MMX(AVX)Intrinsics头文件与SIMD指令集、Visual Studio版本对应表

来源:互联网 发布:淘宝网图片不显示 编辑:程序博客网 时间:2024/04/29 21:45

File:Intrinsics头文件
描述:指令集描述
VS:Visual Studio版本号
VisualStudio:Visual Studio版本名

File描述VSVisualStudiointrin.hAll Architectures8.02005mmintrin.hMMX intrinsics6.06.0 SP5+PP5xmmintrin.hStreaming SIMD Extensions intrinsics6.06.0 SP5+PP5emmintrin.hWillamette New Instruction intrinsics (SSE2)6.06.0 SP5+PP5pmmintrin.hSSE3 intrinsics9.02008tmmintrin.hSSSE3 intrinsics9.02008smmintrin.hSSE4.1 intrinsics9.02008nmmintrin.hSSE4.2 intrinsics.9.02008wmmintrin.hAES and PCLMULQDQ intrinsics.10.02010immintrin.hIntel-specific intrinsics(AVX)10.02010 SP1ammintrin.hAMD-specific intrinsics (FMA4, LWP, XOP)10.02010 SP1mm3dnow.hAMD 3DNow! intrinsics6.0

6.0 SP5+PP5

 

//#include <ivec.h>//MMX//#include <fvec.h>//SSE(also include ivec.h)//#include <dvec.h>//SSE2(also include fvec.h)#include <mmintrin.h> //MMX#include <xmmintrin.h> //SSE(include mmintrin.h)#include <emmintrin.h> //SSE2(include xmmintrin.h)#include <pmmintrin.h> //SSE3(include emmintrin.h)#include <tmmintrin.h>//SSSE3(include pmmintrin.h)#include <smmintrin.h>//SSE4.1(include tmmintrin.h)#include <nmmintrin.h>//SSE4.2(include smmintrin.h)#include <wmmintrin.h>//AES(include nmmintrin.h)#include <immintrin.h>//AVX(include wmmintrin.h)#include <intrin.h>//(include immintrin.h)
mmintrin.h为MMX头文件,其中__m64的定义为:

typedef union __declspec(intrin_type) _CRT_ALIGN(8) __m64{    unsigned __int64    m64_u64;    float               m64_f32[2];    __int8              m64_i8[8];    __int16             m64_i16[4];    __int32             m64_i32[2];        __int64             m64_i64;    unsigned __int8     m64_u8[8];    unsigned __int16    m64_u16[4];    unsigned __int32    m64_u32[2];} __m64;
xmmintrin.h为SSE 头文件,此头文件里包含MMX头文件,其中__m128的定义为:

typedef union __declspec(intrin_type) _CRT_ALIGN(16) __m128 {     float               m128_f32[4];     unsigned __int64    m128_u64[2];     __int8              m128_i8[16];     __int16             m128_i16[8];     __int32             m128_i32[4];     __int64             m128_i64[2];     unsigned __int8     m128_u8[16];     unsigned __int16    m128_u16[8];     unsigned __int32    m128_u32[4]; } __m128;
emmintrin.h为SSE2头文件,此头文件里包含SSE头文件,其中__m128i和__m128d的定义为:

typedef union __declspec(intrin_type) _CRT_ALIGN(16) __m128i {    __int8              m128i_i8[16];    __int16             m128i_i16[8];    __int32             m128i_i32[4];        __int64             m128i_i64[2];    unsigned __int8     m128i_u8[16];    unsigned __int16    m128i_u16[8];    unsigned __int32    m128i_u32[4];    unsigned __int64    m128i_u64[2];} __m128i;typedef struct __declspec(intrin_type) _CRT_ALIGN(16) __m128d {    double              m128d_f64[2];} __m128d;

immintrin.h为AVX头文件,此头文件里包含AES头文件,其中__m256、__m256d、__m256i的定义为:

typedef union __declspec(intrin_type) _CRT_ALIGN(32) __m256 {     float m256_f32[8];} __m256;    typedef struct __declspec(intrin_type) _CRT_ALIGN(32) {    double m256d_f64[4]; } __m256d;typedef union  __declspec(intrin_type) _CRT_ALIGN(32) __m256i {    __int8              m256i_i8[32];    __int16             m256i_i16[16];    __int32             m256i_i32[8];    __int64             m256i_i64[4];    unsigned __int8     m256i_u8[32];    unsigned __int16    m256i_u16[16];    unsigned __int32    m256i_u32[8];    unsigned __int64    m256i_u64[4];} __m256i;

头文件指令集数据结构字节对齐mmintrin.hMMX__m648字节对齐xmmintrin.hSSE__m12816字节对齐emmintrin.hSSE2__m128i   __m128d16字节对齐immintrin.hAVX__m256  __m256i  __m256d32字节对齐  

immintrin.h文件中各函数的介绍:

/** Add Packed Double Precision Floating-Point Values* **** VADDPD ymm1, ymm2, ymm3/m256* Performs an SIMD add of the four packed double-precision floating-point* values from the first source operand to the second source operand, and* stores the packed double-precision floating-point results in the* destination*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=m10+m20, r1=m11+m21, r2=m12+m22, r3=m13+m23extern __m256d __cdecl _mm256_add_pd(__m256d m1, __m256d m2);/** Add Packed Single Precision Floating-Point Values* **** VADDPS ymm1, ymm2, ymm3/m256* Performs an SIMD add of the eight packed single-precision floating-point* values from the first source operand to the second source operand, and* stores the packed single-precision floating-point results in the* destination*///m1=(m10, m11, ..., m17), m2=(m20, m21, ..., m27)//则r0=m10+m20, r1=m11+m21, ..., r7=m17+m27extern __m256 __cdecl _mm256_add_ps(__m256 m1, __m256 m2);/** Add/Subtract Double Precision Floating-Point Values* **** VADDSUBPD ymm1, ymm2, ymm3/m256* Adds odd-numbered double-precision floating-point values of the first* source operand with the corresponding double-precision floating-point* values from the second source operand; stores the result in the odd-numbered* values of the destination. Subtracts the even-numbered double-precision* floating-point values from the second source operand from the corresponding* double-precision floating values in the first source operand; stores the* result into the even-numbered values of the destination*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=m10-m20, r1=m11+m21, r2=m12-m22, r3=m13-m23extern __m256d __cdecl _mm256_addsub_pd(__m256d m1, __m256d m2);/** Add/Subtract Packed Single Precision Floating-Point Values* **** VADDSUBPS ymm1, ymm2, ymm3/m256* Adds odd-numbered single-precision floating-point values of the first source* operand with the corresponding single-precision floating-point values from* the second source operand; stores the result in the odd-numbered values of* the destination. Subtracts the even-numbered single-precision floating-point* values from the second source operand from the corresponding* single-precision floating values in the first source operand; stores the* result into the even-numbered values of the destination*///m1=(m10, m11, m12, m13, ..., m17), m2=(m20, m21, m22, m23, ..., m27)//则r0=m10-m20, r1=m11+m21, ... , r6=m16-m26, r7=m17+m27extern __m256 __cdecl _mm256_addsub_ps(__m256 m1, __m256 m2);/** Bitwise Logical AND of Packed Double Precision Floating-Point Values* **** VANDPD ymm1, ymm2, ymm3/m256* Performs a bitwise logical AND of the four packed double-precision* floating-point values from the first source operand and the second* source operand, and stores the result in the destination*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=(m10 & m20), r1=(m11 & m21), r2=(m12 & m22), r3=(m13 & m23)extern __m256d __cdecl _mm256_and_pd(__m256d m1, __m256d m2);/** Bitwise Logical AND of Packed Single Precision Floating-Point Values* **** VANDPS ymm1, ymm2, ymm3/m256* Performs a bitwise logical AND of the eight packed single-precision* floating-point values from the first source operand and the second* source operand, and stores the result in the destination*///m1=(m10, m11, m12, m13, ..., m17), m2=(m20, m21, m22, m23, ..., m27)//则r0=(m10 & m20), r1=(m11 & m21), ..., r6=(m16 & m26), r7=(m17 & m27)extern __m256 __cdecl _mm256_and_ps(__m256 m1, __m256 m2);/** Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values* **** VANDNPD ymm1, ymm2, ymm3/m256* Performs a bitwise logical AND NOT of the four packed double-precision* floating-point values from the first source operand and the second source* operand, and stores the result in the destination*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=(~m10) & m20, r1=(~m11) & m21, r2=(~m12) & m22, r3=(~m13) & m23extern __m256d __cdecl _mm256_andnot_pd(__m256d m1, __m256d m2);/** Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values* **** VANDNPS ymm1, ymm2, ymm3/m256* Performs a bitwise logical AND NOT of the eight packed single-precision* floating-point values from the first source operand and the second source* operand, and stores the result in the destination*///m1=(m10, m11, m12, m13, ..., m17), m2=(m20, m21, m22, m23, ..., m27)//则r0=(~m10) & m20, r1=(~m11) & m21), ..., r6=(~m16) & m26, r7=(~m17) & m27extern __m256 __cdecl _mm256_andnot_ps(__m256 m1, __m256 m2);/** Blend Packed Double Precision Floating-Point Values* **** VBLENDPD ymm1, ymm2, ymm3/m256, imm8* Double-Precision Floating-Point values from the second source operand are* conditionally merged with values from the first source operand and written* to the destination. The immediate bits [3:0] determine whether the* corresponding Double-Precision Floating Point value in the destination is* copied from the second source or first source. If a bit in the mask,* orresponding to a word, is "1", then the Double-Precision Floating-Point* value in the second source operand is copied, else the value in the first* source operand is copied*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23), mask=[b3 b2 b1 b0]//如果bn=1,则rn=m2n,如果bn=0, 则rn=m1n, 其中n为0,1,2,3extern __m256d __cdecl _mm256_blend_pd(__m256d m1, __m256d m2, const int mask);/** Blend Packed Single Precision Floating-Point Values* **** VBLENDPS ymm1, ymm2, ymm3/m256, imm8* Single precision floating point values from the second source operand are* conditionally merged with values from the first source operand and written* to the destination. The immediate bits [7:0] determine whether the* corresponding single precision floating-point value in the destination is* copied from the second source or first source. If a bit in the mask,* corresponding to a word, is "1", then the single-precision floating-point* value in the second source operand is copied, else the value in the first* source operand is copied*///m1=(m10, m11, ..., m17), m2=(m20, m21, ..., m27),mask=[b7 b6...b1 b0]//如果bn=1,则rn=m2n,如果bn=0, 则rn=m1n, 其中n为0,1,2,3,4,5,6,7extern __m256 __cdecl _mm256_blend_ps(__m256 m1, __m256 m2, const int mask);/** Blend Packed Double Precision Floating-Point Values* **** VBLENDVPD ymm1, ymm2, ymm3/m256, ymm4* Conditionally copy each quadword data element of double-precision* floating-point value from the second source operand (third operand) and the* first source operand (second operand) depending on mask bits defined in the* mask register operand (fourth operand).*/extern __m256d __cdecl _mm256_blendv_pd(__m256d m1, __m256d m2, __m256d m3);/** Blend Packed Single Precision Floating-Point Values* **** VBLENDVPS ymm1, ymm2, ymm3/m256, ymm4* Conditionally copy each dword data element of single-precision* floating-point value from the second source operand (third operand) and the* first source operand (second operand) depending on mask bits defined in the* mask register operand (fourth operand).*/extern __m256 __cdecl _mm256_blendv_ps(__m256 m1, __m256 m2, __m256 mask);/** Divide Packed Double-Precision Floating-Point Values* **** VDIVPD ymm1, ymm2, ymm3/m256* Performs an SIMD divide of the four packed double-precision floating-point* values in the first source operand by the four packed double-precision* floating-point values in the second source operand*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=m10/m20, r1=m11/m21, r2=m12/m22, r3=m13/m23extern __m256d __cdecl _mm256_div_pd(__m256d m1, __m256d m2);/* * Divide Packed Single-Precision Floating-Point Values* **** VDIVPS ymm1, ymm2, ymm3/m256* Performs an SIMD divide of the eight packed single-precision* floating-point values in the first source operand by the eight packed* single-precision floating-point values in the second source operand*///m1=(m10, m11, m12, m13, ..., m17), m2=(m20, m21, m22, m23, ..., m27)//则r0=m10/m20, r1=m11/m21, ..., r6=m16/m26, r7=m17/m27extern __m256 __cdecl _mm256_div_ps(__m256 m1, __m256 m2);/** Dot Product of Packed Single-Precision Floating-Point Values* **** VDPPS ymm1, ymm2, ymm3/m256, imm8* Multiplies the packed single precision floating point values in the* first source operand with the packed single-precision floats in the* second source. Each of the four resulting single-precision values is* conditionally summed depending on a mask extracted from the high 4 bits* of the immediate operand. This sum is broadcast to each of 4 positions* in the destination if the corresponding bit of the mask selected from* the low 4 bits of the immediate operand is "1". If the corresponding* low bit 0-3 of the mask is zero, the destination is set to zero.* The process is replicated for the high elements of the destination.*///m1=(m10, m11, m12, m13, ..., m17), m2=(m20, m21, m22, m23, ..., m27)//mask=[b7 b6 ... b0], mask的低四位决定结果值是0,还是m1和m2相应位相乘后再求和//若b0b1b2b3为0001,则r0=r1=r2=0,m4=m5=m6=0,此时如果b4b5b6b7为1001,//则r3=m10*m20+m13*m23, r7=m14*m24+m17*m27,其它依次类推extern __m256 __cdecl _mm256_dp_ps(__m256 m1, __m256 m2, const int mask);/** Add Horizontal Double Precision Floating-Point Values* **** VHADDPD ymm1, ymm2, ymm3/m256* Adds pairs of adjacent double-precision floating-point values in the* first source operand and second source operand and stores results in* the destination*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=m10+m11, r1=m20+m21, r2=m12+m13, r3=m22+m23extern __m256d __cdecl _mm256_hadd_pd(__m256d m1, __m256d m2);/** Add Horizontal Single Precision Floating-Point Values* **** VHADDPS ymm1, ymm2, ymm3/m256* Adds pairs of adjacent single-precision floating-point values in the* first source operand and second source operand and stores results in* the destination*///m1=(m10, m11, ..., m17), m2=(m20, m21, ..., m27)//则r0=m10+m11, r1=m12+m13, r2=m20+m21, r3=m22+m23, //r4=m14+m15, r5=m16+m17, r6=m24+m25, r7=m26+m27extern __m256 __cdecl _mm256_hadd_ps(__m256 m1, __m256 m2);/** Subtract Horizontal Double Precision Floating-Point Values* **** VHSUBPD ymm1, ymm2, ymm3/m256* Subtract pairs of adjacent double-precision floating-point values in* the first source operand and second source operand and stores results* in the destination*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=m10-m11, r1=m20-m21, r2=m12-m13, r3=m22-m23extern __m256d __cdecl _mm256_hsub_pd(__m256d m1, __m256d m2);/** Subtract Horizontal Single Precision Floating-Point Values* **** VHSUBPS ymm1, ymm2, ymm3/m256* Subtract pairs of adjacent single-precision floating-point values in* the first source operand and second source operand and stores results* in the destination.*///m1=(m10, m11, ..., m17), m2=(m20, m21, ..., m27)//则r0=m10-m11, r1=m12-m13, r2=m20-m21, r3=m22-m23, //r4=m14-m15, r5=m16-m17, r6=m24-m25, r7=m26-m27extern __m256 __cdecl _mm256_hsub_ps(__m256 m1, __m256 m2);/** Maximum of Packed Double Precision Floating-Point Values* **** VMAXPD ymm1, ymm2, ymm3/m256* Performs an SIMD compare of the packed double-precision floating-point* values in the first source operand and the second source operand and* returns the maximum value for each pair of values to the destination*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=max(m10,m20), r1=max(m11,m21), r2=max(m12,m22), r3=max(m13,m23)extern __m256d __cdecl _mm256_max_pd(__m256d m1, __m256d m2);/** Maximum of Packed Single Precision Floating-Point Values* **** VMAXPS ymm1, ymm2, ymm3/m256* Performs an SIMD compare of the packed single-precision floating-point* values in the first source operand and the second source operand and* returns the maximum value for each pair of values to the destination*///m1=(m10, m11, ..., m17), m2=(m20, m21, ..., m27)//则r0=max(m10,m20), r1=max(m11,m21), ..., r6=max(m16,m26), r7=max(m17,m27) extern __m256 __cdecl _mm256_max_ps(__m256 m1, __m256 m2);/** Minimum of Packed Double Precision Floating-Point Values* **** VMINPD ymm1, ymm2, ymm3/m256* Performs an SIMD compare of the packed double-precision floating-point* values in the first source operand and the second source operand and* returns the minimum value for each pair of values to the destination*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=min(m10,m20), r1=min(m11,m21), r2=min(m12,m22), r3=min(m13,m23)extern __m256d __cdecl _mm256_min_pd(__m256d m1, __m256d m2);/** Minimum of Packed Single Precision Floating-Point Values* **** VMINPS ymm1, ymm2, ymm3/m256* Performs an SIMD compare of the packed single-precision floating-point* values in the first source operand and the second source operand and* returns the minimum value for each pair of values to the destination*///m1=(m10, m11, ..., m17), m2=(m20, m21, ..., m27)//则r0=min(m10,m20), r1=min(m11,m21), ..., r6=min(m16,m26), r7=min(m17,m27) extern __m256 __cdecl _mm256_min_ps(__m256 m1, __m256 m2);/** Multiply Packed Double Precision Floating-Point Values* **** VMULPD ymm1, ymm2, ymm3/m256* Performs a SIMD multiply of the four packed double-precision floating-point* values from the first Source operand to the Second Source operand, and* stores the packed double-precision floating-point results in the* destination*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=m10*m20, r1=m11*m21, r2=m12*m22, r3=m13*m23extern __m256d __cdecl _mm256_mul_pd(__m256d m1, __m256d m2);/** Multiply Packed Single Precision Floating-Point Values* **** VMULPS ymm1, ymm2, ymm3/m256* Performs an SIMD multiply of the eight packed single-precision* floating-point values from the first source operand to the second source* operand, and stores the packed double-precision floating-point results in* the destination*///m1=(m10, m11, ..., m17), m2=(m20, m21, ..., m27)//则r0=m10*m20, r1=m11*m21, ..., r6=m16*m26, r7=m17*m27 extern __m256 __cdecl _mm256_mul_ps(__m256 m1, __m256 m2);/** Bitwise Logical OR of Packed Double Precision Floating-Point Values* **** VORPD ymm1, ymm2, ymm3/m256* Performs a bitwise logical OR of the four packed double-precision* floating-point values from the first source operand and the second* source operand, and stores the result in the destination*///注意:有时得到的结果并不是m1和m2按位或的结果?extern __m256d __cdecl _mm256_or_pd(__m256d m1, __m256d m2);/** Bitwise Logical OR of Packed Single Precision Floating-Point Values* **** VORPS ymm1, ymm2, ymm3/m256* Performs a bitwise logical OR of the eight packed single-precision* floating-point values from the first source operand and the second* source operand, and stores the result in the destination*///注意:有时得到的结果并不是m1和m2按位或的结果?extern __m256 __cdecl _mm256_or_ps(__m256 m1, __m256 m2);/** Shuffle Packed Double Precision Floating-Point Values* **** VSHUFPD ymm1, ymm2, ymm3/m256, imm8* Moves either of the two packed double-precision floating-point values from* each double quadword in the first source operand into the low quadword* of each double quadword of the destination; moves either of the two packed* double-precision floating-point values from the second source operand into* the high quadword of each double quadword of the destination operand.* The selector operand determines which values are moved to the destination*/extern __m256d __cdecl _mm256_shuffle_pd(__m256d m1, __m256d m2, const int select);/** Shuffle Packed Single Precision Floating-Point Values* **** VSHUFPS ymm1, ymm2, ymm3/m256, imm8* Moves two of the four packed single-precision floating-point values* from each double qword of the first source operand into the low* quadword of each double qword of the destination; moves two of the four* packed single-precision floating-point values from each double qword of* the second source operand into to the high quadword of each double qword* of the destination. The selector operand determines which values are moved* to the destination.*/extern __m256 __cdecl _mm256_shuffle_ps(__m256 m1, __m256 m2, const int select);/** Subtract Packed Double Precision Floating-Point Values* **** VSUBPD ymm1, ymm2, ymm3/m256* Performs an SIMD subtract of the four packed double-precision floating-point* values of the second Source operand from the first Source operand, and* stores the packed double-precision floating-point results in the destination*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r0=m10-m20, r1=m11-m21, r2=m12-m22, r3=m13-m23extern __m256d __cdecl _mm256_sub_pd(__m256d m1, __m256d m2);/** Subtract Packed Single Precision Floating-Point Values* **** VSUBPS ymm1, ymm2, ymm3/m256* Performs an SIMD subtract of the eight packed single-precision* floating-point values in the second Source operand from the First Source* operand, and stores the packed single-precision floating-point results in* the destination*///m1=(m10, m11, ..., m17), m2=(m20, m21, ..., m27)//则r0=m10-m20, r1=m11-m21, ..., r6=m16-m26, r7=m17-m27 extern __m256 __cdecl _mm256_sub_ps(__m256 m1, __m256 m2);/** Bitwise Logical XOR of Packed Double Precision Floating-Point Values* **** VXORPD ymm1, ymm2, ymm3/m256* Performs a bitwise logical XOR of the four packed double-precision* floating-point values from the first source operand and the second* source operand, and stores the result in the destination*///注意:有时得到的结果并不是m1和m2按位异或的结果?extern __m256d __cdecl _mm256_xor_pd(__m256d m1, __m256d m2);/** Bitwise Logical XOR of Packed Single Precision Floating-Point Values* **** VXORPS ymm1, ymm2, ymm3/m256* Performs a bitwise logical XOR of the eight packed single-precision* floating-point values from the first source operand and the second* source operand, and stores the result in the destination*///注意:有时得到的结果并不是m1和m2按位异或的结果?extern __m256 __cdecl _mm256_xor_ps(__m256 m1, __m256 m2);/** Compare Packed Double-Precision Floating-Point Values* **** VCMPPD xmm1, xmm2, xmm3/m128, imm8* **** VCMPPD ymm1, ymm2, ymm3/m256, imm8* Performs an SIMD compare of the four packed double-precision floating-point* values in the second source operand (third operand) and the first source* operand (second operand) and returns the results of the comparison to the* destination operand (first operand). The comparison predicate operand* (immediate) specifies the type of comparison performed on each of the pairs* of packed values.* For 128-bit intrinsic with compare predicate values in range 0-7 compiler* may generate SSE2 instructions if it is warranted for performance reasons.*/extern __m128d __cdecl _mm_cmp_pd(__m128d m1, __m128d m2, const int predicate);extern __m256d __cdecl _mm256_cmp_pd(__m256d m1, __m256d m2, const int predicate);/** Compare Packed Single-Precision Floating-Point Values* **** VCMPPS xmm1, xmm2, xmm3/m256, imm8* **** VCMPPS ymm1, ymm2, ymm3/m256, imm8* Performs a SIMD compare of the packed single-precision floating-point values* in the second source operand (third operand) and the first source operand* (second operand) and returns the results of the comparison to the destination* operand (first operand). The comparison predicate operand (immediate)* specifies the type of comparison performed on each of the pairs of packed* values.* For 128-bit intrinsic with compare predicate values in range 0-7 compiler* may generate SSE2 instructions if it is warranted for performance reasons.*/extern __m128 __cdecl _mm_cmp_ps(__m128 m1, __m128 m2, const int predicate);extern __m256 __cdecl _mm256_cmp_ps(__m256 m1, __m256 m2, const int predicate);/** Compare Scalar Double-Precision Floating-Point Values* **** VCMPSD xmm1, xmm2, xmm3/m64, imm8* Compares the low double-precision floating-point values in the second source* operand (third operand) and the first source operand (second operand) and* returns the results in of the comparison to the destination operand (first* operand). The comparison predicate operand (immediate operand) specifies the* type of comparison performed.* For compare predicate values in range 0-7 compiler may generate SSE2* instructions if it is warranted for performance reasons.*/extern __m128d __cdecl _mm_cmp_sd(__m128d m1, __m128d m2, const int predicate);/** Compare Scalar Single-Precision Floating-Point Values* **** VCMPSS xmm1, xmm2, xmm3/m64, imm8* Compares the low single-precision floating-point values in the second source* operand (third operand) and the first source operand (second operand) and* returns the results of the comparison to the destination operand (first* operand). The comparison predicate operand (immediate operand) specifies* the type of comparison performed.* For compare predicate values in range 0-7 compiler may generate SSE2* instructions if it is warranted for performance reasons.*/extern __m128 __cdecl _mm_cmp_ss(__m128 m1, __m128 m2, const int predicate);/** Convert Packed Doubleword Integers to* Packed Double-Precision Floating-Point Values* **** VCVTDQ2PD ymm1, xmm2/m128* Converts four packed signed doubleword integers in the source operand to* four packed double-precision floating-point values in the destination*///从__int32类型转换到double类型extern __m256d __cdecl _mm256_cvtepi32_pd(__m128i m1);/** Convert Packed Doubleword Integers to* Packed Single-Precision Floating-Point Values* **** VCVTDQ2PS ymm1, ymm2/m256* Converts eight packed signed doubleword integers in the source operand to* eight packed double-precision floating-point values in the destination*///从__int32类型转换到float类型extern __m256  __cdecl _mm256_cvtepi32_ps(__m256i m1);/** Convert Packed Double-Precision Floating-point values to* Packed Single-Precision Floating-Point Values* **** VCVTPD2PS xmm1, ymm2/m256* Converts four packed double-precision floating-point values in the source* operand to four packed single-precision floating-point values in the* destination*///从double类型转换到float类型extern __m128  __cdecl _mm256_cvtpd_ps(__m256d m1);/** Convert Packed Single Precision Floating-Point Values to* Packed Singed Doubleword Integer Values* **** VCVTPS2DQ ymm1, ymm2/m256* Converts eight packed single-precision floating-point values in the source* operand to eight signed doubleword integers in the destination*///从float类型转换到__int32类型extern __m256i __cdecl _mm256_cvtps_epi32(__m256 m1);/** Convert Packed Single Precision Floating-point values to* Packed Double Precision Floating-Point Values* **** VCVTPS2PD ymm1, xmm2/m128* Converts four packed single-precision floating-point values in the source* operand to four packed double-precision floating-point values in the* destination*///从float类型转换到double类型extern __m256d __cdecl _mm256_cvtps_pd(__m128 m1);/** Convert with Truncation Packed Double-Precision Floating-Point values to* Packed Doubleword Integers* **** VCVTTPD2DQ xmm1, ymm2/m256* Converts four packed double-precision floating-point values in the source* operand to four packed signed doubleword integers in the destination.* When a conversion is inexact, a truncated (round toward zero) value is* returned. If a converted result is larger than the maximum signed doubleword* integer, the floating-point invalid exception is raised, and if this* exception is masked, the indefinite integer value (80000000H) is returned*///从double类型转换到__int32类型,truncatedextern __m128i __cdecl _mm256_cvttpd_epi32(__m256d m1);/** Convert Packed Double-Precision Floating-point values to* Packed Doubleword Integers* **** VCVTPD2DQ xmm1, ymm2/m256* Converts four packed double-precision floating-point values in the source* operand to four packed signed doubleword integers in the destination*///从double类型转换到__int32类型extern __m128i __cdecl _mm256_cvtpd_epi32(__m256d m1);/** Convert with Truncation Packed Single Precision Floating-Point Values to* Packed Singed Doubleword Integer Values* **** VCVTTPS2DQ ymm1, ymm2/m256* Converts eight packed single-precision floating-point values in the source* operand to eight signed doubleword integers in the destination.* When a conversion is inexact, a truncated (round toward zero) value is* returned. If a converted result is larger than the maximum signed doubleword* integer, the floating-point invalid exception is raised, and if this* exception is masked, the indefinite integer value (80000000H) is returned*///从float类型转换到__int32类型,truncatedextern __m256i __cdecl _mm256_cvttps_epi32(__m256 m1);/** Extract packed floating-point values* **** VEXTRACTF128 xmm1/m128, ymm2, imm8* Extracts 128-bits of packed floating-point values from the source operand* at an 128-bit offset from imm8[0] into the destination*///offset:a constant integer value that represents the 128-bit offset from //where extraction must start//从256位中提取128位,offset决定提取的起始位置extern __m128  __cdecl _mm256_extractf128_ps(__m256 m1, const int offset);extern __m128d __cdecl _mm256_extractf128_pd(__m256d m1, const int offset);extern __m128i __cdecl _mm256_extractf128_si256(__m256i m1, const int offset);/** Zero All YMM registers* **** VZEROALL* Zeros contents of all YMM registers*/extern void __cdecl _mm256_zeroall(void);/** Zero Upper bits of YMM registers* **** VZEROUPPER* Zeros the upper 128 bits of all YMM registers. The lower 128-bits of the* registers (the corresponding XMM registers) are unmodified*/extern void __cdecl _mm256_zeroupper(void);/** Permute Single-Precision Floating-Point Values* **** VPERMILPS ymm1, ymm2, ymm3/m256* **** VPERMILPS xmm1, xmm2, xmm3/m128* Permute Single-Precision Floating-Point values in the first source operand* using 8-bit control fields in the low bytes of corresponding elements the* shuffle control and store results in the destination*///control:a vector with 2-bit control fields, one for each corresponding element //of the source vector, for the 256-bit m1 source vector this control vector//contains eight 2-bit control fields,for the 128-bit m1 source vector this //control vector contains four 2-bit control fieldsextern __m256  __cdecl _mm256_permutevar_ps(__m256 m1, __m256i control);extern __m128  __cdecl _mm_permutevar_ps(__m128 a, __m128i control);/** Permute Single-Precision Floating-Point Values* **** VPERMILPS ymm1, ymm2/m256, imm8* **** VPERMILPS xmm1, xmm2/m128, imm8* Permute Single-Precision Floating-Point values in the first source operand* using four 2-bit control fields in the 8-bit immediate and store results* in the destination*///control:an integer specified as an 8-bit immediate;for the 256-bit m1 vector//this integer contains four 2-bit control fields in the low 8 bits of //the immediate, for the 128-bit m1 vector this integer contains two 2-bit//control fields in the low 4 bits of the immediateextern __m256  __cdecl _mm256_permute_ps(__m256 m1, int control);extern __m128  __cdecl _mm_permute_ps(__m128 a, int control);/** Permute Double-Precision Floating-Point Values* **** VPERMILPD ymm1, ymm2, ymm3/m256* **** VPERMILPD xmm1, xmm2, xmm3/m128* Permute Double-Precision Floating-Point values in the first source operand* using 8-bit control fields in the low bytes of the second source operand* and store results in the destination*///control:a vector with 1-bit control fields, one for each corresponding element//of the source vector, for the 256-bit m1 source vector this control vector //contains four 1-bit control fields in the low 4 bits of the immediate, for the //128-bit m1 source vector this control vector contains two 1-bit control fields//in the low 2 bits of the immediateextern __m256d __cdecl _mm256_permutevar_pd(__m256d m1, __m256i control);extern __m128d __cdecl _mm_permutevar_pd(__m128d a, __m128i control);/** Permute Double-Precision Floating-Point Values* **** VPERMILPD ymm1, ymm2/m256, imm8* **** VPERMILPD xmm1, xmm2/m128, imm8* Permute Double-Precision Floating-Point values in the first source operand* using two, 1-bit control fields in the low 2 bits of the 8-bit immediate* and store results in the destination*///control:an integer specified as an 8-bit immediate; for the 256-bit m1 vector//this integer contains four 1-bit control fields in the low 4 bits of the //immediate, for the 128-bit m1 vector this integer contains two 1-bit//control fields in the low 2 bits of the immediateextern __m256d __cdecl _mm256_permute_pd(__m256d m1, int control);extern __m128d __cdecl _mm_permute_pd(__m128d a, int control);/** Permute Floating-Point Values* **** VPERM2F128 ymm1, ymm2, ymm3/m256, imm8* Permute 128 bit floating-point-containing fields from the first source* operand and second source operand using bits in the 8-bit immediate and* store results in the destination*///control:an immediate byte that specifies two 2-bit control fields and two //additional bits which specify zeroing behaviorextern __m256  __cdecl _mm256_permute2f128_ps(__m256 m1, __m256 m2, int control);extern __m256d __cdecl _mm256_permute2f128_pd(__m256d m1, __m256d m2, int control);extern __m256i __cdecl _mm256_permute2f128_si256(__m256i m1, __m256i m2, int control);/** Load with Broadcast* **** VBROADCASTSS ymm1, m32* **** VBROADCASTSS xmm1, m32* Load floating point values from the source operand and broadcast to all* elements of the destination*///*a:pointer to a memory location that can hold constant 256-bit or//128-bit float32 values, 则r0=r1=...=rn=a[0]extern __m256  __cdecl _mm256_broadcast_ss(float const *a);extern __m128  __cdecl _mm_broadcast_ss(float const *a);/** Load with Broadcast* **** VBROADCASTSD ymm1, m64* Load floating point values from the source operand and broadcast to all* elements of the destination*///则r0=r1=r2=r3=a[0]extern __m256d __cdecl _mm256_broadcast_sd(double const *a);/** Load with Broadcast* **** VBROADCASTF128 ymm1, m128* Load floating point values from the source operand and broadcast to all* elements of the destination*///若*a为a[0],a[1],则r0=r2=a[0], r1=r3=a[1]extern __m256  __cdecl _mm256_broadcast_ps(__m128 const *a);extern __m256d __cdecl _mm256_broadcast_pd(__m128d const *a);/** Insert packed floating-point values* **** VINSERTF128 ymm1, ymm2, xmm3/m128, imm8* Performs an insertion of 128-bits of packed floating-point values from the* second source operand into an the destination at an 128-bit offset from* imm8[0]. The remaining portions of the destination are written by the* corresponding fields of the first source operand*///offset:an integer value that represents the 128-bit offset//where the insertion must start//The remaining portions of the destination are written by the corresponding//elements of the first source vector, aextern __m256  __cdecl _mm256_insertf128_ps(__m256 a, __m128 b, int offset);extern __m256d __cdecl _mm256_insertf128_pd(__m256d a, __m128d b, int offset);extern __m256i __cdecl _mm256_insertf128_si256(__m256i a, __m128i b, int offset);/** Move Aligned Packed Double-Precision Floating-Point Values* **** VMOVAPD ymm1, m256* **** VMOVAPD m256, ymm1* Moves 4 double-precision floating-point values from the source operand to* the destination*///*a:the address must be 32-byte alignedextern __m256d __cdecl _mm256_load_pd(double const *a);extern void    __cdecl _mm256_store_pd(double *a, __m256d b);/** Move Aligned Packed Single-Precision Floating-Point Values* **** VMOVAPS ymm1, m256* **** VMOVAPS m256, ymm1* Moves 8 single-precision floating-point values from the source operand to* the destination*///*a:the address must be 32-byte alignedextern __m256  __cdecl _mm256_load_ps(float const *a);extern void    __cdecl _mm256_store_ps(float *a, __m256 b);/** Move Unaligned Packed Double-Precision Floating-Point Values* **** VMOVUPD ymm1, m256* **** VMOVUPD m256, ymm1* Moves 256 bits of packed double-precision floating-point values from the* source operand to the destination*///The address a does not need to be 32-byte aligned  extern __m256d __cdecl _mm256_loadu_pd(double const *a);extern void    __cdecl _mm256_storeu_pd(double *a, __m256d b);/** Move Unaligned Packed Single-Precision Floating-Point Values* **** VMOVUPS ymm1, m256* **** VMOVUPS m256, ymm1* Moves 256 bits of packed single-precision floating-point values from the* source operand to the destination*///The address a does not need to be 32-byte aligned  extern __m256  __cdecl _mm256_loadu_ps(float const *a);extern void    __cdecl _mm256_storeu_ps(float *a, __m256 b);/** Move Aligned Packed Integer Values* **** VMOVDQA ymm1, m256* **** VMOVDQA m256, ymm1* Moves 256 bits of packed integer values from the source operand to the* destination*///The address a does not need to be 32-byte aligned  extern __m256i __cdecl _mm256_load_si256(__m256i const *a);extern void    __cdecl _mm256_store_si256(__m256i *a, __m256i b);/** Move Unaligned Packed Integer Values* **** VMOVDQU ymm1, m256* **** VMOVDQU m256, ymm1* Moves 256 bits of packed integer values from the source operand to the* destination*///The address a does not need to be 32-byte aligned  extern __m256i __cdecl _mm256_loadu_si256(__m256i const *a);extern void    __cdecl _mm256_storeu_si256(__m256i *a, __m256i b); /** Conditional SIMD Packed Loads and Stores* **** VMASKMOVPD xmm1, xmm2, m128* **** VMASKMOVPD ymm1, ymm2, m256* **** VMASKMOVPD m128, xmm1, xmm2* **** VMASKMOVPD m256, ymm1, ymm2** Load forms:* Load packed values from the 128-bit (XMM forms) or 256-bit (YMM forms)* memory location (third operand) into the destination XMM or YMM register* (first operand) using a mask in the first source operand (second operand).** Store forms:* Stores packed values from the XMM or YMM register in the second source* operand (third operand) into the 128-bit (XMM forms) or 256-bit (YMM forms)* memory location using a mask in first source operand (second operand).* Stores are atomic.*///The mask is calculated from the most significant bit of each qword of the mask//register. If any of the bits of the mask is set to zero, the corresponding value//from the memory location is not loaded, and the corresponding field of the//destination vector is set to zero.extern __m256d __cdecl _mm256_maskload_pd(double const *a, __m256i mask);extern void    __cdecl _mm256_maskstore_pd(double *a, __m256i mask, __m256d b);extern __m128d __cdecl _mm_maskload_pd(double const *a, __m128i mask);extern void    __cdecl _mm_maskstore_pd(double *a, __m128i mask, __m128d b); /** Conditional SIMD Packed Loads and Stores* **** VMASKMOVPS xmm1, xmm2, m128* **** VMASKMOVPS ymm1, ymm2, m256* **** VMASKMOVPS m128, xmm1, xmm2* **** VMASKMOVPS m256, ymm1, ymm2** Load forms:* Load packed values from the 128-bit (XMM forms) or 256-bit (YMM forms)* memory location (third operand) into the destination XMM or YMM register* (first operand) using a mask in the first source operand (second operand).** Store forms:* Stores packed values from the XMM or YMM register in the second source* operand (third operand) into the 128-bit (XMM forms) or 256-bit (YMM forms)* memory location using a mask in first source operand (second operand).* Stores are atomic.*///The mask is calculated from the most significant bit of each dword of the mask //register. If any of the bits of the mask is set to zero, the corresponding //value from the memory location is not loaded, and the corresponding field of//the destination vector is set to zero.extern __m256  __cdecl _mm256_maskload_ps(float const *a, __m256i mask);extern void    __cdecl _mm256_maskstore_ps(float *a, __m256i mask, __m256 b); extern __m128  __cdecl _mm_maskload_ps(float const *a, __m128i mask);extern void    __cdecl _mm_maskstore_ps(float *a, __m128i mask, __m128 b); /** Replicate Single-Precision Floating-Point Values* **** VMOVSHDUP ymm1, ymm2/m256* Duplicates odd-indexed single-precision floating-point values from the* source operand*///a=(a0, a1, a2, a3, a4, a5, a6, a7);则r=(a1, a1, a3, a3, a5, a5, a7, a7)extern __m256  __cdecl _mm256_movehdup_ps(__m256 a);/** Replicate Single-Precision Floating-Point Values* **** VMOVSLDUP ymm1, ymm2/m256* Duplicates even-indexed single-precision floating-point values from the* source operand*///a=(a0, a1, a2, a3, a4, a5, a6, a7);则r=(a0, a0, a2, a2, a4, a4, a6, a6)extern __m256  __cdecl _mm256_moveldup_ps(__m256 a);/** Replicate Double-Precision Floating-Point Values* **** VMOVDDUP ymm1, ymm2/m256* Duplicates even-indexed double-precision floating-point values from the* source operand*///a=(a0, a1, a2, a3), 则r=(a0, a0, a2, a2)extern __m256d __cdecl _mm256_movedup_pd(__m256d a);/** Move Unaligned Integer* **** VLDDQU ymm1, m256* The instruction is functionally similar to VMOVDQU YMM, m256 for loading* from memory. That is: 32 bytes of data starting at an address specified by* the source memory operand are fetched from memory and placed in a* destination*///*a:points to a memory location from where unaligned integer value must be movedextern __m256i __cdecl _mm256_lddqu_si256(__m256i const *a);/** Store Packed Integers Using Non-Temporal Hint* **** VMOVNTDQ m256, ymm1* Moves the packed integers in the source operand to the destination using a* non-temporal hint to prevent caching of the data during the write to memory*///the address must be 32-byte alignedextern void    __cdecl _mm256_stream_si256(__m256i *p, __m256i a);/** Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint* **** VMOVNTPD m256, ymm1* Moves the packed double-precision floating-point values in the source* operand to the destination operand using a non-temporal hint to prevent* caching of the data during the write to memory*///the address must be 32-byte alignedextern void    __cdecl _mm256_stream_pd(double *p, __m256d a);/** Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint* **** VMOVNTPS m256, ymm1* Moves the packed single-precision floating-point values in the source* operand to the destination operand using a non-temporal hint to prevent* caching of the data during the write to memory*///the address must be 32-byte alignedextern void    __cdecl _mm256_stream_ps(float *p, __m256 a);/** Compute Approximate Reciprocals of Packed Single-Precision Floating-Point Values* **** VRCPPS ymm1, ymm2/m256* Performs an SIMD computation of the approximate reciprocals of the eight* packed single precision floating-point values in the source operand and* stores the packed single-precision floating-point results in the destination*///a=(a0, a1, a2, ..., a6, a7);//则r=(1/a0, 1/a1, ..., 1/a6, 1/a7), 求倒数extern __m256  __cdecl _mm256_rcp_ps(__m256 a);/** Compute Approximate Reciprocals of Square Roots of* Packed Single-Precision Floating-point Values* **** VRSQRTPS ymm1, ymm2/m256* Performs an SIMD computation of the approximate reciprocals of the square* roots of the eight packed single precision floating-point values in the* source operand and stores the packed single-precision floating-point results* in the destination*///a=(a0, a1, a2, ..., a6, a7);//则r=(1/sqrt(a0), 1/sqrt(a1), ..., 1/sqrt(a6), 1/sqrt(a7)), 先开方再求倒数extern __m256  __cdecl _mm256_rsqrt_ps(__m256 a);/** Square Root of Double-Precision Floating-Point Values* **** VSQRTPD ymm1, ymm2/m256* Performs an SIMD computation of the square roots of the two or four packed* double-precision floating-point values in the source operand and stores* the packed double-precision floating-point results in the destination*///a=(a0, a1, a2, a3, a4);则r=(sqrt(a0),sqrt(a1), sqrt(a2), sqrt(a3)), 求开方extern __m256d __cdecl _mm256_sqrt_pd(__m256d a);/** Square Root of Single-Precision Floating-Point Values* **** VSQRTPS ymm1, ymm2/m256* Performs an SIMD computation of the square roots of the eight packed* single-precision floating-point values in the source operand stores the* packed double-precision floating-point results in the destination*///a=(a0, a1, a2, ..., a3, a4);则r=(sqrt(a0),sqrt(a1), ..., sqrt(a2), sqrt(a3)), 求开方extern __m256  __cdecl _mm256_sqrt_ps(__m256 a);/** Round Packed Double-Precision Floating-Point Values* **** VROUNDPD ymm1,ymm2/m256,imm8* Round the four Double-Precision Floating-Point Values values in the source* operand by the rounding mode specified in the immediate operand and place* the result in the destination. The rounding process rounds the input to an* integral value and returns the result as a double-precision floating-point* value. The Precision Floating Point Exception is signaled according to the* immediate operand. If any source operand is an SNaN then it will be* converted to a QNaN.*///a=(22.8, -11.3, -33.8, 4.3),//若iRoundMode=0x0A, 则r=(23, -11, -33, 5)//若iRoundMode=0x09, 则r=(22, -12, -34, 4)extern __m256d __cdecl _mm256_round_pd(__m256d a, int iRoundMode);#define _mm256_ceil_pd(val)   _mm256_round_pd((val), 0x0A);#define _mm256_floor_pd(val)  _mm256_round_pd((val), 0x09);/** Round Packed Single-Precision Floating-Point Values* **** VROUNDPS ymm1,ymm2/m256,imm8* Round the four single-precision floating-point values values in the source* operand by the rounding mode specified in the immediate operand and place* the result in the destination. The rounding process rounds the input to an* integral value and returns the result as a double-precision floating-point* value. The Precision Floating Point Exception is signaled according to the* immediate operand. If any source operand is an SNaN then it will be* converted to a QNaN.*///用法与_mm256_round_pd相同extern __m256  __cdecl _mm256_round_ps(__m256 a, int iRoundMode);#define _mm256_ceil_ps(val)   _mm256_round_ps((val), 0x0A);#define _mm256_floor_ps(val)  _mm256_round_ps((val), 0x09);/** Unpack and Interleave High Packed Double-Precision Floating-Point Values* **** VUNPCKHPD ymm1,ymm2,ymm3/m256* Performs an interleaved unpack of the high double-precision floating-point* values from the first source operand and the second source operand.*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r=(m11, m21, m13, m23)extern __m256d __cdecl _mm256_unpackhi_pd(__m256d m1, __m256d m2);/** Unpack and Interleave High Packed Single-Precision Floating-Point Values* **** VUNPCKHPS ymm1,ymm2,ymm3* Performs an interleaved unpack of the high single-precision floating-point* values from the first source operand and the second source operand*///m1=(m10, m11, ..., m17), m2=(m20, m21, ..., m27)//则r=(m12, m22, m13, m23, m16, m26, m17, m27)extern __m256  __cdecl _mm256_unpackhi_ps(__m256 m1, __m256 m2); /** Unpack and Interleave Low Packed Double-Precision Floating-Point Values* **** VUNPCKLPD ymm1,ymm2,ymm3/m256* Performs an interleaved unpack of the low double-precision floating-point* values from the first source operand and the second source operand*///m1=(m10, m11, m12, m13), m2=(m20, m21, m22, m23)//则r=(m10, m20, m12, m22)extern __m256d __cdecl _mm256_unpacklo_pd(__m256d m1, __m256d m2);/** Unpack and Interleave Low Packed Single-Precision Floating-Point Values* **** VUNPCKLPS ymm1,ymm2,ymm3* Performs an interleaved unpack of the low single-precision floating-point* values from the first source operand and the second source operand*///m1=(m10, m11, ..., m17), m2=(m20, m21, ..., m27)//则r=(m10, m20, m11, m21, m14, m24, m15, m25)extern __m256  __cdecl _mm256_unpacklo_ps(__m256 m1, __m256 m2);/** Packed Bit Test* **** VPTEST ymm1, ymm2/m256* VPTEST set the ZF flag if all bits in the result are 0 of the bitwise AND* of the first source operand and the second source operand. VPTEST sets the* CF flag if all bits in the result are 0 of the bitwise AND of the second* source operand and the logical NOT of the destination.*/extern int     __cdecl _mm256_testz_si256(__m256i s1, __m256i s2);extern int     __cdecl _mm256_testc_si256(__m256i s1, __m256i s2);extern int     __cdecl _mm256_testnzc_si256(__m256i s1, __m256i s2);/** Packed Bit Test* **** VTESTPD ymm1, ymm2/m256* **** VTESTPD xmm1, xmm2/m128* VTESTPD performs a bitwise comparison of all the sign bits of the* double-precision elements in the first source operation and corresponding* sign bits in the second source operand. If the AND of the two sets of bits* produces all zeros, the ZF is set else the ZF is clear. If the AND NOT of* the source sign bits with the dest sign bits produces all zeros the CF is* set else the CF is clear*/extern int     __cdecl _mm256_testz_pd(__m256d s1, __m256d s2);extern int     __cdecl _mm256_testc_pd(__m256d s1, __m256d s2);extern int     __cdecl _mm256_testnzc_pd(__m256d s1, __m256d s2);extern int     __cdecl _mm_testz_pd(__m128d s1, __m128d s2);extern int     __cdecl _mm_testc_pd(__m128d s1, __m128d s2);extern int     __cdecl _mm_testnzc_pd(__m128d s1, __m128d s2);/** Packed Bit Test* **** VTESTPS ymm1, ymm2/m256* **** VTESTPS xmm1, xmm2/m128* VTESTPS performs a bitwise comparison of all the sign bits of the packed* single-precision elements in the first source operation and corresponding* sign bits in the second source operand. If the AND of the two sets of bits* produces all zeros, the ZF is set else the ZF is clear. If the AND NOT of* the source sign bits with the dest sign bits produces all zeros the CF is* set else the CF is clear*/extern int     __cdecl _mm256_testz_ps(__m256 s1, __m256 s2);extern int     __cdecl _mm256_testc_ps(__m256 s1, __m256 s2);extern int     __cdecl _mm256_testnzc_ps(__m256 s1, __m256 s2);extern int     __cdecl _mm_testz_ps(__m128 s1, __m128 s2);extern int     __cdecl _mm_testc_ps(__m128 s1, __m128 s2);extern int     __cdecl _mm_testnzc_ps(__m128 s1, __m128 s2);/** Extract Double-Precision Floating-Point Sign mask* **** VMOVMSKPD r32, ymm2* Extracts the sign bits from the packed double-precision floating-point* values in the source operand, formats them into a 4-bit mask, and stores* the mask in the destination*/extern int     __cdecl _mm256_movemask_pd(__m256d a);/** Extract Single-Precision Floating-Point Sign mask* **** VMOVMSKPS r32, ymm2* Extracts the sign bits from the packed single-precision floating-point* values in the source operand, formats them into a 8-bit mask, and stores* the mask in the destination*/extern int     __cdecl _mm256_movemask_ps(__m256 a);/** Return 256-bit vector with all elements set to 0*///则r0=r1=...=rn=0extern __m256d __cdecl _mm256_setzero_pd(void);extern __m256  __cdecl _mm256_setzero_ps(void);extern __m256i __cdecl _mm256_setzero_si256(void);/** Return 256-bit vector intialized to specified arguments*///则r = (d, c, b, a)extern __m256d __cdecl _mm256_set_pd(double a, double b, double c, double d);extern __m256  __cdecl _mm256_set_ps(float, float, float, float, float, float, float, float);extern __m256i __cdecl _mm256_set_epi8(char, char, char, char, char, char, char, char,char, char, char, char, char, char, char, char,char, char, char, char, char, char, char, char,char, char, char, char, char, char, char, char);extern __m256i __cdecl _mm256_set_epi16(short, short, short, short, short, short, short, short,short, short, short, short, short, short, short, short);extern __m256i __cdecl _mm256_set_epi32(int, int, int, int, int, int, int, int);extern __m256i __cdecl _mm256_set_epi64x(long long, long long, long long, long long);//则r = (a, b, c, d)extern __m256d __cdecl _mm256_setr_pd(double a, double b, double c, double d);extern __m256  __cdecl _mm256_setr_ps(float, float, float, float, float, float, float, float);extern __m256i __cdecl _mm256_setr_epi8(char, char, char, char, char, char, char, char,char, char, char, char, char, char, char, char,char, char, char, char, char, char, char, char,char, char, char, char, char, char, char, char);extern __m256i __cdecl _mm256_setr_epi16(short, short, short, short, short, short, short, short,short, short, short, short, short, short, short, short);extern __m256i __cdecl _mm256_setr_epi32(int, int, int, int, int, int, int, int);extern __m256i __cdecl _mm256_setr_epi64x(long long, long long, long long, long long);/** Return 256-bit vector with all elements intialized to specified scalar*///则r0 =  ... = rn = aextern __m256d __cdecl _mm256_set1_pd(double a);extern __m256  __cdecl _mm256_set1_ps(float);extern __m256i __cdecl _mm256_set1_epi8(char);extern __m256i __cdecl _mm256_set1_epi16(short);extern __m256i __cdecl _mm256_set1_epi32(int);extern __m256i __cdecl _mm256_set1_epi64x(long long);/** Support intrinsics to do vector type casts. These intrinsics do not introduce* extra moves to generated code. When cast is done from a 128 to 256-bit type* the low 128 bits of the 256-bit result contain source parameter value; the* upper 128 bits of the result are undefined*///类型转换extern __m256  __cdecl _mm256_castpd_ps(__m256d a);extern __m256d __cdecl _mm256_castps_pd(__m256 a);extern __m256i __cdecl _mm256_castps_si256(__m256 a);extern __m256i __cdecl _mm256_castpd_si256(__m256d a);extern __m256  __cdecl _mm256_castsi256_ps(__m256i a);extern __m256d __cdecl _mm256_castsi256_pd(__m256i a);extern __m128  __cdecl _mm256_castps256_ps128(__m256 a);extern __m128d __cdecl _mm256_castpd256_pd128(__m256d a);extern __m128i __cdecl _mm256_castsi256_si128(__m256i a);extern __m256  __cdecl _mm256_castps128_ps256(__m128 a);extern __m256d __cdecl _mm256_castpd128_pd256(__m128d a);extern __m256i __cdecl _mm256_castsi128_si256(__m128i a);/* Start of new intrinsics for Dev10 SP1** The list of extended control registers.* Currently, the list includes only one register.*/#define _XCR_XFEATURE_ENABLED_MASK 0/* Returns the content of the specified extended control register */extern unsigned __int64 __cdecl _xgetbv(unsigned int ext_ctrl_reg);/* Writes the value to the specified extended control register */extern void __cdecl _xsetbv(unsigned int ext_ctrl_reg, unsigned __int64 val);/* * Performs a full or partial save of the enabled processor state components* using the the specified memory address location and a mask.*/extern void __cdecl _xsave(void *mem, unsigned __int64 save_mask);extern void __cdecl _xsave64(void *mem, unsigned __int64 save_mask);/* * Performs a full or partial save of the enabled processor state components* using the the specified memory address location and a mask.* Optimize the state save operation if possible.*/extern void __cdecl _xsaveopt(void *mem, unsigned __int64 save_mask);extern void __cdecl _xsaveopt64(void *mem, unsigned __int64 save_mask);/* * Performs a full or partial restore of the enabled processor states* using the state information stored in the specified memory address location* and a mask.*/extern void __cdecl _xrstor(void *mem, unsigned __int64 restore_mask);extern void __cdecl _xrstor64(void *mem, unsigned __int64 restore_mask);/* * Saves the current state of the x87 FPU, MMX technology, XMM,* and MXCSR registers to the specified 512-byte memory location.*/extern void __cdecl _fxsave(void *mem);extern void __cdecl _fxsave64(void *mem);/* * Restore the current state of the x87 FPU, MMX technology, XMM,* and MXCSR registers from the specified 512-byte memory location.*/extern void __cdecl _fxrstor(void *mem);extern void __cdecl _fxrstor64(void *mem);

补充——

http://www.cnblogs.com/zyl910/archive/2012/11/06/intrin_vc2012.html
检查了一下VC2012新增的Intrinsics函数集,发现它支持ARM指令和Haswell新指令

0 0
原创粉丝点击