无符号整形的reserve bits的优化方案

来源:互联网 发布:java中split的用法 编辑:程序博客网 时间:2024/04/30 02:19
[c] view plaincopy
  1. 0010 0000 => 0000 0100  

具体的转换是从MSB->LSB到LSB->MSB, 所有的Bit都必须反转,那意味着,这并不是字节顺序的交换。

最佳答案

注意: 下面的算法都用C实现,但应该可以迁移到其它语言(只是不那么快的时候可别找我)。

可选方案

内存占用少(32位int,32位机器)(来源于这里)

[c] view plaincopy
  1. unsigned int  
  2. reverse(register unsigned int x)  
  3. {  
  4.     x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));  
  5.     x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));  
  6.     x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));  
  7.     x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));  
  8.     return((x >> 16) | (x << 16));  
  9. }  

最快(查找表)

[c] view plaincopy
  1. static const unsigned char BitReverseTable256[] =   
  2. {  
  3.   0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,   
  4.   0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,   
  5.   0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,   
  6.   0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,   
  7.   0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,   
  8.   0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,  
  9.   0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,   
  10.   0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,  
  11.   0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,  
  12.   0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,   
  13.   0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,  
  14.   0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,  
  15.   0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,   
  16.   0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,  
  17.   0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,   
  18.   0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF  
  19. };  
  20.   
  21. unsigned int v; // reverse 32-bit value, 8 bits at time  
  22. unsigned int c; // c will get v reversed  
  23.   
  24. // Option 1:  
  25. c = (BitReverseTable256[v & 0xff] << 24) |   
  26.     (BitReverseTable256[(v >> 8) & 0xff] << 16) |   
  27.     (BitReverseTable256[(v >> 16) & 0xff] << 8) |  
  28.     (BitReverseTable256[(v >> 24) & 0xff]);  
  29.   
  30. // Option 2:  
  31. unsigned char * p = (unsigned char *) &v;  
  32. unsigned char * q = (unsigned char *) &c;  
  33. q[3] = BitReverseTable256[p[0]];   
  34. q[2] = BitReverseTable256[p[1]];   
  35. q[1] = BitReverseTable256[p[2]];   
  36. q[0] = BitReverseTable256[p[3]];  

来自于著名的Bit Twiddling Hacks page:

你可以扩展这个算法到64位int的场景,或者为了更快的速度而牺牲多一些的内存(假设你的L1数据缓存足够大),有一个64K的查找表且每次反转16位。

其它方案

简单

[c] view plaincopy
  1. unsigned int v;     // input bits to be reversed  
  2. unsigned int r = v; // r will be reversed bits of v; first get LSB of v  
  3. int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end  
  4.   
  5. for (v >>= 1; v; v >>= 1)  
  6. {     
  7.   r <<= 1;  
  8.   r |= v & 1;  
  9.   s--;  
  10. }  
  11. r <<= s; // shift when v's highest bits are zero  

更快(32位处理器)

unsigned char b = x;b = ((b * 0x0802LU & 0x22110LU) | (b * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;

更快(64位处理器)

[c] view plaincopy
  1. unsigned char b; // reverse this (8-bit) byte  
  2. b = (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;  

如果你想在32位int环境这样做,那么只需要把每一个byte反转,然后再颠倒byte的次序即可。如下:

[c] view plaincopy
  1. unsigned int toReverse;  
  2. unsigned int reversed;  
  3. unsigned char inByte0 = (toReverse & 0xFF);  
  4. unsigned char inByte1 = (toReverse & 0xFF00) >> 8;  
  5. unsigned char inByte2 = (toReverse & 0xFF0000) >> 16;  
  6. unsigned char inByte3 = (toReverse & 0xFF000000) >> 24;  
  7. reversed = (reverseBits(inByte0) << 24) | (reverseBits(inByte1) << 16) | (reverseBits(inByte2) << 8) | (reverseBits(inByte3);  

结果

我测试了两个最有效的方案,查找表和按位与(第一个方案)。测试机器为一台笔记本电脑,配置为4G DDR2内存,2.4GHz的双核T7500处理器,4MB的L2缓存。我使用的是gcc 4.3.2,64位Linux。OpenMP(外加GCC绑定)被用来提高计时器的调度能力。

reverse.c

[c] view plaincopy
  1. #include <stdlib.h>  
  2. #include <stdio.h>  
  3. #include <omp.h>  
  4.   
  5. unsigned int  
  6. reverse(register unsigned int x)  
  7. {  
  8.     x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));  
  9.     x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));  
  10.     x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));  
  11.     x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));  
  12.     return((x >> 16) | (x << 16));  
  13.   
  14. }  
  15.   
  16. int main()  
  17. {  
  18.     unsigned int *ints = malloc(100000000*sizeof(unsigned int));  
  19.     unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));  
  20.     for(unsigned int i = 0; i < 100000000; i++)  
  21.       ints[i] = rand();  
  22.   
  23.     unsigned int *inptr = ints;  
  24.     unsigned int *outptr = ints2;  
  25.     unsigned int *endptr = ints + 100000000;  
  26.     // Starting the time measurement  
  27.     double start = omp_get_wtime();  
  28.     // Computations to be measured  
  29.     while(inptr != endptr)  
  30.     {  
  31.       (*outptr) = reverse(*inptr);  
  32.       inptr++;  
  33.       outptr++;  
  34.     }  
  35.     // Measuring the elapsed time  
  36.     double end = omp_get_wtime();  
  37.     // Time calculation (in seconds)  
  38.     printf("Time: %f seconds\n", end-start);  
  39.   
  40.     free(ints);  
  41.     free(ints2);  
  42.   
  43.     return 0;  
  44. }  

reverse_lookup.c

[c] view plaincopy
  1. #include <stdlib.h>  
  2. #include <stdio.h>  
  3. #include <omp.h>  
  4.   
  5. static const unsigned char BitReverseTable256[] =   
  6. {  
  7.   0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,   
  8.   0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,   
  9.   0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,   
  10.   0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,   
  11.   0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,   
  12.   0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,  
  13.   0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,   
  14.   0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,  
  15.   0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,  
  16.   0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,   
  17.   0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,  
  18.   0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,  
  19.   0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,   
  20.   0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,  
  21.   0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,   
  22.   0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF  
  23. };  
  24.   
  25. int main()  
  26. {  
  27.     unsigned int *ints = malloc(100000000*sizeof(unsigned int));  
  28.     unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));  
  29.     for(unsigned int i = 0; i < 100000000; i++)  
  30.       ints[i] = rand();  
  31.   
  32.     unsigned int *inptr = ints;  
  33.     unsigned int *outptr = ints2;  
  34.     unsigned int *endptr = ints + 100000000;  
  35.     // Starting the time measurement  
  36.     double start = omp_get_wtime();  
  37.     // Computations to be measured  
  38.     while(inptr != endptr)  
  39.     {  
  40.     unsigned int in = *inptr;  
  41.   
  42.     // Option 1:  
  43.     //*outptr = (BitReverseTable256[in & 0xff] << 24) |   
  44.     //    (BitReverseTable256[(in >> 8) & 0xff] << 16) |   
  45.     //    (BitReverseTable256[(in >> 16) & 0xff] << 8) |  
  46.     //    (BitReverseTable256[(in >> 24) & 0xff]);  
  47.   
  48.     // Option 2:  
  49.     unsigned char * p = (unsigned char *) &(*inptr);  
  50.     unsigned char * q = (unsigned char *) &(*outptr);  
  51.     q[3] = BitReverseTable256[p[0]];   
  52.     q[2] = BitReverseTable256[p[1]];   
  53.     q[1] = BitReverseTable256[p[2]];   
  54.     q[0] = BitReverseTable256[p[3]];  
  55.   
  56.       inptr++;  
  57.       outptr++;  
  58.     }  
  59.     // Measuring the elapsed time  
  60.     double end = omp_get_wtime();  
  61.     // Time calculation (in seconds)  
  62.     printf("Time: %f seconds\n", end-start);  
  63.   
  64.     free(ints);  
  65.     free(ints2);  
  66.   
  67.     return 0;  
  68. }  

在不同的优化级别(Optimizations),两个方案我都尝试了,每个级别跑3个案例,每个案例反转1亿个随机的无符号整数。对于查找表方案,bitwise hacks page上面的两种方法(Option 1 and Option 2)我都测试过。结果如下:

按位与

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse reverse.cmrj10@mjlap:~/code$ ./reverseTime: 2.000593 secondsmrj10@mjlap:~/code$ ./reverseTime: 1.938893 secondsmrj10@mjlap:~/code$ ./reverseTime: 1.936365 secondsmrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse reverse.cmrj10@mjlap:~/code$ ./reverseTime: 0.942709 secondsmrj10@mjlap:~/code$ ./reverseTime: 0.991104 secondsmrj10@mjlap:~/code$ ./reverseTime: 0.947203 secondsmrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse reverse.cmrj10@mjlap:~/code$ ./reverseTime: 0.922639 secondsmrj10@mjlap:~/code$ ./reverseTime: 0.892372 secondsmrj10@mjlap:~/code$ ./reverseTime: 0.891688 seconds

查找表(Option 1)

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.cmrj10@mjlap:~/code$ ./reverse_lookupTime: 1.201127 seconds              mrj10@mjlap:~/code$ ./reverse_lookupTime: 1.196129 seconds              mrj10@mjlap:~/code$ ./reverse_lookupTime: 1.235972 seconds              mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.cmrj10@mjlap:~/code$ ./reverse_lookupTime: 0.633042 seconds              mrj10@mjlap:~/code$ ./reverse_lookupTime: 0.655880 seconds              mrj10@mjlap:~/code$ ./reverse_lookupTime: 0.633390 seconds              mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.cmrj10@mjlap:~/code$ ./reverse_lookupTime: 0.652322 seconds              mrj10@mjlap:~/code$ ./reverse_lookupTime: 0.631739 seconds              mrj10@mjlap:~/code$ ./reverse_lookupTime: 0.652431 seconds

查找表(Option 2)

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.cmrj10@mjlap:~/code$ ./reverse_lookupTime: 1.671537 secondsmrj10@mjlap:~/code$ ./reverse_lookupTime: 1.688173 secondsmrj10@mjlap:~/code$ ./reverse_lookupTime: 1.664662 secondsmrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.cmrj10@mjlap:~/code$ ./reverse_lookupTime: 1.049851 secondsmrj10@mjlap:~/code$ ./reverse_lookupTime: 1.048403 secondsmrj10@mjlap:~/code$ ./reverse_lookupTime: 1.085086 secondsmrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.cmrj10@mjlap:~/code$ ./reverse_lookupTime: 1.082223 secondsmrj10@mjlap:~/code$ ./reverse_lookupTime: 1.053431 secondsmrj10@mjlap:~/code$ ./reverse_lookupTime: 1.081224 seconds

结论

如果你比较在意性能,那么使用查找表Option 1(Byte的寻址不出意外的慢)。如果你需要尽可能的利用完每一个Byte内存(且你也在意bit反转的性能),那么优化后的按位与方案也还不赖。

附加说明

我知道上面的代码只是一个粗略的版本,非常欢迎大家提供一些优化的建议。以下是我知道的几点:

  • 我没有权限访问ICC,那可能更快些(如果你可以测试请在评论中回复)。
  • 在一些L1缓存比较大的现代机器上面,64K的查找表可能工作得更好。
  • -mtune=native对 -O2/-O3(发生符号重定义的错误)无效,所以我不相信产生的代码是为我的微架构而优化。
  • SSE环境下应该有一种方法处理得更快。我不知道怎么做,但又更快的内存复制,批量的按位与,调整的指令集, 总是有一些手段的。
  • 我知道仅仅x86的指令集是危险的,下面是GCC在-O3环境产生的代码,所以比我更厉害的大牛可以检查一下。

32-bit

.L3:movl    (%r12,%rsi), %ecxmovzbl  %cl, %eaxmovzbl  BitReverseTable256(%rax), %edxmovl    %ecx, %eaxshrl    $24, %eaxmov     %eax, %eaxmovzbl  BitReverseTable256(%rax), %eaxsall    $24, %edxorl     %eax, %edxmovzbl  %ch, %eaxshrl    $16, %ecxmovzbl  BitReverseTable256(%rax), %eaxmovzbl  %cl, %ecxsall    $16, %eaxorl     %eax, %edxmovzbl  BitReverseTable256(%rcx), %eaxsall    $8, %eaxorl     %eax, %edxmovl    %edx, (%r13,%rsi)addq    $4, %rsicmpq    $400000000, %rsijne     .L3

更改: 我也尝试在自己机器上使用uint64,看看是否性能有所提高。相对于32-bit性能大概提高了10%。无论你是每次用64-bit类型去反转2个32-bit的int,或者实际上看作64-bit并分两次来反转,性能都大致相当。代码如下(对于前者,每次反转2个32-bit的int):

.L3:movq    (%r12,%rsi), %rdxmovq    %rdx, %raxshrq    $24, %raxandl    $255, %eaxmovzbl  BitReverseTable256(%rax), %ecxmovzbq  %dl,%raxmovzbl  BitReverseTable256(%rax), %eaxsalq    $24, %raxorq     %rax, %rcxmovq    %rdx, %raxshrq    $56, %raxmovzbl  BitReverseTable256(%rax), %eaxsalq    $32, %raxorq     %rax, %rcxmovzbl  %dh, %eaxshrq    $16, %rdxmovzbl  BitReverseTable256(%rax), %eaxsalq    $16, %raxorq     %rax, %rcxmovzbq  %dl,%raxshrq    $16, %rdxmovzbl  BitReverseTable256(%rax), %eaxsalq    $8, %raxorq     %rax, %rcxmovzbq  %dl,%raxshrq    $8, %rdxmovzbl  BitReverseTable256(%rax), %eaxsalq    $56, %raxorq     %rax, %rcxmovzbq  %dl,%raxshrq    $8, %rdxmovzbl  BitReverseTable256(%rax), %eaxandl    $255, %edxsalq    $48, %raxorq     %rax, %rcxmovzbl  BitReverseTable256(%rdx), %eaxsalq    $40, %raxorq     %rax, %rcxmovq    %rcx, (%r13,%rsi)addq    $8, %rsicmpq    $400000000, %rsijne     .L3

原文地址

Stackoverflow

0 0
原创粉丝点击