success;  REAL segmentlength, nearestpoweroftwo;  REAL split;  REAL multiplier, divisor;  int acuteorg, acuteorg2, acutedest, acutedest2;  int dummy;  int i;  triangle ptr;                     /* Temporary variable used by stpivot(). */  subseg sptr;                        /* Temporary variable used by snext(). */  /* Note that steinerleft == -1 if an unlimited number */  /*   of Steiner points is allowed.                    */  while ((m->badsubsegs.items > 0) && (m->steinerleft != 0)) {    traversalinit(&m->badsubsegs);    encloop = badsubsegtraverse(m);    while ((encloop != (struct badsubseg *) NULL) && (m->steinerleft != 0)) {      sdecode(encloop->encsubseg, currentenc);      sorg(currentenc, eorg);      sdest(currentenc, edest);      /* Make sure that this segment is still the same segment it was   */      /*   when it was determined to be encroached.  If the segment was */      /*   enqueued multiple times (because several newly inserted      */      /*   vertices encroached it), it may have already been split.     */      if (!deadsubseg(currentenc.ss) &&          (eorg == encloop->subsegorg) && (edest == encloop->subsegdest)) {        /* To decide where to split a segment, we need to know if the   */        /*   segment shares an endpoint with an adjacent segment.       */        /*   The concern is that, if we simply split every encroached   */        /*   segment in its center, two adjacent segments with a small  */        /*   angle between them might lead to an infinite loop; each    */        /*   vertex added to split one segment will encroach upon the   */        /*   other segment, which must then be split with a vertex that */        /*   will encroach upon the first segment, and so on forever.   */        /* To avoid this, imagine a set of concentric circles, whose    */        /*   radii are powers of two, about each segment endpoint.      */        /*   These concentric circles determine where the segment is    */        /*   split.  (If both endpoints are shared with adjacent        */        /*   segments, split the segment in the middle, and apply the   */        /*   concentric circles for later splittings.)                  */        /* Is the origin shared with another segment? */        stpivot(currentenc, enctri);        lnext(enctri, testtri);        tspivot(testtri, testsh);        acuteorg = testsh.ss != m->dummysub;        /* Is the destination shared with another segment? */        lnextself(testtri);        tspivot(testtri, testsh);        acutedest = testsh.ss != m->dummysub;        /* If we're using Chew's algorithm (rather than Ruppert's) */        /*   to define encroachment, delete free vertices from the */        /*   subsegment's diametral circle.                        */        if (!b->conformdel && !acuteorg && !acutedest) {          apex(enctri, eapex);          while ((vertextype(eapex) == FREEVERTEX) &&                 ((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +                  (eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) {            deletevertex(m, b, &testtri);            stpivot(currentenc, enctri);            apex(enctri, eapex);            lprev(enctri, testtri);          }        }        /* Now, check the other side of the segment, if there's a triangle */        /*   there.                                                        */        sym(enctri, testtri);        if (testtri.tri != m->dummytri) {          /* Is the destination shared with another segment? */          lnextself(testtri);          tspivot(testtri, testsh);          acutedest2 = testsh.ss != m->dummysub;          acutedest = acutedest || acutedest2;          /* Is the origin shared with another segment? */          lnextself(testtri);          tspivot(testtri, testsh);          acuteorg2 = testsh.ss != m->dummysub;          acuteorg = acuteorg || acuteorg2;          /* Delete free vertices from the subsegment's diametral circle. */          if (!b->conformdel && !acuteorg2 && !acutedest2) {            org(testtri, eapex);            while ((vertextype(eapex) == FREEVERTEX) &&                   ((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +                    (eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) {              deletevertex(m, b, &testtri);              sym(enctri, testtri);              apex(testtri, eapex);              lprevself(testtri);            }          }        }        /* Use the concentric circles if exactly one endpoint is shared */        /*   with another adjacent segment.                             */        if (acuteorg || acutedest) {          segmentlength = sqrt((edest[0] - eorg[0]) * (edest[0] - eorg[0]) +                               (edest[1] - eorg[1]) * (edest[1] - eorg[1]));          /* Find the power of two that most evenly splits the segment.  */          /*   The worst case is a 2:1 ratio between subsegment lengths. */          nearestpoweroftwo = 1.0;          while (segmentlength > 3.0 * nearestpoweroftwo) {            nearestpoweroftwo *= 2.0;          }          while (segmentlength < 1.5 * nearestpoweroftwo) {            nearestpoweroftwo *= 0.5;          }          /* Where do we split the segment? */          split = nearestpoweroftwo / segmentlength;          if (acutedest) {            split = 1.0 - split;          }        } else {          /* If we're not worried about adjacent segments, split */          /*   this segment in the middle.                       */          split = 0.5;        }        /* Create the new vertex. */        newvertex = (vertex) poolalloc(&m->vertices);        /* Interpolate its coordinate and attributes. */        for (i = 0; i < 2 + m->nextras; i++) {          newvertex[i] = eorg[i] + split * (edest[i] - eorg[i]);        }        if (!b->noexact) {          /* Roundoff in the above calculation may yield a `newvertex'   */          /*   that is not precisely collinear with `eorg' and `edest'.  */          /*   Improve collinearity by one step of iterative refinement. */          multiplier = counterclockwise(m, b, eorg, edest, newvertex);          divisor = ((eorg[0] - edest[0]) * (eorg[0] - edest[0]) +                     (eorg[1] - edest[1]) * (eorg[1] - edest[1]));          if ((multiplier != 0.0) && (divisor != 0.0)) {            multiplier = multiplier / divisor;            /* Watch out for NANs. */            if (multiplier == multiplier) {              newvertex[0] += multiplier * (edest[1] - eorg[1]);              newvertex[1] += multiplier * (eorg[0] - edest[0]);            }          }        }        setvertexmark(newvertex, mark(currentenc));        setvertextype(newvertex, SEGMENTVERTEX);        if (b->verbose > 1) {          printf(  "  Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",                 eorg[0], eorg[1], edest[0], edest[1],                 newvertex[0], newvertex[1]);        }        /* Check whether the new vertex lies on an endpoint. */        if (((newvertex[0] == eorg[0]) && (newvertex[1] == eorg[1])) ||            ((newvertex[0] == edest[0]) && (newvertex[1] == edest[1]))) {          printf("Error:  Ran out of precision at (%.12g, %.12g).\n",                 newvertex[0], newvertex[1]);          printf("I attempted to split a segment to a smaller size than\n");          printf("  can be accommodated by the finite precision of\n");          printf("  floating point arithmetic.\n");          precisionerror();          triexit(1);        }        /* Insert the splitting vertex.  This should always succeed. */        success = insertvertex(m, b, newvertex, &enctri, ¤tenc,                               1, triflaws);        if ((success != SUCCESSFULVERTEX) && (success != ENCROACHINGVERTEX)) {          printf("Internal error in splitencsegs():\n");          printf("  Failure to split a segment.\n");          internalerror();        }        if (m->steinerleft > 0) {          m->steinerleft--;        }        /* Check the two new subsegments to see if they're encroached. */        dummy = checkseg4encroach(m, b, ¤tenc);        snextself(currentenc);        dummy = checkseg4encroach(m, b, ¤tenc);      }      badsubsegdealloc(m, encloop);      encloop = badsubsegtraverse(m);    }  }}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  tallyfaces()   Test every triangle in the mesh for quality measures.     *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid tallyfaces(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void tallyfaces(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri triangleloop;  if (b->verbose) {    printf("  Making a list of bad triangles.\n");  }  traversalinit(&m->triangles);  triangleloop.orient = 0;  triangleloop.tri = triangletraverse(m);  while (triangleloop.tri != (triangle *) NULL) {    /* If the triangle is bad, enqueue it. */    testtriangle(m, b, &triangleloop);    triangleloop.tri = triangletraverse(m);  }}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  splittriangle()   Inserts a vertex at the circumcenter of a triangle.    *//*                    Deletes the newly inserted vertex if it encroaches     *//*                    upon a segment.                                        *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid splittriangle(struct mesh *m, struct behavior *b,                   struct badtriang *badtri)#else /* not ANSI_DECLARATORS */void splittriangle(m, b, badtri)struct mesh *m;struct behavior *b;struct badtriang *badtri;#endif /* not ANSI_DECLARATORS */{  struct otri badotri;  vertex borg, bdest, bapex;  vertex newvertex;  REAL xi, eta;  enum insertvertexresult success;  int errorflag;  int i;  decode(badtri->poortri, badotri);  org(badotri, borg);  dest(badotri, bdest);  apex(badotri, bapex);  /* Make sure that this triangle is still the same triangle it was      */  /*   when it was tested and determined to be of bad quality.           */  /*   Subsequent transformations may have made it a different triangle. */  if (!deadtri(badotri.tri) && (borg == badtri->triangorg) &&      (bdest == badtri->triangdest) && (bapex == badtri->triangapex)) {    if (b->verbose > 1) {      printf("  Splitting this triangle at its circumcenter:\n");      printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", borg[0],             borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);    }    errorflag = 0;    /* Create a new vertex at the triangle's circumcenter. */    newvertex = (vertex) poolalloc(&m->vertices);    findcircumcenter(m, b, borg, bdest, bapex, newvertex, &xi, &eta, 1);    /* Check whether the new vertex lies on a triangle vertex. */    if (((newvertex[0] == borg[0]) && (newvertex[1] == borg[1])) ||        ((newvertex[0] == bdest[0]) && (newvertex[1] == bdest[1])) ||        ((newvertex[0] == bapex[0]) && (newvertex[1] == bapex[1]))) {      if (!b->quiet) {        printf(             "Warning:  New vertex (%.12g, %.12g) falls on existing vertex.\n",               newvertex[0], newvertex[1]);        errorflag = 1;      }      vertexdealloc(m, newvertex);    } else {      for (i = 2; i < 2 + m->nextras; i++) {        /* Interpolate the vertex attributes at the circumcenter. */        newvertex[i] = borg[i] + xi * (bdest[i] - borg[i])                              + eta * (bapex[i] - borg[i]);      }      /* The new vertex must be in the interior, and therefore is a */      /*   free vertex with a marker of zero.                       */      setvertexmark(newvertex, 0);      setvertextype(newvertex, FREEVERTEX);      /* Ensure that the handle `badotri' does not represent the longest  */      /*   edge of the triangle.  This ensures that the circumcenter must */      /*   fall to the left of this edge, so point location will work.    */      /*   (If the angle org-apex-dest exceeds 90 degrees, then the       */      /*   circumcenter lies outside the org-dest edge, and eta is        */      /*   negative.  Roundoff error might prevent eta from being         */      /*   negative when it should be, so I test eta against xi.)         */      if (eta < xi) {        lprevself(badotri);      }      /* Insert the circumcenter, searching from the edge of the triangle, */      /*   and maintain the Delaunay property of the triangulation.        */      success = insertvertex(m, b, newvertex, &badotri, (struct osub *) NULL,                             1, 1);      if (success == SUCCESSFULVERTEX) {        if (m->steinerleft > 0) {          m->steinerleft--;        }      } else if (success == ENCROACHINGVERTEX) {        /* If the newly inserted vertex encroaches upon a subsegment, */        /*   delete the new vertex.                                   */        undovertex(m, b);        if (b->verbose > 1) {          printf("  Rejecting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);        }        vertexdealloc(m, newvertex);      } else if (success == VIOLATINGVERTEX) {        /* Failed to insert the new vertex, but some subsegment was */        /*   marked as being encroached.                            */        vertexdealloc(m, newvertex);      } else {                                 /* success == DUPLICATEVERTEX */        /* Couldn't insert the new vertex because a vertex is already there. */        if (!b->quiet) {          printf(            "Warning:  New vertex (%.12g, %.12g) falls on existing vertex.\n",                 newvertex[0], newvertex[1]);          errorflag = 1;        }        vertexdealloc(m, newvertex);      }    }    if (errorflag) {      if (b->verbose) {        printf("  The new vertex is at the circumcenter of triangle\n");        printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",               borg[0], borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);      }      printf("This probably means that I am trying to refine triangles\n");      printf("  to a smaller size than can be accommodated by the finite\n");      printf("  precision of floating point arithmetic.  (You can be\n");      printf("  sure of this if I fail to terminate.)\n");      precisionerror();    }  }}#endif /* not CDT_ONLY *//*****************************************************************************//*                                                                           *//*  enforcequality()   Remove all the encroached subsegments and bad         *//*                     triangles from the triangulation.                     *//*                                                                           *//*****************************************************************************/#ifndef CDT_ONLY#ifdef ANSI_DECLARATORSvoid enforcequality(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void enforcequality(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct badtriang *badtri;  int i;  if (!b->quiet) {    printf("Adding Steiner points to enforce quality.\n");  }  /* Initialize the pool of encroached subsegments. */  poolinit(&m->badsubsegs, sizeof(struct badsubseg), BADSUBSEGPERBLOCK,           BADSUBSEGPERBLOCK, 0);  if (b->verbose) {    printf("  Looking for encroached subsegments.\n");  }  /* Test all segments to see if they're encroached. */  tallyencs(m, b);  if (b->verbose && (m->badsubsegs.items > 0)) {    printf("  Splitting encroached subsegments.\n");  }  /* Fix encroached subsegments without noting bad triangles. */  splitencsegs(m, b, 0);  /* At this point, if we haven't run out of Steiner points, the */  /*   triangulation should be (conforming) Delaunay.            */  /* Next, we worry about enforcing triangle quality. */  if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) {    /* Initialize the pool of bad triangles. */    poolinit(&m->badtriangles, sizeof(struct badtriang), BADTRIPERBLOCK,             BADTRIPERBLOCK, 0);    /* Initialize the queues of bad triangles. */    for (i = 0; i < 4096; i++) {      m->queuefront[i] = (struct badtriang *) NULL;    }    m->firstnonemptyq = -1;    /* Test all triangles to see if they're bad. */    tallyfaces(m, b);    /* Initialize the pool of recently flipped triangles. */    poolinit(&m->flipstackers, sizeof(struct flipstacker), FLIPSTACKERPERBLOCK,             FLIPSTACKERPERBLOCK, 0);    m->checkquality = 1;    if (b->verbose) {      printf("  Splitting bad triangles.\n");    }    while ((m->badtriangles.items > 0) && (m->steinerleft != 0)) {      /* Fix one bad triangle by inserting a vertex at its circumcenter. */      badtri = dequeuebadtriang(m);      splittriangle(m, b, badtri);      if (m->badsubsegs.items > 0) {        /* Put bad triangle back in queue for another try later. */        enqueuebadtriang(m, b, badtri);        /* Fix any encroached subsegments that resulted. */        /*   Record any new bad triangles that result.   */        splitencsegs(m, b, 1);      } else {        /* Return the bad triangle to the pool. */        pooldealloc(&m->badtriangles, (VOID *) badtri);      }    }  }  /* At this point, if the "-D" switch was selected and we haven't run out  */  /*   of Steiner points, the triangulation should be (conforming) Delaunay */  /*   and have no low-quality triangles.                                   */  /* Might we have run out of Steiner points too soon? */  if (!b->quiet && b->conformdel && (m->badsubsegs.items > 0) &&      (m->steinerleft == 0)) {    printf("\nWarning:  I ran out of Steiner points, but the mesh has\n");    if (m->badsubsegs.items == 1) {      printf("  one encroached subsegment, and therefore might not be truly\n"             );    } else {      printf("  %ld encroached subsegments, and therefore might not be truly\n"             , m->badsubsegs.items);    }    printf("  Delaunay.  If the Delaunay property is important to you,\n");    printf("  try increasing the number of Steiner points (controlled by\n");    printf("  the -S switch) slightly and try again.\n\n");  }}#endif /* not CDT_ONLY *//**                                                                         **//**                                                                         **//********* Mesh quality maintenance ends here                        *********//*****************************************************************************//*                                                                           *//*  highorder()   Create extra nodes for quadratic subparametric elements.   *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid highorder(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void highorder(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri triangleloop, trisym;  struct osub checkmark;  vertex newvertex;  vertex torg, tdest;  int i;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */  if (!b->quiet) {    printf("Adding vertices for second-order triangles.\n");  }  /* The following line ensures that dead items in the pool of nodes    */  /*   cannot be allocated for the extra nodes associated with high     */  /*   order elements.  This ensures that the primary nodes (at the     */  /*   corners of elements) will occur earlier in the output files, and */  /*   have lower indices, than the extra nodes.                        */  m->vertices.deaditemstack = (VOID *) NULL;  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  /* To loop over the set of edges, loop over all triangles, and look at   */  /*   the three edges of each triangle.  If there isn't another triangle  */  /*   adjacent to the edge, operate on the edge.  If there is another     */  /*   adjacent triangle, operate on the edge only if the current triangle */  /*   has a smaller pointer than its neighbor.  This way, each edge is    */  /*   considered only once.                                               */  while (triangleloop.tri != (triangle *) NULL) {    for (triangleloop.orient = 0; triangleloop.orient < 3;         triangleloop.orient++) {      sym(triangleloop, trisym);      if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {        org(triangleloop, torg);        dest(triangleloop, tdest);        /* Create a new node in the middle of the edge.  Interpolate */        /*   its attributes.                                         */        newvertex = (vertex) poolalloc(&m->vertices);        for (i = 0; i < 2 + m->nextras; i++) {          newvertex[i] = 0.5 * (torg[i] + tdest[i]);        }        /* Set the new node's marker to zero or one, depending on */        /*   whether it lies on a boundary.                       */        setvertexmark(newvertex, trisym.tri == m->dummytri);        setvertextype(newvertex,                      trisym.tri == m->dummytri ? FREEVERTEX : SEGMENTVERTEX);        if (b->usesegments) {          tspivot(triangleloop, checkmark);          /* If this edge is a segment, transfer the marker to the new node. */          if (checkmark.ss != m->dummysub) {            setvertexmark(newvertex, mark(checkmark));            setvertextype(newvertex, SEGMENTVERTEX);          }        }        if (b->verbose > 1) {          printf("  Creating (%.12g, %.12g).\n", newvertex[0], newvertex[1]);        }        /* Record the new node in the (one or two) adjacent elements. */        triangleloop.tri[m->highorderindex + triangleloop.orient] =                (triangle) newvertex;        if (trisym.tri != m->dummytri) {          trisym.tri[m->highorderindex + trisym.orient] = (triangle) newvertex;        }      }    }    triangleloop.tri = triangletraverse(m);  }}/********* File I/O routines begin here                              *********//**                                                                         **//**                                                                         **//*****************************************************************************//*                                                                           *//*  readline()   Read a nonempty line from a file.                           *//*                                                                           *//*  A line is considered "nonempty" if it contains something that looks like *//*  a number.  Comments (prefaced by `#') are ignored.                       *//*                                                                           *//*****************************************************************************/#ifndef TRILIBRARY#ifdef ANSI_DECLARATORSchar *readline(char *string, FILE *infile, char *infilename)#else /* not ANSI_DECLARATORS */char *readline(string, infile, infilename)char *string;FILE *infile;char *infilename;#endif /* not ANSI_DECLARATORS */{  char *result;  /* Search for something that looks like a number. */  do {    result = fgets(string, INPUTLINESIZE, infile);    if (result == (char *) NULL) {      printf("  Error:  Unexpected end of file in %s.\n", infilename);      triexit(1);    }    /* Skip anything that doesn't look like a number, a comment, */    /*   or the end of a line.                                   */    while ((*result != '\0') && (*result != '#')           && (*result != '.') && (*result != '+') && (*result != '-')           && ((*result < '0') || (*result > '9'))) {      result++;    }  /* If it's a comment or end of line, read another line and try again. */  } while ((*result == '#') || (*result == '\0'));  return result;}#endif /* not TRILIBRARY *//*****************************************************************************//*                                                                           *//*  findfield()   Find the next field of a string.                           *//*                                                                           *//*  Jumps past the current field by searching for whitespace, then jumps     *//*  past the whitespace to find the next field.                              *//*                                                                           *//*****************************************************************************/#ifndef TRILIBRARY#ifdef ANSI_DECLARATORSchar *findfield(char *string)#else /* not ANSI_DECLARATORS */char *findfield(string)char *string;#endif /* not ANSI_DECLARATORS */{  char *result;  result = string;  /* Skip the current field.  Stop upon reaching whitespace. */  while ((*result != '\0') && (*result != '#')         && (*result != ' ') && (*result != '\t')) {    result++;  }  /* Now skip the whitespace and anything else that doesn't look like a */  /*   number, a comment, or the end of a line.                         */  while ((*result != '\0') && (*result != '#')         && (*result != '.') && (*result != '+') && (*result != '-')         && ((*result < '0') || (*result > '9'))) {    result++;  }  /* Check for a comment (prefixed with `#'). */  if (*result == '#') {    *result = '\0';  }  return result;}#endif /* not TRILIBRARY *//*****************************************************************************//*                                                                           *//*  readnodes()   Read the vertices from a file, which may be a .node or     *//*                .poly file.                                                *//*                                                                           *//*****************************************************************************/#ifndef TRILIBRARY#ifdef ANSI_DECLARATORSvoid readnodes(struct mesh *m, struct behavior *b, char *nodefilename,               char *polyfilename, FILE **polyfile)#else /* not ANSI_DECLARATORS */void readnodes(m, b, nodefilename, polyfilename, polyfile)struct mesh *m;struct behavior *b;char *nodefilename;char *polyfilename;FILE **polyfile;#endif /* not ANSI_DECLARATORS */{  FILE *infile;  vertex vertexloop;  char inputline[INPUTLINESIZE];  char *stringptr;  char *infilename;  REAL x, y;  int firstnode;  int nodemarkers;  int currentmarker;  int i, j;  if (b->poly) {    /* Read the vertices from a .poly file. */    if (!b->quiet) {      printf("Opening %s.\n", polyfilename);    }    *polyfile = fopen(polyfilename, "r");    if (*polyfile == (FILE *) NULL) {      printf("  Error:  Cannot access file %s.\n", polyfilename);      triexit(1);    }    /* Read number of vertices, number of dimensions, number of vertex */    /*   attributes, and number of boundary markers.                   */    stringptr = readline(inputline, *polyfile, polyfilename);    m->invertices = (int) strtol(stringptr, &stringptr, 0);    stringptr = findfield(stringptr);    if (*stringptr == '\0') {      m->mesh_dim = 2;    } else {      m->mesh_dim = (int) strtol(stringptr, &stringptr, 0);    }    stringptr = findfield(stringptr);    if (*stringptr == '\0') {      m->nextras = 0;    } else {      m->nextras = (int) strtol(stringptr, &stringptr, 0);    }    stringptr = findfield(stringptr);    if (*stringptr == '\0') {      nodemarkers = 0;    } else {      nodemarkers = (int) strtol(stringptr, &stringptr, 0);    }    if (m->invertices > 0) {      infile = *polyfile;      infilename = polyfilename;      m->readnodefile = 0;    } else {      /* If the .poly file claims there are zero vertices, that means that */      /*   the vertices should be read from a separate .node file.         */      m->readnodefile = 1;      infilename = nodefilename;    }  } else {    m->readnodefile = 1;    infilename = nodefilename;    *polyfile = (FILE *) NULL;  }  if (m->readnodefile) {    /* Read the vertices from a .node file. */    if (!b->quiet) {      printf("Opening %s.\n", nodefilename);    }    infile = fopen(nodefilename, "r");    if (infile == (FILE *) NULL) {      printf("  Error:  Cannot access file %s.\n", nodefilename);      triexit(1);    }    /* Read number of vertices, number of dimensions, number of vertex */    /*   attributes, and number of boundary markers.                   */    stringptr = readline(inputline, infile, nodefilename);    m->invertices = (int) strtol(stringptr, &stringptr, 0);    stringptr = findfield(stringptr);    if (*stringptr == '\0') {      m->mesh_dim = 2;    } else {      m->mesh_dim = (int) strtol(stringptr, &stringptr, 0);     }    stringptr = findfield(stringptr);    if (*stringptr == '\0') {      m->nextras = 0;    } else {      m->nextras = (int) strtol(stringptr, &stringptr, 0);    }    stringptr = findfield(stringptr);    if (*stringptr == '\0') {      nodemarkers = 0;    } else {      nodemarkers = (int) strtol(stringptr, &stringptr, 0);    }  }  if (m->invertices < 3) {    printf("Error:  Input must have at least three input vertices.\n");    triexit(1);  }  if (m->mesh_dim != 2) {    printf("Error:  Triangle only works with two-dimensional meshes.\n");    triexit(1);  }  if (m->nextras == 0) {    b->weighted = 0;  }  initializevertexpool(m, b);  /* Read the vertices. */  for (i = 0; i < m->invertices; i++) {    vertexloop = (vertex) poolalloc(&m->vertices);    stringptr = readline(inputline, infile, infilename);    if (i == 0) {      firstnode = (int) strtol(stringptr, &stringptr, 0);      if ((firstnode == 0) || (firstnode == 1)) {        b->firstnumber = firstnode;      }    }    stringptr = findfield(stringptr);    if (*stringptr == '\0') {      printf("Error:  Vertex %d has no x coordinate.\n", b->firstnumber + i);      triexit(1);    }    x = (REAL) strtod(stringptr, &stringptr);    stringptr = findfield(stringptr);    if (*stringptr == '\0') {      printf("Error:  Vertex %d has no y coordinate.\n", b->firstnumber + i);      triexit(1);    }    y = (REAL) strtod(stringptr, &stringptr);    vertexloop[0] = x;    vertexloop[1] = y;    /* Read the vertex attributes. */    for (j = 2; j < 2 + m->nextras; j++) {      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        vertexloop[j] = 0.0;      } else {        vertexloop[j] = (REAL) strtod(stringptr, &stringptr);      }    }    if (nodemarkers) {      /* Read a vertex marker. */      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        setvertexmark(vertexloop, 0);      } else {        currentmarker = (int) strtol(stringptr, &stringptr, 0);        setvertexmark(vertexloop, currentmarker);      }    } else {      /* If no markers are specified in the file, they default to zero. */      setvertexmark(vertexloop, 0);    }    setvertextype(vertexloop, INPUTVERTEX);    /* Determine the smallest and largest x and y coordinates. */    if (i == 0) {      m->xmin = m->xmax = x;      m->ymin = m->ymax = y;    } else {      m->xmin = (x < m->xmin) ? x : m->xmin;      m->xmax = (x > m->xmax) ? x : m->xmax;      m->ymin = (y < m->ymin) ? y : m->ymin;      m->ymax = (y > m->ymax) ? y : m->ymax;    }  }  if (m->readnodefile) {    fclose(infile);  }  /* Nonexistent x value used as a flag to mark circle events in sweepline */  /*   Delaunay algorithm.                                                 */  m->xminextreme = 10 * m->xmin - 9 * m->xmax;}#endif /* not TRILIBRARY *//*****************************************************************************//*                                                                           *//*  transfernodes()   Read the vertices from memory.                         *//*                                                                           *//*****************************************************************************/#ifdef TRILIBRARY#ifdef ANSI_DECLARATORSvoid transfernodes(struct mesh *m, struct behavior *b, REAL *pointlist,                   REAL *pointattriblist, int *pointmarkerlist,                   int numberofpoints, int numberofpointattribs)#else /* not ANSI_DECLARATORS */void transfernodes(m, b, pointlist, pointattriblist, pointmarkerlist,                   numberofpoints, numberofpointattribs)struct mesh *m;struct behavior *b;REAL *pointlist;REAL *pointattriblist;int *pointmarkerlist;int numberofpoints;int numberofpointattribs;#endif /* not ANSI_DECLARATORS */{  vertex vertexloop;  REAL x, y;  int i, j;  int coordindex;  int attribindex;  m->invertices = numberofpoints;  m->mesh_dim = 2;  m->nextras = numberofpointattribs;  m->readnodefile = 0;  if (m->invertices < 3) {    printf("Error:  Input must have at least three input vertices.\n");    triexit(1);  }  if (m->nextras == 0) {    b->weighted = 0;  }  initializevertexpool(m, b);  /* Read the vertices. */  coordindex = 0;  attribindex = 0;  for (i = 0; i < m->invertices; i++) {    vertexloop = (vertex) poolalloc(&m->vertices);    /* Read the vertex coordinates. */    x = vertexloop[0] = pointlist[coordindex++];    y = vertexloop[1] = pointlist[coordindex++];    /* Read the vertex attributes. */    for (j = 0; j < numberofpointattribs; j++) {      vertexloop[2 + j] = pointattriblist[attribindex++];    }    if (pointmarkerlist != (int *) NULL) {      /* Read a vertex marker. */      setvertexmark(vertexloop, pointmarkerlist[i]);    } else {      /* If no markers are specified, they default to zero. */      setvertexmark(vertexloop, 0);    }    setvertextype(vertexloop, INPUTVERTEX);    /* Determine the smallest and largest x and y coordinates. */    if (i == 0) {      m->xmin = m->xmax = x;      m->ymin = m->ymax = y;    } else {      m->xmin = (x < m->xmin) ? x : m->xmin;      m->xmax = (x > m->xmax) ? x : m->xmax;      m->ymin = (y < m->ymin) ? y : m->ymin;      m->ymax = (y > m->ymax) ? y : m->ymax;    }  }  /* Nonexistent x value used as a flag to mark circle events in sweepline */  /*   Delaunay algorithm.                                                 */  m->xminextreme = 10 * m->xmin - 9 * m->xmax;}#endif /* TRILIBRARY *//*****************************************************************************//*                                                                           *//*  readholes()   Read the holes, and possibly regional attributes and area  *//*                constraints, from a .poly file.                            *//*                                                                           *//*****************************************************************************/#ifndef TRILIBRARY#ifdef ANSI_DECLARATORSvoid readholes(struct mesh *m, struct behavior *b,               FILE *polyfile, char *polyfilename, REAL **hlist, int *holes,               REAL **rlist, int *regions)#else /* not ANSI_DECLARATORS */void readholes(m, b, polyfile, polyfilename, hlist, holes, rlist, regions)struct mesh *m;struct behavior *b;FILE *polyfile;char *polyfilename;REAL **hlist;int *holes;REAL **rlist;int *regions;#endif /* not ANSI_DECLARATORS */{  REAL *holelist;  REAL *regionlist;  char inputline[INPUTLINESIZE];  char *stringptr;  int index;  int i;  /* Read the holes. */  stringptr = readline(inputline, polyfile, polyfilename);  *holes = (int) strtol(stringptr, &stringptr, 0);  if (*holes > 0) {    holelist = (REAL *) trimalloc(2 * *holes * (int) sizeof(REAL));    *hlist = holelist;    for (i = 0; i < 2 * *holes; i += 2) {      stringptr = readline(inputline, polyfile, polyfilename);      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        printf("Error:  Hole %d has no x coordinate.\n",               b->firstnumber + (i >> 1));        triexit(1);      } else {        holelist[i] = (REAL) strtod(stringptr, &stringptr);      }      stringptr = findfield(stringptr);      if (*stringptr == '\0') {        printf("Error:  Hole %d has no y coordinate.\n",               b->firstnumber + (i >> 1));        triexit(1);      } else {        holelist[i + 1] = (REAL) strtod(stringptr, &stringptr);      }    }  } else {    *hlist = (REAL *) NULL;  }#ifndef CDT_ONLY  if ((b->regionattrib || b->vararea) && !b->refine) {    /* Read the area constraints. */    stringptr = readline(inputline, polyfile, polyfilename);    *regions = (int) strtol(stringptr, &stringptr, 0);    if (*regions > 0) {      regionlist = (REAL *) trimalloc(4 * *regions * (int) sizeof(REAL));      *rlist = regionlist;      index = 0;      for (i = 0; i < *regions; i++) {        stringptr = readline(inputline, polyfile, polyfilename);        stringptr = findfield(stringptr);        if (*stringptr == '\0') {          printf("Error:  Region %d has no x coordinate.\n",                 b->firstnumber + i);          triexit(1);        } else {          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);        }        stringptr = findfield(stringptr);        if (*stringptr == '\0') {          printf("Error:  Region %d has no y coordinate.\n",                 b->firstnumber + i);          triexit(1);        } else {          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);        }        stringptr = findfield(stringptr);        if (*stringptr == '\0') {          printf(            "Error:  Region %d has no region attribute or area constraint.\n",                 b->firstnumber + i);          triexit(1);        } else {          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);        }        stringptr = findfield(stringptr);        if (*stringptr == '\0') {          regionlist[index] = regionlist[index - 1];        } else {          regionlist[index] = (REAL) strtod(stringptr, &stringptr);        }        index++;      }    }  } else {    /* Set `*regions' to zero to avoid an accidental free() later. */    *regions = 0;    *rlist = (REAL *) NULL;  }#endif /* not CDT_ONLY */  fclose(polyfile);}#endif /* not TRILIBRARY *//*****************************************************************************//*                                                                           *//*  finishfile()   Write the command line to the output file so the user     *//*                 can remember how the file was generated.  Close the file. *//*                                                                           *//*****************************************************************************/#ifndef TRILIBRARY#ifdef ANSI_DECLARATORSvoid finishfile(FILE *outfile, int argc, char **argv)#else /* not ANSI_DECLARATORS */void finishfile(outfile, argc, argv)FILE *outfile;int argc;char **argv;#endif /* not ANSI_DECLARATORS */{  int i;  fprintf(outfile, "# Generated by");  for (i = 0; i < argc; i++) {    fprintf(outfile, " ");    fputs(argv[i], outfile);  }  fprintf(outfile, "\n");  fclose(outfile);}#endif /* not TRILIBRARY *//*****************************************************************************//*                                                                           *//*  writenodes()   Number the vertices and write them to a .node file.       *//*                                                                           *//*  To save memory, the vertex numbers are written over the boundary markers *//*  after the vertices are written to a file.                                *//*                                                                           *//*****************************************************************************/#ifdef TRILIBRARY#ifdef ANSI_DECLARATORSvoid writenodes(struct mesh *m, struct behavior *b, REAL **pointlist,                REAL **pointattriblist, int **pointmarkerlist)#else /* not ANSI_DECLARATORS */void writenodes(m, b, pointlist, pointattriblist, pointmarkerlist)struct mesh *m;struct behavior *b;REAL **pointlist;REAL **pointattriblist;int **pointmarkerlist;#endif /* not ANSI_DECLARATORS */#else /* not TRILIBRARY */#ifdef ANSI_DECLARATORSvoid writenodes(struct mesh *m, struct behavior *b, char *nodefilename,                int argc, char **argv)#else /* not ANSI_DECLARATORS */void writenodes(m, b, nodefilename, argc, argv)struct mesh *m;struct behavior *b;char *nodefilename;int argc;char **argv;#endif /* not ANSI_DECLARATORS */#endif /* not TRILIBRARY */{#ifdef TRILIBRARY  REAL *plist;  REAL *palist;  int *pmlist;  int coordindex;  int attribindex;#else /* not TRILIBRARY */  FILE *outfile;#endif /* not TRILIBRARY */  vertex vertexloop;  long outvertices;  int vertexnumber;  int i;  if (b->jettison) {    outvertices = m->vertices.items - m->undeads;  } else {    outvertices = m->vertices.items;  }#ifdef TRILIBRARY  if (!b->quiet) {    printf("Writing vertices.\n");  }  /* Allocate memory for output vertices if necessary. */  if (*pointlist == (REAL *) NULL) {    *pointlist = (REAL *) trimalloc((int) (outvertices * 2 * sizeof(REAL)));  }  /* Allocate memory for output vertex attributes if necessary. */  if ((m->nextras > 0) && (*pointattriblist == (REAL *) NULL)) {    *pointattriblist = (REAL *) trimalloc((int) (outvertices * m->nextras *                                                 sizeof(REAL)));  }  /* Allocate memory for output vertex markers if necessary. */  if (!b->nobound && (*pointmarkerlist == (int *) NULL)) {    *pointmarkerlist = (int *) trimalloc((int) (outvertices * sizeof(int)));  }  plist = *pointlist;  palist = *pointattriblist;  pmlist = *pointmarkerlist;  coordindex = 0;  attribindex = 0;#else /* not TRILIBRARY */  if (!b->quiet) {    printf("Writing %s.\n", nodefilename);  }  outfile = fopen(nodefilename, "w");  if (outfile == (FILE *) NULL) {    printf("  Error:  Cannot create file %s.\n", nodefilename);    triexit(1);  }  /* Number of vertices, number of dimensions, number of vertex attributes, */  /*   and number of boundary markers (zero or one).                        */  fprintf(outfile, "%ld  %d  %d  %d\n", outvertices, m->mesh_dim,          m->nextras, 1 - b->nobound);#endif /* not TRILIBRARY */  traversalinit(&m->vertices);  vertexnumber = b->firstnumber;  vertexloop = vertextraverse(m);  while (vertexloop != (vertex) NULL) {    if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {#ifdef TRILIBRARY      /* X and y coordinates. */      plist[coordindex++] = vertexloop[0];      plist[coordindex++] = vertexloop[1];      /* Vertex attributes. */      for (i = 0; i < m->nextras; i++) {        palist[attribindex++] = vertexloop[2 + i];      }      if (!b->nobound) {        /* Copy the boundary marker. */        pmlist[vertexnumber - b->firstnumber] = vertexmark(vertexloop);      }#else /* not TRILIBRARY */      /* Vertex number, x and y coordinates. */      fprintf(outfile, "%4d    %.17g  %.17g", vertexnumber, vertexloop[0],              vertexloop[1]);      for (i = 0; i < m->nextras; i++) {        /* Write an attribute. */        fprintf(outfile, "  %.17g", vertexloop[i + 2]);      }      if (b->nobound) {        fprintf(outfile, "\n");      } else {        /* Write the boundary marker. */        fprintf(outfile, "    %d\n", vertexmark(vertexloop));      }#endif /* not TRILIBRARY */      setvertexmark(vertexloop, vertexnumber);      vertexnumber++;    }    vertexloop = vertextraverse(m);  }#ifndef TRILIBRARY  finishfile(outfile, argc, argv);#endif /* not TRILIBRARY */}/*****************************************************************************//*                                                                           *//*  numbernodes()   Number the vertices.                                     *//*                                                                           *//*  Each vertex is assigned a marker equal to its number.                    *//*                                                                           *//*  Used when writenodes() is not called because no .node file is written.   *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid numbernodes(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void numbernodes(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  vertex vertexloop;  int vertexnumber;  traversalinit(&m->vertices);  vertexnumber = b->firstnumber;  vertexloop = vertextraverse(m);  while (vertexloop != (vertex) NULL) {    setvertexmark(vertexloop, vertexnumber);    if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {      vertexnumber++;    }    vertexloop = vertextraverse(m);  }}/*****************************************************************************//*                                                                           *//*  writeelements()   Write the triangles to an .ele file.                   *//*                                                                           *//*****************************************************************************/#ifdef TRILIBRARY#ifdef ANSI_DECLARATORSvoid writeelements(struct mesh *m, struct behavior *b,                   int **trianglelist, REAL **triangleattriblist)#else /* not ANSI_DECLARATORS */void writeelements(m, b, trianglelist, triangleattriblist)struct mesh *m;struct behavior *b;int **trianglelist;REAL **triangleattriblist;#endif /* not ANSI_DECLARATORS */#else /* not TRILIBRARY */#ifdef ANSI_DECLARATORSvoid writeelements(struct mesh *m, struct behavior *b, char *elefilename,                   int argc, char **argv)#else /* not ANSI_DECLARATORS */void writeelements(m, b, elefilename, argc, argv)struct mesh *m;struct behavior *b;char *elefilename;int argc;char **argv;#endif /* not ANSI_DECLARATORS */#endif /* not TRILIBRARY */{#ifdef TRILIBRARY  int *tlist;  REAL *talist;  int vertexindex;  int attribindex;#else /* not TRILIBRARY */  FILE *outfile;#endif /* not TRILIBRARY */  struct otri triangleloop;  vertex p1, p2, p3;  vertex mid1, mid2, mid3;  long elementnumber;  int i;#ifdef TRILIBRARY  if (!b->quiet) {    printf("Writing triangles.\n");  }  /* Allocate memory for output triangles if necessary. */  if (*trianglelist == (int *) NULL) {    *trianglelist = (int *) trimalloc((int) (m->triangles.items *                                             ((b->order + 1) * (b->order + 2) /                                              2) * sizeof(int)));  }  /* Allocate memory for output triangle attributes if necessary. */  if ((m->eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {    *triangleattriblist = (REAL *) trimalloc((int) (m->triangles.items *                                                    m->eextras *                                                    sizeof(REAL)));  }  tlist = *trianglelist;  talist = *triangleattriblist;  vertexindex = 0;  attribindex = 0;#else /* not TRILIBRARY */  if (!b->quiet) {    printf("Writing %s.\n", elefilename);  }  outfile = fopen(elefilename, "w");  if (outfile == (FILE *) NULL) {    printf("  Error:  Cannot create file %s.\n", elefilename);    triexit(1);  }  /* Number of triangles, vertices per triangle, attributes per triangle. */  fprintf(outfile, "%ld  %d  %d\n", m->triangles.items,          (b->order + 1) * (b->order + 2) / 2, m->eextras);#endif /* not TRILIBRARY */  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  triangleloop.orient = 0;  elementnumber = b->firstnumber;  while (triangleloop.tri != (triangle *) NULL) {    org(triangleloop, p1);    dest(triangleloop, p2);    apex(triangleloop, p3);    if (b->order == 1) {#ifdef TRILIBRARY      tlist[vertexindex++] = vertexmark(p1);      tlist[vertexindex++] = vertexmark(p2);      tlist[vertexindex++] = vertexmark(p3);#else /* not TRILIBRARY */      /* Triangle number, indices for three vertices. */      fprintf(outfile, "%4ld    %4d  %4d  %4d", elementnumber,              vertexmark(p1), vertexmark(p2), vertexmark(p3));#endif /* not TRILIBRARY */    } else {      mid1 = (vertex) triangleloop.tri[m->highorderindex + 1];      mid2 = (vertex) triangleloop.tri[m->highorderindex + 2];      mid3 = (vertex) triangleloop.tri[m->highorderindex];#ifdef TRILIBRARY      tlist[vertexindex++] = vertexmark(p1);      tlist[vertexindex++] = vertexmark(p2);      tlist[vertexindex++] = vertexmark(p3);      tlist[vertexindex++] = vertexmark(mid1);      tlist[vertexindex++] = vertexmark(mid2);      tlist[vertexindex++] = vertexmark(mid3);#else /* not TRILIBRARY */      /* Triangle number, indices for six vertices. */      fprintf(outfile, "%4ld    %4d  %4d  %4d  %4d  %4d  %4d", elementnumber,              vertexmark(p1), vertexmark(p2), vertexmark(p3), vertexmark(mid1),              vertexmark(mid2), vertexmark(mid3));#endif /* not TRILIBRARY */    }#ifdef TRILIBRARY    for (i = 0; i < m->eextras; i++) {      talist[attribindex++] = elemattribute(triangleloop, i);    }#else /* not TRILIBRARY */    for (i = 0; i < m->eextras; i++) {      fprintf(outfile, "  %.17g", elemattribute(triangleloop, i));    }    fprintf(outfile, "\n");#endif /* not TRILIBRARY */    triangleloop.tri = triangletraverse(m);    elementnumber++;  }#ifndef TRILIBRARY  finishfile(outfile, argc, argv);#endif /* not TRILIBRARY */}/*****************************************************************************//*                                                                           *//*  writepoly()   Write the segments and holes to a .poly file.              *//*                                                                           *//*****************************************************************************/#ifdef TRILIBRARY#ifdef ANSI_DECLARATORSvoid writepoly(struct mesh *m, struct behavior *b,               int **segmentlist, int **segmentmarkerlist)#else /* not ANSI_DECLARATORS */void writepoly(m, b, segmentlist, segmentmarkerlist)struct mesh *m;struct behavior *b;int **segmentlist;int **segmentmarkerlist;#endif /* not ANSI_DECLARATORS */#else /* not TRILIBRARY */#ifdef ANSI_DECLARATORSvoid writepoly(struct mesh *m, struct behavior *b, char *polyfilename,               REAL *holelist, int holes, REAL *regionlist, int regions,               int argc, char **argv)#else /* not ANSI_DECLARATORS */void writepoly(m, b, polyfilename, holelist, holes, regionlist, regions,               argc, argv)struct mesh *m;struct behavior *b;char *polyfilename;REAL *holelist;int holes;REAL *regionlist;int regions;int argc;char **argv;#endif /* not ANSI_DECLARATORS */#endif /* not TRILIBRARY */{#ifdef TRILIBRARY  int *slist;  int *smlist;  int index;#else /* not TRILIBRARY */  FILE *outfile;  long holenumber, regionnumber;#endif /* not TRILIBRARY */  struct osub subsegloop;  vertex endpoint1, endpoint2;  long subsegnumber;#ifdef TRILIBRARY  if (!b->quiet) {    printf("Writing segments.\n");  }  /* Allocate memory for output segments if necessary. */  if (*segmentlist == (int *) NULL) {    *segmentlist = (int *) trimalloc((int) (m->subsegs.items * 2 *                                            sizeof(int)));  }  /* Allocate memory for output segment markers if necessary. */  if (!b->nobound && (*segmentmarkerlist == (int *) NULL)) {    *segmentmarkerlist = (int *) trimalloc((int) (m->subsegs.items *                                                  sizeof(int)));  }  slist = *segmentlist;  smlist = *segmentmarkerlist;  index = 0;#else /* not TRILIBRARY */  if (!b->quiet) {    printf("Writing %s.\n", polyfilename);  }  outfile = fopen(polyfilename, "w");  if (outfile == (FILE *) NULL) {    printf("  Error:  Cannot create file %s.\n", polyfilename);    triexit(1);  }  /* The zero indicates that the vertices are in a separate .node file. */  /*   Followed by number of dimensions, number of vertex attributes,   */  /*   and number of boundary markers (zero or one).                    */  fprintf(outfile, "%d  %d  %d  %d\n", 0, m->mesh_dim, m->nextras,          1 - b->nobound);  /* Number of segments, number of boundary markers (zero or one). */  fprintf(outfile, "%ld  %d\n", m->subsegs.items, 1 - b->nobound);#endif /* not TRILIBRARY */  traversalinit(&m->subsegs);  subsegloop.ss = subsegtraverse(m);  subsegloop.ssorient = 0;  subsegnumber = b->firstnumber;  while (subsegloop.ss != (subseg *) NULL) {    sorg(subsegloop, endpoint1);    sdest(subsegloop, endpoint2);#ifdef TRILIBRARY    /* Copy indices of the segment's two endpoints. */    slist[index++] = vertexmark(endpoint1);    slist[index++] = vertexmark(endpoint2);    if (!b->nobound) {      /* Copy the boundary marker. */      smlist[subsegnumber - b->firstnumber] = mark(subsegloop);    }#else /* not TRILIBRARY */    /* Segment number, indices of its two endpoints, and possibly a marker. */    if (b->nobound) {      fprintf(outfile, "%4ld    %4d  %4d\n", subsegnumber,              vertexmark(endpoint1), vertexmark(endpoint2));    } else {      fprintf(outfile, "%4ld    %4d  %4d    %4d\n", subsegnumber,              vertexmark(endpoint1), vertexmark(endpoint2), mark(subsegloop));    }#endif /* not TRILIBRARY */    subsegloop.ss = subsegtraverse(m);    subsegnumber++;  }#ifndef TRILIBRARY#ifndef CDT_ONLY  fprintf(outfile, "%d\n", holes);  if (holes > 0) {    for (holenumber = 0; holenumber < holes; holenumber++) {      /* Hole number, x and y coordinates. */      fprintf(outfile, "%4ld   %.17g  %.17g\n", b->firstnumber + holenumber,              holelist[2 * holenumber], holelist[2 * holenumber + 1]);    }  }  if (regions > 0) {    fprintf(outfile, "%d\n", regions);    for (regionnumber = 0; regionnumber < regions; regionnumber++) {      /* Region number, x and y coordinates, attribute, maximum area. */      fprintf(outfile, "%4ld   %.17g  %.17g  %.17g  %.17g\n",              b->firstnumber + regionnumber,              regionlist[4 * regionnumber], regionlist[4 * regionnumber + 1],              regionlist[4 * regionnumber + 2],              regionlist[4 * regionnumber + 3]);    }  }#endif /* not CDT_ONLY */  finishfile(outfile, argc, argv);#endif /* not TRILIBRARY */}/*****************************************************************************//*                                                                           *//*  writeedges()   Write the edges to an .edge file.                         *//*                                                                           *//*****************************************************************************/#ifdef TRILIBRARY#ifdef ANSI_DECLARATORSvoid writeedges(struct mesh *m, struct behavior *b,                int **edgelist, int **edgemarkerlist)#else /* not ANSI_DECLARATORS */void writeedges(m, b, edgelist, edgemarkerlist)struct mesh *m;struct behavior *b;int **edgelist;int **edgemarkerlist;#endif /* not ANSI_DECLARATORS */#else /* not TRILIBRARY */#ifdef ANSI_DECLARATORSvoid writeedges(struct mesh *m, struct behavior *b, char *edgefilename,                int argc, char **argv)#else /* not ANSI_DECLARATORS */void writeedges(m, b, edgefilename, argc, argv)struct mesh *m;struct behavior *b;char *edgefilename;int argc;char **argv;#endif /* not ANSI_DECLARATORS */#endif /* not TRILIBRARY */{#ifdef TRILIBRARY  int *elist;  int *emlist;  int index;#else /* not TRILIBRARY */  FILE *outfile;#endif /* not TRILIBRARY */  struct otri triangleloop, trisym;  struct osub checkmark;  vertex p1, p2;  long edgenumber;  triangle ptr;                         /* Temporary variable used by sym(). */  subseg sptr;                      /* Temporary variable used by tspivot(). */#ifdef TRILIBRARY  if (!b->quiet) {    printf("Writing edges.\n");  }  /* Allocate memory for edges if necessary. */  if (*edgelist == (int *) NULL) {    *edgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));  }  /* Allocate memory for edge markers if necessary. */  if (!b->nobound && (*edgemarkerlist == (int *) NULL)) {    *edgemarkerlist = (int *) trimalloc((int) (m->edges * sizeof(int)));  }  elist = *edgelist;  emlist = *edgemarkerlist;  index = 0;#else /* not TRILIBRARY */  if (!b->quiet) {    printf("Writing %s.\n", edgefilename);  }  outfile = fopen(edgefilename, "w");  if (outfile == (FILE *) NULL) {    printf("  Error:  Cannot create file %s.\n", edgefilename);    triexit(1);  }  /* Number of edges, number of boundary markers (zero or one). */  fprintf(outfile, "%ld  %d\n", m->edges, 1 - b->nobound);#endif /* not TRILIBRARY */  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  edgenumber = b->firstnumber;  /* To loop over the set of edges, loop over all triangles, and look at   */  /*   the three edges of each triangle.  If there isn't another triangle  */  /*   adjacent to the edge, operate on the edge.  If there is another     */  /*   adjacent triangle, operate on the edge only if the current triangle */  /*   has a smaller pointer than its neighbor.  This way, each edge is    */  /*   considered only once.                                               */  while (triangleloop.tri != (triangle *) NULL) {    for (triangleloop.orient = 0; triangleloop.orient < 3;         triangleloop.orient++) {      sym(triangleloop, trisym);      if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {        org(triangleloop, p1);        dest(triangleloop, p2);#ifdef TRILIBRARY        elist[index++] = vertexmark(p1);        elist[index++] = vertexmark(p2);#endif /* TRILIBRARY */        if (b->nobound) {#ifndef TRILIBRARY          /* Edge number, indices of two endpoints. */          fprintf(outfile, "%4ld   %d  %d\n", edgenumber,                  vertexmark(p1), vertexmark(p2));#endif /* not TRILIBRARY */        } else {          /* Edge number, indices of two endpoints, and a boundary marker. */          /*   If there's no subsegment, the boundary marker is zero.      */          if (b->usesegments) {            tspivot(triangleloop, checkmark);            if (checkmark.ss == m->dummysub) {#ifdef TRILIBRARY              emlist[edgenumber - b->firstnumber] = 0;#else /* not TRILIBRARY */              fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,                      vertexmark(p1), vertexmark(p2), 0);#endif /* not TRILIBRARY */            } else {#ifdef TRILIBRARY              emlist[edgenumber - b->firstnumber] = mark(checkmark);#else /* not TRILIBRARY */              fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,                      vertexmark(p1), vertexmark(p2), mark(checkmark));#endif /* not TRILIBRARY */            }          } else {#ifdef TRILIBRARY            emlist[edgenumber - b->firstnumber] = trisym.tri == m->dummytri;#else /* not TRILIBRARY */            fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,                    vertexmark(p1), vertexmark(p2), trisym.tri == m->dummytri);#endif /* not TRILIBRARY */          }        }        edgenumber++;      }    }    triangleloop.tri = triangletraverse(m);  }#ifndef TRILIBRARY  finishfile(outfile, argc, argv);#endif /* not TRILIBRARY */}/*****************************************************************************//*                                                                           *//*  writevoronoi()   Write the Voronoi diagram to a .v.node and .v.edge      *//*                   file.                                                   *//*                                                                           *//*  The Voronoi diagram is the geometric dual of the Delaunay triangulation. *//*  Hence, the Voronoi vertices are listed by traversing the Delaunay        *//*  triangles, and the Voronoi edges are listed by traversing the Delaunay   *//*  edges.                                                                   *//*                                                                           *//*  WARNING:  In order to assign numbers to the Voronoi vertices, this       *//*  procedure messes up the subsegments or the extra nodes of every          *//*  element.  Hence, you should call this procedure last.                    *//*                                                                           *//*****************************************************************************/#ifdef TRILIBRARY#ifdef ANSI_DECLARATORSvoid writevoronoi(struct mesh *m, struct behavior *b, REAL **vpointlist,                  REAL **vpointattriblist, int **vpointmarkerlist,                  int **vedgelist, int **vedgemarkerlist, REAL **vnormlist)#else /* not ANSI_DECLARATORS */void writevoronoi(m, b, vpointlist, vpointattriblist, vpointmarkerlist,                  vedgelist, vedgemarkerlist, vnormlist)struct mesh *m;struct behavior *b;REAL **vpointlist;REAL **vpointattriblist;int **vpointmarkerlist;int **vedgelist;int **vedgemarkerlist;REAL **vnormlist;#endif /* not ANSI_DECLARATORS */#else /* not TRILIBRARY */#ifdef ANSI_DECLARATORSvoid writevoronoi(struct mesh *m, struct behavior *b, char *vnodefilename,                  char *vedgefilename, int argc, char **argv)#else /* not ANSI_DECLARATORS */void writevoronoi(m, b, vnodefilename, vedgefilename, argc, argv)struct mesh *m;struct behavior *b;char *vnodefilename;char *vedgefilename;int argc;char **argv;#endif /* not ANSI_DECLARATORS */#endif /* not TRILIBRARY */{#ifdef TRILIBRARY  REAL *plist;  REAL *palist;  int *elist;  REAL *normlist;  int coordindex;  int attribindex;#else /* not TRILIBRARY */  FILE *outfile;#endif /* not TRILIBRARY */  struct otri triangleloop, trisym;  vertex torg, tdest, tapex;  REAL circumcenter[2];  REAL xi, eta;  long vnodenumber, vedgenumber;  int p1, p2;  int i;  triangle ptr;                         /* Temporary variable used by sym(). */#ifdef TRILIBRARY  if (!b->quiet) {    printf("Writing Voronoi vertices.\n");  }  /* Allocate memory for Voronoi vertices if necessary. */  if (*vpointlist == (REAL *) NULL) {    *vpointlist = (REAL *) trimalloc((int) (m->triangles.items * 2 *                                            sizeof(REAL)));  }  /* Allocate memory for Voronoi vertex attributes if necessary. */  if (*vpointattriblist == (REAL *) NULL) {    *vpointattriblist = (REAL *) trimalloc((int) (m->triangles.items *                                                  m->nextras * sizeof(REAL)));  }  *vpointmarkerlist = (int *) NULL;  plist = *vpointlist;  palist = *vpointattriblist;  coordindex = 0;  attribindex = 0;#else /* not TRILIBRARY */  if (!b->quiet) {    printf("Writing %s.\n", vnodefilename);  }  outfile = fopen(vnodefilename, "w");  if (outfile == (FILE *) NULL) {    printf("  Error:  Cannot create file %s.\n", vnodefilename);    triexit(1);  }  /* Number of triangles, two dimensions, number of vertex attributes, */  /*   no markers.                                                     */  fprintf(outfile, "%ld  %d  %d  %d\n", m->triangles.items, 2, m->nextras, 0);#endif /* not TRILIBRARY */  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  triangleloop.orient = 0;  vnodenumber = b->firstnumber;  while (triangleloop.tri != (triangle *) NULL) {    org(triangleloop, torg);    dest(triangleloop, tdest);    apex(triangleloop, tapex);    findcircumcenter(m, b, torg, tdest, tapex, circumcenter, &xi, &eta, 0);#ifdef TRILIBRARY    /* X and y coordinates. */    plist[coordindex++] = circumcenter[0];    plist[coordindex++] = circumcenter[1];    for (i = 2; i < 2 + m->nextras; i++) {      /* Interpolate the vertex attributes at the circumcenter. */      palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])                                     + eta * (tapex[i] - torg[i]);    }#else /* not TRILIBRARY */    /* Voronoi vertex number, x and y coordinates. */    fprintf(outfile, "%4ld    %.17g  %.17g", vnodenumber, circumcenter[0],            circumcenter[1]);    for (i = 2; i < 2 + m->nextras; i++) {      /* Interpolate the vertex attributes at the circumcenter. */      fprintf(outfile, "  %.17g", torg[i] + xi * (tdest[i] - torg[i])                                         + eta * (tapex[i] - torg[i]));    }    fprintf(outfile, "\n");#endif /* not TRILIBRARY */    * (int *) (triangleloop.tri + 6) = (int) vnodenumber;    triangleloop.tri = triangletraverse(m);    vnodenumber++;  }#ifndef TRILIBRARY  finishfile(outfile, argc, argv);#endif /* not TRILIBRARY */#ifdef TRILIBRARY  if (!b->quiet) {    printf("Writing Voronoi edges.\n");  }  /* Allocate memory for output Voronoi edges if necessary. */  if (*vedgelist == (int *) NULL) {    *vedgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));  }  *vedgemarkerlist = (int *) NULL;  /* Allocate memory for output Voronoi norms if necessary. */  if (*vnormlist == (REAL *) NULL) {    *vnormlist = (REAL *) trimalloc((int) (m->edges * 2 * sizeof(REAL)));  }  elist = *vedgelist;  normlist = *vnormlist;  coordindex = 0;#else /* not TRILIBRARY */  if (!b->quiet) {    printf("Writing %s.\n", vedgefilename);  }  outfile = fopen(vedgefilename, "w");  if (outfile == (FILE *) NULL) {    printf("  Error:  Cannot create file %s.\n", vedgefilename);    triexit(1);  }  /* Number of edges, zero boundary markers. */  fprintf(outfile, "%ld  %d\n", m->edges, 0);#endif /* not TRILIBRARY */  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  vedgenumber = b->firstnumber;  /* To loop over the set of edges, loop over all triangles, and look at   */  /*   the three edges of each triangle.  If there isn't another triangle  */  /*   adjacent to the edge, operate on the edge.  If there is another     */  /*   adjacent triangle, operate on the edge only if the current triangle */  /*   has a smaller pointer than its neighbor.  This way, each edge is    */  /*   considered only once.                                               */  while (triangleloop.tri != (triangle *) NULL) {    for (triangleloop.orient = 0; triangleloop.orient < 3;         triangleloop.orient++) {      sym(triangleloop, trisym);      if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {        /* Find the number of this triangle (and Voronoi vertex). */        p1 = * (int *) (triangleloop.tri + 6);        if (trisym.tri == m->dummytri) {          org(triangleloop, torg);          dest(triangleloop, tdest);#ifdef TRILIBRARY          /* Copy an infinite ray.  Index of one endpoint, and -1. */          elist[coordindex] = p1;          normlist[coordindex++] = tdest[1] - torg[1];          elist[coordindex] = -1;          normlist[coordindex++] = torg[0] - tdest[0];#else /* not TRILIBRARY */          /* Write an infinite ray.  Edge number, index of one endpoint, -1, */          /*   and x and y coordinates of a vector representing the          */          /*   direction of the ray.                                         */          fprintf(outfile, "%4ld   %d  %d   %.17g  %.17g\n", vedgenumber,                  p1, -1, tdest[1] - torg[1], torg[0] - tdest[0]);#endif /* not TRILIBRARY */        } else {          /* Find the number of the adjacent triangle (and Voronoi vertex). */          p2 = * (int *) (trisym.tri + 6);          /* Finite edge.  Write indices of two endpoints. */#ifdef TRILIBRARY          elist[coordindex] = p1;          normlist[coordindex++] = 0.0;          elist[coordindex] = p2;          normlist[coordindex++] = 0.0;#else /* not TRILIBRARY */          fprintf(outfile, "%4ld   %d  %d\n", vedgenumber, p1, p2);#endif /* not TRILIBRARY */        }        vedgenumber++;      }    }    triangleloop.tri = triangletraverse(m);  }#ifndef TRILIBRARY  finishfile(outfile, argc, argv);#endif /* not TRILIBRARY */}#ifdef TRILIBRARY#ifdef ANSI_DECLARATORSvoid writeneighbors(struct mesh *m, struct behavior *b, int **neighborlist)#else /* not ANSI_DECLARATORS */void writeneighbors(m, b, neighborlist)struct mesh *m;struct behavior *b;int **neighborlist;#endif /* not ANSI_DECLARATORS */#else /* not TRILIBRARY */#ifdef ANSI_DECLARATORSvoid writeneighbors(struct mesh *m, struct behavior *b, char *neighborfilename,                    int argc, char **argv)#else /* not ANSI_DECLARATORS */void writeneighbors(m, b, neighborfilename, argc, argv)struct mesh *m;struct behavior *b;char *neighborfilename;int argc;char **argv;#endif /* not ANSI_DECLARATORS */#endif /* not TRILIBRARY */{#ifdef TRILIBRARY  int *nlist;  int index;#else /* not TRILIBRARY */  FILE *outfile;#endif /* not TRILIBRARY */  struct otri triangleloop, trisym;  long elementnumber;  int neighbor1, neighbor2, neighbor3;  triangle ptr;                         /* Temporary variable used by sym(). */#ifdef TRILIBRARY  if (!b->quiet) {    printf("Writing neighbors.\n");  }  /* Allocate memory for neighbors if necessary. */  if (*neighborlist == (int *) NULL) {    *neighborlist = (int *) trimalloc((int) (m->triangles.items * 3 *                                             sizeof(int)));  }  nlist = *neighborlist;  index = 0;#else /* not TRILIBRARY */  if (!b->quiet) {    printf("Writing %s.\n", neighborfilename);  }  outfile = fopen(neighborfilename, "w");  if (outfile == (FILE *) NULL) {    printf("  Error:  Cannot create file %s.\n", neighborfilename);    triexit(1);  }  /* Number of triangles, three neighbors per triangle. */  fprintf(outfile, "%ld  %d\n", m->triangles.items, 3);#endif /* not TRILIBRARY */  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  triangleloop.orient = 0;  elementnumber = b->firstnumber;  while (triangleloop.tri != (triangle *) NULL) {    * (int *) (triangleloop.tri + 6) = (int) elementnumber;    triangleloop.tri = triangletraverse(m);    elementnumber++;  }  * (int *) (m->dummytri + 6) = -1;  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  elementnumber = b->firstnumber;  while (triangleloop.tri != (triangle *) NULL) {    triangleloop.orient = 1;    sym(triangleloop, trisym);    neighbor1 = * (int *) (trisym.tri + 6);    triangleloop.orient = 2;    sym(triangleloop, trisym);    neighbor2 = * (int *) (trisym.tri + 6);    triangleloop.orient = 0;    sym(triangleloop, trisym);    neighbor3 = * (int *) (trisym.tri + 6);#ifdef TRILIBRARY    nlist[index++] = neighbor1;    nlist[index++] = neighbor2;    nlist[index++] = neighbor3;#else /* not TRILIBRARY */    /* Triangle number, neighboring triangle numbers. */    fprintf(outfile, "%4ld    %d  %d  %d\n", elementnumber,            neighbor1, neighbor2, neighbor3);#endif /* not TRILIBRARY */    triangleloop.tri = triangletraverse(m);    elementnumber++;  }#ifndef TRILIBRARY  finishfile(outfile, argc, argv);#endif /* not TRILIBRARY */}/*****************************************************************************//*                                                                           *//*  writeoff()   Write the triangulation to an .off file.                    *//*                                                                           *//*  OFF stands for the Object File Format, a format used by the Geometry     *//*  Center's Geomview package.                                               *//*                                                                           *//*****************************************************************************/#ifndef TRILIBRARY#ifdef ANSI_DECLARATORSvoid writeoff(struct mesh *m, struct behavior *b, char *offfilename,              int argc, char **argv)#else /* not ANSI_DECLARATORS */void writeoff(m, b, offfilename, argc, argv)struct mesh *m;struct behavior *b;char *offfilename;int argc;char **argv;#endif /* not ANSI_DECLARATORS */{  FILE *outfile;  struct otri triangleloop;  vertex vertexloop;  vertex p1, p2, p3;  long outvertices;  if (!b->quiet) {    printf("Writing %s.\n", offfilename);  }  if (b->jettison) {    outvertices = m->vertices.items - m->undeads;  } else {    outvertices = m->vertices.items;  }  outfile = fopen(offfilename, "w");  if (outfile == (FILE *) NULL) {    printf("  Error:  Cannot create file %s.\n", offfilename);    triexit(1);  }  /* Number of vertices, triangles, and edges. */  fprintf(outfile, "OFF\n%ld  %ld  %ld\n", outvertices, m->triangles.items,          m->edges);  /* Write the vertices. */  traversalinit(&m->vertices);  vertexloop = vertextraverse(m);  while (vertexloop != (vertex) NULL) {    if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {      /* The "0.0" is here because the OFF format uses 3D coordinates. */      fprintf(outfile, " %.17g  %.17g  %.17g\n", vertexloop[0], vertexloop[1],              0.0);    }    vertexloop = vertextraverse(m);  }  /* Write the triangles. */  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  triangleloop.orient = 0;  while (triangleloop.tri != (triangle *) NULL) {    org(triangleloop, p1);    dest(triangleloop, p2);    apex(triangleloop, p3);    /* The "3" means a three-vertex polygon. */    fprintf(outfile, " 3   %4d  %4d  %4d\n", vertexmark(p1) - b->firstnumber,            vertexmark(p2) - b->firstnumber, vertexmark(p3) - b->firstnumber);    triangleloop.tri = triangletraverse(m);  }  finishfile(outfile, argc, argv);}#endif /* not TRILIBRARY *//**                                                                         **//**                                                                         **//********* File I/O routines end here                                *********//*****************************************************************************//*                                                                           *//*  quality_statistics()   Print statistics about the quality of the mesh.   *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid quality_statistics(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void quality_statistics(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  struct otri triangleloop;  vertex p[3];  REAL cossquaretable[8];  REAL ratiotable[16];  REAL dx[3], dy[3];  REAL edgelength[3];  REAL dotproduct;  REAL cossquare;  REAL triarea;  REAL shortest, longest;  REAL trilongest2;  REAL smallestarea, biggestarea;  REAL triminaltitude2;  REAL minaltitude;  REAL triaspect2;  REAL worstaspect;  REAL smallestangle, biggestangle;  REAL radconst, degconst;  int angletable[18];  int aspecttable[16];  int aspectindex;  int tendegree;  int acutebiggest;  int i, ii, j, k;  printf("Mesh quality statistics:\n\n");  radconst = PI / 18.0;  degconst = 180.0 / PI;  for (i = 0; i < 8; i++) {    cossquaretable[i] = cos(radconst * (REAL) (i + 1));    cossquaretable[i] = cossquaretable[i] * cossquaretable[i];  }  for (i = 0; i < 18; i++) {    angletable[i] = 0;  }  ratiotable[0]  =      1.5;      ratiotable[1]  =     2.0;  ratiotable[2]  =      2.5;      ratiotable[3]  =     3.0;  ratiotable[4]  =      4.0;      ratiotable[5]  =     6.0;  ratiotable[6]  =     10.0;      ratiotable[7]  =    15.0;  ratiotable[8]  =     25.0;      ratiotable[9]  =    50.0;  ratiotable[10] =    100.0;      ratiotable[11] =   300.0;  ratiotable[12] =   1000.0;      ratiotable[13] = 10000.0;  ratiotable[14] = 100000.0;      ratiotable[15] =     0.0;  for (i = 0; i < 16; i++) {    aspecttable[i] = 0;  }  worstaspect = 0.0;  minaltitude = m->xmax - m->xmin + m->ymax - m->ymin;  minaltitude = minaltitude * minaltitude;  shortest = minaltitude;  longest = 0.0;  smallestarea = minaltitude;  biggestarea = 0.0;  worstaspect = 0.0;  smallestangle = 0.0;  biggestangle = 2.0;  acutebiggest = 1;  traversalinit(&m->triangles);  triangleloop.tri = triangletraverse(m);  triangleloop.orient = 0;  while (triangleloop.tri != (triangle *) NULL) {    org(triangleloop, p[0]);    dest(triangleloop, p[1]);    apex(triangleloop, p[2]);    trilongest2 = 0.0;    for (i = 0; i < 3; i++) {      j = plus1mod3[i];      k = minus1mod3[i];      dx[i] = p[j][0] - p[k][0];      dy[i] = p[j][1] - p[k][1];      edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];      if (edgelength[i] > trilongest2) {        trilongest2 = edgelength[i];      }      if (edgelength[i] > longest) {        longest = edgelength[i];      }      if (edgelength[i] < shortest) {        shortest = edgelength[i];      }    }    triarea = counterclockwise(m, b, p[0], p[1], p[2]);    if (triarea < smallestarea) {      smallestarea = triarea;    }    if (triarea > biggestarea) {      biggestarea = triarea;    }    triminaltitude2 = triarea * triarea / trilongest2;    if (triminaltitude2 < minaltitude) {      minaltitude = triminaltitude2;    }    triaspect2 = trilongest2 / triminaltitude2;    if (triaspect2 > worstaspect) {      worstaspect = triaspect2;    }    aspectindex = 0;    while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])           && (aspectindex < 15)) {      aspectindex++;    }    aspecttable[aspectindex]++;    for (i = 0; i < 3; i++) {      j = plus1mod3[i];      k = minus1mod3[i];      dotproduct = dx[j] * dx[k] + dy[j] * dy[k];      cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);      tendegree = 8;      for (ii = 7; ii >= 0; ii--) {        if (cossquare > cossquaretable[ii]) {          tendegree = ii;        }      }      if (dotproduct <= 0.0) {        angletable[tendegree]++;        if (cossquare > smallestangle) {          smallestangle = cossquare;        }        if (acutebiggest && (cossquare < biggestangle)) {          biggestangle = cossquare;        }      } else {        angletable[17 - tendegree]++;        if (acutebiggest || (cossquare > biggestangle)) {          biggestangle = cossquare;          acutebiggest = 0;        }      }    }    triangleloop.tri = triangletraverse(m);  }  shortest = sqrt(shortest);  longest = sqrt(longest);  minaltitude = sqrt(minaltitude);  worstaspect = sqrt(worstaspect);  smallestarea *= 0.5;  biggestarea *= 0.5;  if (smallestangle >= 1.0) {    smallestangle = 0.0;  } else {    smallestangle = degconst * acos(sqrt(smallestangle));  }  if (biggestangle >= 1.0) {    biggestangle = 180.0;  } else {    if (acutebiggest) {      biggestangle = degconst * acos(sqrt(biggestangle));    } else {      biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));    }  }  printf("  Smallest area: %16.5g   |  Largest area: %16.5g\n",         smallestarea, biggestarea);  printf("  Shortest edge: %16.5g   |  Longest edge: %16.5g\n",         shortest, longest);  printf("  Shortest altitude: %12.5g   |  Largest aspect ratio: %8.5g\n\n",         minaltitude, worstaspect);  printf("  Triangle aspect ratio histogram:\n");  printf("  1.1547 - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",         ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8],         aspecttable[8]);  for (i = 1; i < 7; i++) {    printf("  %6.6g - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",           ratiotable[i - 1], ratiotable[i], aspecttable[i],           ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);  }  printf("  %6.6g - %-6.6g    :  %8d    | %6.6g -            :  %8d\n",         ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14],         aspecttable[15]);  printf("  (Aspect ratio is longest edge divided by shortest altitude)\n\n");  printf("  Smallest angle: %15.5g   |  Largest angle: %15.5g\n\n",         smallestangle, biggestangle);  printf("  Angle histogram:\n");  for (i = 0; i < 9; i++) {    printf("    %3d - %3d degrees:  %8d    |    %3d - %3d degrees:  %8d\n",           i * 10, i * 10 + 10, angletable[i],           i * 10 + 90, i * 10 + 100, angletable[i + 9]);  }  printf("\n");}/*****************************************************************************//*                                                                           *//*  statistics()   Print all sorts of cool facts.                            *//*                                                                           *//*****************************************************************************/#ifdef ANSI_DECLARATORSvoid statistics(struct mesh *m, struct behavior *b)#else /* not ANSI_DECLARATORS */void statistics(m, b)struct mesh *m;struct behavior *b;#endif /* not ANSI_DECLARATORS */{  printf("\nStatistics:\n\n");  printf("  Input vertices: %d\n", m->invertices);  if (b->refine) {    printf("  Input triangles: %d\n", m->inelements);  }  if (b->poly) {    printf("  Input segments: %d\n", m->insegments);    if (!b->refine) {      printf("  Input holes: %d\n", m->holes);    }  }  printf("\n  Mesh vertices: %ld\n", m->vertices.items - m->undeads);  printf("  Mesh triangles: %ld\n", m->triangles.items);  printf("  Mesh edges: %ld\n", m->edges);  printf("  Mesh exterior boundary edges: %ld\n", m->hullsize);  if (b->poly || b->refine) {    printf("  Mesh interior boundary edges: %ld\n",           m->subsegs.items - m->hullsize);    printf("  Mesh subsegments (constrained edges): %ld\n",           m->subsegs.items);  }  printf("\n");  if (b->verbose) {    quality_statistics(m, b);    printf("Memory allocation statistics:\n\n");    printf("  Maximum number of vertices: %ld\n", m->vertices.maxitems);    printf("  Maximum number of triangles: %ld\n", m->triangles.maxitems);    if (m->subsegs.maxitems > 0) {      printf("  Maximum number of subsegments: %ld\n", m->subsegs.maxitems);    }    if (m->viri.maxitems > 0) {      printf("  Maximum number of viri: %ld\n", m->viri.maxitems);    }    if (m->badsubsegs.maxitems > 0) {      printf("  Maximum number of encroached subsegments: %ld\n",             m->badsubsegs.maxitems);    }    if (m->badtriangles.maxitems > 0) {      printf("  Maximum number of bad triangles: %ld\n",             m->badtriangles.maxitems);    }    if (m->flipstackers.maxitems > 0) {      printf("  Maximum number of stacked triangle flips: %ld\n",             m->flipstackers.maxitems);    }    if (m->splaynodes.maxitems > 0) {      printf("  Maximum number of splay tree nodes: %ld\n",             m->splaynodes.maxitems);    }    printf("  Approximate heap memory use (bytes): %ld\n\n",           m->vertices.maxitems * m->vertices.itembytes +           m->triangles.maxitems * m->triangles.itembytes +           m->subsegs.maxitems * m->subsegs.itembytes +           m->viri.maxitems * m->viri.itembytes +           m->badsubsegs.maxitems * m->badsubsegs.itembytes +           m->badtriangles.maxitems * m->badtriangles.itembytes +           m->flipstackers.maxitems * m->flipstackers.itembytes +           m->splaynodes.maxitems * m->splaynodes.itembytes);    printf("Algorithmic statistics:\n\n");    if (!b->weighted) {      printf("  Number of incircle tests: %ld\n", m->incirclecount);    } else {      printf("  Number of 3D orientation tests: %ld\n", m->orient3dcount);    }    printf("  Number of 2D orientation tests: %ld\n", m->counterclockcount);    if (m->hyperbolacount > 0) {      printf("  Number of right-of-hyperbola tests: %ld\n",             m->hyperbolacount);    }    if (m->circletopcount > 0) {      printf("  Number of circle top computations: %ld\n",             m->circletopcount);    }    if (m->circumcentercount > 0) {      printf("  Number of triangle circumcenter computations: %ld\n",             m->circumcentercount);    }    printf("\n");  }}/*****************************************************************************//*                                                                           *//*  main() or triangulate()   Gosh, do everything.                           *//*                                                                           *//*  The sequence is roughly as follows.  Many of these steps can be skipped, *//*  depending on the command line switches.                                  *//*                                                                           *//*  - Initialize constants and parse the command line.                       *//*  - Read the vertices from a file and either                               *//*    - triangulate them (no -r), or                                         *//*    - read an old mesh from files and reconstruct it (-r).                 *//*  - Insert the PSLG segments (-p), and possibly segments on the convex     *//*      hull (-c).                                                           *//*  - Read the holes (-p), regional attributes (-pA), and regional area      *//*      constraints (-pa).  Carve the holes and concavities, and spread the  *//*      regional attributes and area constraints.                            *//*  - Enforce the constraints on minimum angle (-q) and maximum area (-a).   *//*      Also enforce the conforming Delaunay property (-q and -a).           *//*  - Compute the number of edges in the resulting mesh.                     *//*  - Promote the mesh's linear triangles to higher order elements (-o).     *//*  - Write the output files and print the statistics.                       *//*  - Check the consistency and Delaunay property of the mesh (-C).          *//*                                                                           *//*****************************************************************************/#ifdef TRILIBRARY#ifdef ANSI_DECLARATORSvoid triangulate(char *triswitches, struct triangulateio *in,                 struct triangulateio *out, struct triangulateio *vorout)#else /* not ANSI_DECLARATORS */void triangulate(triswitches, in, out, vorout)char *triswitches;struct triangulateio *in;struct triangulateio *out;struct triangulateio *vorout;#endif /* not ANSI_DECLARATORS */#else /* not TRILIBRARY */#ifdef ANSI_DECLARATORSint main(int argc, char **argv)#else /* not ANSI_DECLARATORS */int main(argc, argv)int argc;char **argv;#endif /* not ANSI_DECLARATORS */#endif /* not TRILIBRARY */{  struct mesh m;  struct behavior b;  REAL *holearray;                                        /* Array of holes. */  REAL *regionarray;   /* Array of regional attributes and area constraints. */#ifndef TRILIBRARY  FILE *polyfile;#endif /* not TRILIBRARY */#ifndef NO_TIMER  /* Variables for timing the performance of Triangle.  The types are */  /*   defined in sys/time.h.                                         */  struct timeval tv0, tv1, tv2, tv3, tv4, tv5, tv6;  struct timezone tz;#endif /* not NO_TIMER */#ifndef NO_TIMER  gettimeofday(&tv0, &tz);#endif /* not NO_TIMER */  triangleinit(&m);#ifdef TRILIBRARY  parsecommandline(1, &triswitches, &b);#else /* not TRILIBRARY */  parsecommandline(argc, argv, &b);#endif /* not TRILIBRARY */  m.steinerleft = b.steiner;#ifdef TRILIBRARY  transfernodes(&m, &b, in->pointlist, in->pointattributelist,                in->pointmarkerlist, in->numberofpoints,                in->numberofpointattributes);#else /* not TRILIBRARY */  readnodes(&m, &b, b.innodefilename, b.inpolyfilename, &polyfile);#endif /* not TRILIBRARY */#ifndef NO_TIMER  if (!b.quiet) {    gettimeofday(&tv1, &tz);  }#endif /* not NO_TIMER */#ifdef CDT_ONLY  m.hullsize = delaunay(&m, &b);                /* Triangulate the vertices. */#else /* not CDT_ONLY */  if (b.refine) {    /* Read and reconstruct a mesh. */#ifdef TRILIBRARY    m.hullsize = reconstruct(&m, &b, in->trianglelist,                             in->triangleattributelist, in->trianglearealist,                             in->numberoftriangles, in->numberofcorners,                             in->numberoftriangleattributes,                             in->segmentlist, in->segmentmarkerlist,                             in->numberofsegments);#else /* not TRILIBRARY */    m.hullsize = reconstruct(&m, &b, b.inelefilename, b.areafilename,                             b.inpolyfilename, polyfile);#endif /* not TRILIBRARY */  } else {    m.hullsize = delaunay(&m, &b);              /* Triangulate the vertices. */  }#endif /* not CDT_ONLY */#ifndef NO_TIMER  if (!b.quiet) {    gettimeofday(&tv2, &tz);    if (b.refine) {      printf("Mesh reconstruction");    } else {      printf("Delaunay");    }    printf(" milliseconds:  %ld\n", 1000l * (tv2.tv_sec - tv1.tv_sec) +           (tv2.tv_usec - tv1.tv_usec) / 1000l);  }#endif /* not NO_TIMER */  /* Ensure that no vertex can be mistaken for a triangular bounding */  /*   box vertex in insertvertex().                                 */  m.infvertex1 = (vertex) NULL;  m.infvertex2 = (vertex) NULL;  m.infvertex3 = (vertex) NULL;  if (b.usesegments) {    m.checksegments = 1;                /* Segments will be introduced next. */    if (!b.refine) {      /* Insert PSLG segments and/or convex hull segments. */#ifdef TRILIBRARY      formskeleton(&m, &b, in->segmentlist,                   in->segmentmarkerlist, in->numberofsegments);#else /* not TRILIBRARY */      formskeleton(&m, &b, polyfile, b.inpolyfilename);#endif /* not TRILIBRARY */    }  }#ifndef NO_TIMER  if (!b.quiet) {    gettimeofday(&tv3, &tz);    if (b.usesegments && !b.refine) {      printf("Segment milliseconds:  %ld\n",             1000l * (tv3.tv_sec - tv2.tv_sec) +             (tv3.tv_usec - tv2.tv_usec) / 1000l);    }  }#endif /* not NO_TIMER */  if (b.poly && (m.triangles.items > 0)) {#ifdef TRILIBRARY    holearray = in->holelist;    m.holes = in->numberofholes;    regionarray = in->regionlist;    m.regions = in->numberofregions;#else /* not TRILIBRARY */    readholes(&m, &b, polyfile, b.inpolyfilename, &holearray, &m.holes,              &regionarray, &m.regions);#endif /* not TRILIBRARY */    if (!b.refine) {      /* Carve out holes and concavities. */      carveholes(&m, &b, holearray, m.holes, regionarray, m.regions);    }  } else {    /* Without a PSLG, there can be no holes or regional attributes   */    /*   or area constraints.  The following are set to zero to avoid */    /*   an accidental free() later.                                  */    m.holes = 0;    m.regions = 0;  }#ifndef NO_TIMER  if (!b.quiet) {    gettimeofday(&tv4, &tz);    if (b.poly && !b.refine) {      printf("Hole milliseconds:  %ld\n", 1000l * (tv4.tv_sec - tv3.tv_sec) +             (tv4.tv_usec - tv3.tv_usec) / 1000l);    }  }#endif /* not NO_TIMER */#ifndef CDT_ONLY  if (b.quality && (m.triangles.items > 0)) {    enforcequality(&m, &b);           /* Enforce angle and area constraints. */  }#endif /* not CDT_ONLY */#ifndef NO_TIMER  if (!b.quiet) {    gettimeofday(&tv5, &tz);#ifndef CDT_ONLY    if (b.quality) {      printf("Quality milliseconds:  %ld\n",             1000l * (tv5.tv_sec - tv4.tv_sec) +             (tv5.tv_usec - tv4.tv_usec) / 1000l);    }#endif /* not CDT_ONLY */  }#endif /* not NO_TIMER */  /* Calculate the number of edges. */  m.edges = (3l * m.triangles.items + m.hullsize) / 2l;  if (b.order > 1) {    highorder(&m, &b);       /* Promote elements to higher polynomial order. */  }  if (!b.quiet) {    printf("\n");  }#ifdef TRILIBRARY  if (b.jettison) {    out->numberofpoints = m.vertices.items - m.undeads;  } else {    out->numberofpoints = m.vertices.items;  }  out->numberofpointattributes = m.nextras;  out->numberoftriangles = m.triangles.items;  out->numberofcorners = (b.order + 1) * (b.order + 2) / 2;  out->numberoftriangleattributes = m.eextras;  out->numberofedges = m.edges;  if (b.usesegments) {    out->numberofsegments = m.subsegs.items;  } else {    out->numberofsegments = m.hullsize;  }  if (vorout != (struct triangulateio *) NULL) {    vorout->numberofpoints = m.triangles.items;    vorout->numberofpointattributes = m.nextras;    vorout->numberofedges = m.edges;  }#endif /* TRILIBRARY */  /* If not using iteration numbers, don't write a .node file if one was */  /*   read, because the original one would be overwritten!              */  if (b.nonodewritten || (b.noiterationnum && m.readnodefile)) {    if (!b.quiet) {#ifdef TRILIBRARY      printf("NOT writing vertices.\n");#else /* not TRILIBRARY */      printf("NOT writing a .node file.\n");#endif /* not TRILIBRARY */    }    numbernodes(&m, &b);         /* We must remember to number the vertices. */  } else {    /* writenodes() numbers the vertices too. */#ifdef TRILIBRARY    writenodes(&m, &b, &out->pointlist, &out->pointattributelist,               &out->pointmarkerlist);#else /* not TRILIBRARY */    writenodes(&m, &b, b.outnodefilename, argc, argv);#endif /* TRILIBRARY */  }  if (b.noelewritten) {    if (!b.quiet) {#ifdef TRILIBRARY      printf("NOT writing triangles.\n");#else /* not TRILIBRARY */      printf("NOT writing an .ele file.\n");#endif /* not TRILIBRARY */    }  } else {#ifdef TRILIBRARY    writeelements(&m, &b, &out->trianglelist, &out->triangleattributelist);#else /* not TRILIBRARY */    writeelements(&m, &b, b.outelefilename, argc, argv);#endif /* not TRILIBRARY */  }  /* The -c switch (convex switch) causes a PSLG to be written */  /*   even if none was read.                                  */  if (b.poly || b.convex) {    /* If not using iteration numbers, don't overwrite the .poly file. */    if (b.nopolywritten || b.noiterationnum) {      if (!b.quiet) {#ifdef TRILIBRARY        printf("NOT writing segments.\n");#else /* not TRILIBRARY */        printf("NOT writing a .poly file.\n");#endif /* not TRILIBRARY */      }    } else {#ifdef TRILIBRARY      writepoly(&m, &b, &out->segmentlist, &out->segmentmarkerlist);      out->numberofholes = m.holes;      out->numberofregions = m.regions;      if (b.poly) {        out->holelist = in->holelist;        out->regionlist = in->regionlist;      } else {        out->holelist = (REAL *) NULL;        out->regionlist = (REAL *) NULL;      }#else /* not TRILIBRARY */      writepoly(&m, &b, b.outpolyfilename, holearray, m.holes, regionarray,                m.regions, argc, argv);#endif /* not TRILIBRARY */    }  }#ifndef TRILIBRARY#ifndef CDT_ONLY  if (m.regions > 0) {    trifree((VOID *) regionarray);  }#endif /* not CDT_ONLY */  if (m.holes > 0) {    trifree((VOID *) holearray);  }  if (b.geomview) {    writeoff(&m, &b, b.offfilename, argc, argv);  }#endif /* not TRILIBRARY */  if (b.edgesout) {#ifdef TRILIBRARY    writeedges(&m, &b, &out->edgelist, &out->edgemarkerlist);#else /* not TRILIBRARY */    writeedges(&m, &b, b.edgefilename, argc, argv);#endif /* not TRILIBRARY */  }  if (b.voronoi) {#ifdef TRILIBRARY    writevoronoi(&m, &b, &vorout->pointlist, &vorout->pointattributelist,                 &vorout->pointmarkerlist, &vorout->edgelist,                 &vorout->edgemarkerlist, &vorout->normlist);#else /* not TRILIBRARY */    writevoronoi(&m, &b, b.vnodefilename, b.vedgefilename, argc, argv);#endif /* not TRILIBRARY */  }  if (b.neighbors) {#ifdef TRILIBRARY    writeneighbors(&m, &b, &out->neighborlist);#else /* not TRILIBRARY */    writeneighbors(&m, &b, b.neighborfilename, argc, argv);#endif /* not TRILIBRARY */  }  if (!b.quiet) {#ifndef NO_TIMER    gettimeofday(&tv6, &tz);    printf("\nOutput milliseconds:  %ld\n",           1000l * (tv6.tv_sec - tv5.tv_sec) +           (tv6.tv_usec - tv5.tv_usec) / 1000l);    printf("Total running milliseconds:  %ld\n",           1000l * (tv6.tv_sec - tv0.tv_sec) +           (tv6.tv_usec - tv0.tv_usec) / 1000l);#endif /* not NO_TIMER */    statistics(&m, &b);  }#ifndef REDUCED  if (b.docheck) {    checkmesh(&m, &b);    checkdelaunay(&m, &b);  }#endif /* not REDUCED */  triangledeinit(&m, &b);#ifndef TRILIBRARY  return 0;#endif /* not TRILIBRARY */}

                                             
0 0
原创粉丝点击