K-means聚类算法

来源:互联网 发布:ubuntu 杀死进程 id 编辑:程序博客网 时间:2024/05/22 04:46


 本文首先介绍聚类的基础——距离与相异度,然后介绍一种常见的聚类算法——k均值和k中心点聚类,最后会举一个实例:以MATLAB代码实现k均值聚类算法。

   一、分类与聚类的区别:                                                                                                                                                                     

     分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。聚类属于无监督学习,相比于分类,聚类不依赖预定义的类和类标号的训练实例。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集clip_image002[10]。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。

二、距离与相异度                                                                                                                                                     

      讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。但是,计算机没有这种直观感受能力,我们必须对相异度在数学上进行定量定义。在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。

      ,其中X,Y是两个元素项,各自具有n个可度量特征属性,那么X和Y的相异度定义为:,其中R为实数域。也就是说相异度是两个元素对实数域的一个映射,所映射的实数定量表示两个元素的相异度。

      下面介绍不同类型变量相异度计算方法。

1.欧氏距离

2.曼哈顿距离

3. 切比雪夫距离

4. 闵可夫斯基距离

5.标准化欧氏距离

6.马氏距离

7.夹角余弦

8.汉明距离

9.杰卡德距离& 杰卡德相似系数

10.相关系数& 相关距离

11.信息熵

1. 欧氏距离(EuclideanDistance)

       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。

(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:

 

(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:

 

(3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:

 

  也可以用表示成向量运算的形式:

 

(4)Matlab计算欧氏距离

Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。

例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X,'euclidean')

结果:

D=

    1.0000   2.0000    2.2361

 


2. 曼哈顿距离(ManhattanDistance)

       从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源, 曼哈顿距离也称为城市街区距离(CityBlock distance)

(1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离

 

(2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的曼哈顿距离

 

(3)Matlab计算曼哈顿距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的曼哈顿距离

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X, 'cityblock')

结果:

D=

     1    2     3


3. 切比雪夫距离 ( Chebyshev Distance )

       国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max(| x2-x1 | , | y2-y1 | ) 步。有一种类似的一种距离度量方法叫切比雪夫距离。

(1)二维平面两点a(x1,y1)与b(x2,y2)间的切比雪夫距离

 

(2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的切比雪夫距离

 

  这个公式的另一种等价形式是

 

       看不出两个公式是等价的?提示一下:试试用放缩法和夹逼法则来证明。

(3)Matlab计算切比雪夫距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的切比雪夫距离

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X, 'chebychev')

结果:

D=

     1    2     2

 


4. 闵可夫斯基距离(MinkowskiDistance)

闵氏距离不是一种距离,而是一组距离的定义。

(1)闵氏距离的定义

       两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

 

其中p是一个变参数。

当p=1时,就是曼哈顿距离

当p=2时,就是欧氏距离

当p→∞时,就是切比雪夫距离

       根据变参数的不同,闵氏距离可以表示一类的距离。

(2)闵氏距离的缺点

  闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。

  举个例子:二维样本(身高,体重),其中身高范围是150~190,体重范围是50~60,有三个样本:a(180,50),b(190,50),c(180,60)。那么a与b之间的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c之间的闵氏距离,但是身高的10cm真的等价于体重的10kg么?因此用闵氏距离来衡量这些样本间的相似度很有问题。

       简单说来,闵氏距离的缺点主要有两个:(1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了。(2)没有考虑各个分量的分布(期望,方差等)可能是不同的。

(3)Matlab计算闵氏距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的闵氏距离(以变参数为2的欧氏距离为例)

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X,'minkowski',2)

结果:

D=

    1.0000   2.0000    2.2361



5. 标准化欧氏距离(Standardized Euclidean distance )

(1)标准欧氏距离的定义

  标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standarddeviation)为s,那么X的“标准化变量”表示为:

  而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是:

  标准化后的值 =  ( 标准化前的值  - 分量的均值 ) /分量的标准差

  经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的标准化欧氏距离的公式:

  如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(WeightedEuclidean distance)

(2)Matlab计算标准化欧氏距离

例子:计算向量(0,0)、(1,0)、(0,2)两两间的标准化欧氏距离 (假设两个分量的标准差分别为0.5和1)

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X, 'seuclidean',[0.5,1])

结果:

D=

    2.0000   2.0000    2.8284

 


6. 马氏距离(MahalanobisDistance)

(1)马氏距离定义

       有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为:

 

       而其中向量Xi与Xj之间的马氏距离定义为:

       若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了:

       也就是欧氏距离了。

  若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。

(2)马氏距离的优缺点:量纲无关,排除变量之间的相关性的干扰。

(3)Matlab计算(1 2),( 1 3),( 2 2),( 3 1)两两之间的马氏距离

X = [1 2; 1 3; 2 2; 3 1]

Y = pdist(X,'mahalanobis')

 

结果:

Y=

    2.3452   2.0000    2.3452    1.2247   2.4495    1.2247

 


7. 夹角余弦(Cosine)

       有没有搞错,又不是学几何,怎么扯到夹角余弦了?各位看官稍安勿躁。几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

(2)两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

       类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

  即:

       夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。

       夹角余弦的具体应用可以参阅参考文献[1]。

(3)Matlab计算夹角余弦

例子:计算(1,0)、( 1,1.732)、(-1,0)两两间的夹角余弦

X= [1 0 ; 1 1.732 ; -1 0]

D= 1- pdist(X, 'cosine')  % Matlab中的pdist(X,'cosine')得到的是1减夹角余弦的值

结果:

D=

    0.5000  -1.0000   -0.5000

 


8. 汉明距离(Hammingdistance)

(1)汉明距离的定义

       两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。

       应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

(2)Matlab计算汉明距离

  Matlab中2个向量之间的汉明距离的定义为2个向量不同的分量所占的百分比。

       例子:计算向量(0,0)、(1,0)、(0,2)两两间的汉明距离

X = [0 0 ; 1 0 ; 0 2];

D = PDIST(X, 'hamming')

结果:

D=

    0.5000   0.5000    1.0000

 


9. 杰卡德相似系数(Jaccardsimilarity coefficient)

(1) 杰卡德相似系数

       两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

  杰卡德相似系数是衡量两个集合的相似度一种指标。

(2) 杰卡德距离

       与杰卡德相似系数相反的概念是杰卡德距离(Jaccarddistance)。杰卡德距离可用如下公式表示:

  杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

(3)杰卡德相似系数与杰卡德距离的应用

       可将杰卡德相似系数用在衡量样本的相似度上。

  样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

p:样本A与B都是1的维度的个数

q:样本A是1,样本B是0的维度的个数

r:样本A是0,样本B是1的维度的个数

s:样本A与B都是0的维度的个数


那么样本A与B的杰卡德相似系数可以表示为:

这里p+q+r可理解为A与B的并集的元素个数,而p是A与B的交集的元素个数。

而样本A与B的杰卡德距离表示为:

(4)Matlab计算杰卡德距离

Matlab的pdist函数定义的杰卡德距离跟我这里的定义有一些差别,Matlab中将其定义为不同的维度的个数占“非全零维度”的比例。

例子:计算(1,1,0)、(1,-1,0)、(-1,1,0)两两之间的杰卡德距离

X= [1 1 0; 1 -1 0; -1 1 0]

D= pdist( X , 'jaccard')

结果

D=

0.5000    0.5000   1.0000

 


10. 相关系数( Correlation coefficient )与相关距离(Correlation distance)

(1)相关系数的定义

相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。

(2)相关距离的定义

 

(3)Matlab计算(1, 2 ,3 ,4 )与( 3 ,8 ,7 ,6 )之间的相关系数与相关距离

X = [1 2 3 4 ; 3 8 7 6]

C = corrcoef( X' )   %将返回相关系数矩阵

D = pdist( X , 'correlation')

结果:

C=

    1.0000   0.4781

    0.4781   1.0000

D=

0.5219

      其中0.4781就是相关系数,0.5219是相关距离。


11. 信息熵(Information Entropy)

       信息熵并不属于一种相似性度量。那为什么放在这篇文章中啊?这个。。。我也不知道。 (╯▽╰)

信息熵是衡量分布的混乱程度或分散程度的一种度量。分布越分散(或者说分布越平均),信息熵就越大。分布越有序(或者说分布越集中),信息熵就越小。

       计算给定的样本集X的信息熵的公式:

参数的含义:

n:样本集X的分类数

pi:X中第i类元素出现的概率

       信息熵越大表明样本集S分类越分散,信息熵越小则表明样本集X分类越集中。。当S中n个分类出现的概率一样大时(都是1/n),信息熵取最大值log2(n)。当X只有一个分类时,信息熵取最小值0

三、K-means算法                                                                                                                                                                                        

在聚类问题中,给我们的训练样本是clip_image004,每个clip_image006,没有了y。

     K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:

1、 随机选取k个聚类质心点(cluster centroids)为clip_image008[6]

2、 重复下面过程直到收敛 {

               对于每一个样例i,计算其应该属于的类(意思就是求出所有数据和初始化的随机数据的距离,然后找出距离每个初始数据最近的数据。

               clip_image009(公式一)

               对于每一个类j,重新计算该类的质心(意思就是求出所有和这个初始数据最近原始数据的距离的均值。

               clip_image010[6](公式二)

}


然后不断迭代两个公式,直到所有的u都不怎么变化了,就算完成了。

K是我们事先给定的聚类数,clip_image012[6]代表样例i与k个类中距离最近的那个类,clip_image012[7]的值是1到k中的一个。质心clip_image014[6]代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为clip_image012[8],这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心clip_image014[7](对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。

四、K-means算法的MATLAB实现

下面是Matlab代码,这里我把测试数据改为了三维了,函数是可以处理各种维度的。参见:matlab练习程序(k-means聚类)

main.m

clear all;close all;clc;%第一类数据mu1=[0 0 0];  %均值S1=[0.3 0 0;0 0.35 0;0 0 0.3];  %协方差data1=mvnrnd(mu1,S1,100);   %产生高斯分布数据%%第二类数据mu2=[1.25 1.25 1.25];S2=[0.3 0 0;0 0.35 0;0 0 0.3];data2=mvnrnd(mu2,S2,100);%第三个类数据mu3=[-1.25 1.25 -1.25];S3=[0.3 0 0;0 0.35 0;0 0 0.3];data3=mvnrnd(mu3,S3,100);%显示数据plot3(data1(:,1),data1(:,2),data1(:,3),'+');hold on;plot3(data2(:,1),data2(:,2),data2(:,3),'r+');plot3(data3(:,1),data3(:,2),data3(:,3),'g+');grid on;%三类数据合成一个不带标号的数据类data=[data1;data2;data3];   %这里的data是不带标号的%k-means聚类[u re]=KMeans(data,3);  %最后产生带标号的数据,标号在所有数据的最后,意思就是数据再加一维度[m n]=size(re);%最后显示聚类后的数据figure;hold on;for i=1:m     if re(i,4)==1            plot3(re(i,1),re(i,2),re(i,3),'ro');     elseif re(i,4)==2         plot3(re(i,1),re(i,2),re(i,3),'go');     else          plot3(re(i,1),re(i,2),re(i,3),'bo');     endendgrid on;

kMeans.m

%N是数据一共分多少类%data是输入的不带分类标号的数据%u是每一类的中心%re是返回的带分类标号的数据function [u re]=KMeans(data,N)       [m n]=size(data);   %m是数据个数,n是数据维数    ma=zeros(n);        %每一维最大的数    mi=zeros(n);        %每一维最小的数    u=zeros(N,n);       %随机初始化,最终迭代到每一类的中心位置    for i=1:n       ma(i)=max(data(:,i));    %每一维最大的数       mi(i)=min(data(:,i));    %每一维最小的数       for j=1:N            u(j,i)=ma(i)+(mi(i)-ma(i))*rand();  %随机初始化,不过还是在每一维[min max]中初始化好些       end          end       while 1        pre_u=u;            %上一次求得的中心位置        for i=1:N            tmp{i}=[];      % 公式一中的x(i)-uj,为公式一实现做准备            for j=1:m                tmp{i}=[tmp{i};data(j,:)-u(i,:)];            end        end                quan=zeros(m,N);        for i=1:m        %公式一的实现            c=[];            for j=1:N                c=[c norm(tmp{j}(i,:))];            end            [junk index]=min(c);            quan(i,index)=norm(tmp{index}(i,:));                   end                for i=1:N            %公式二的实现           for j=1:n                u(i,j)=sum(quan(:,i).*data(:,j))/sum(quan(:,i));           end                   end                if norm(pre_u-u)<0.1  %不断迭代直到位置不再变化            break;        end    end        re=[];    for i=1:m        tmp=[];        for j=1:N            tmp=[tmp norm(data(i,:)-u(j,:))];        end        [junk index]=min(tmp);        re=[re;data(i,:) index];    end    end

结果图如下:

用三个三维高斯分布数据画出的图:


通过对没有标记的原始数据进行kmeans聚类得到的分类:












      


0 0
原创粉丝点击
热门问题 老师的惩罚 人脸识别 我在镇武司摸鱼那些年 重生之率土为王 我在大康的咸鱼生活 盘龙之生命进化 天生仙种 凡人之先天五行 春回大明朝 姑娘不必设防,我是瞎子 被别人办了信用卡怎么办 考驾照体检忘带身份证怎么办 c证扣12分怎么办新规 c照12分不够扣怎么办 扣了18分怎么办一次性 c照累计扣12分怎么办 车辆超速扣12分怎么办 一次超速扣12分怎么办 分扣了罚款未交怎么办 c照一次扣12分怎么办 人在外地身份证到期了怎么办 手机进水了屏幕不亮怎么办 北京一证通过期怎么办 小米6音量键进水怎么办 考驾照怕过不了怎么办 学车对车没感觉怎么办 居住证到期2个月怎么办 生育险差一个月怎么办 驾照扣了38分怎么办 新疆转入山东上学怎么办手续 驾照过日期换证怎么办 机动车被扣24分怎么办 车辆被扣24分怎么办 现在深圳牌十年老车怎么办? 护士证过期4年了怎么办 护士资格证延续注册过期了怎么办 护士资格证过期没注册怎么办 护士资格证注册时间过期怎么办 辅警体检视力不行怎么办 护士延续注册体检怀孕怎么办 护士资格证没有延续注册怎么办 申请信用卡没有座机号码怎么办 网上申请信用卡没有座机号码怎么办 我叫上门服务被骗了怎么办 上门服务被骗了3000多怎么办 微信被骗9000元怎么办 奥迪a8气囊灯亮怎么办 驾考站岗迟到了怎么办 老板欠员工工资不给怎么办 如果有一天我没头发了怎么办 苏州公积金密码忘了怎么办