LCS 第一次!

来源:互联网 发布:mac登录界面英文 编辑:程序博客网 时间:2024/06/08 16:12

http://www.cnblogs.com/gj-Acit/p/3236384.html



一、算法思想

         算法还是容易想到的,两重循环DP即可。不过如果数据规模最大可以达到几十万甚至更大,经典的O(n^2)的动态规划算法明显会超时。我们需要寻找更好的方法来解决是最长上升子序列问题。以下以最长递增子序列为例进行说明:

   先回顾经典的O(n^2)的动态规划算法,设A[i]表示序列中的第i个数,F[i]表示从1到i这一段中以i结尾的最长上升子序列的长度,初始时设 F[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:F[i] = max{1, F[j] + 1} (j = 1, 2, ..., i - 1, 且A[j] < A[i])。

  现在,我们仔细考虑计算F[i]时的情况。假设有两个元素A[x]和A[y],满足(1)y < x < i (2)A[x] < A[y] < A[i] (3)F[x] = F[y]

  此时,选择F[x]和选择F[y]都可以得到同样的F[i]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?

  很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[i-1]这一段中,如果存在A[z],A[x] < A[z] < A[y],则与选择A[y]相比,将会得到更长的上升子序列。

  再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[i] = k的所有A[i]中的最小值。设D[k]记录这个值,即D[k] = min{ A[i] } ( F[i] = k )。

  注意到D[]的两个特点:

  (1) D[k]的值是在整个计算过程中是单调不上升的。//此处需要特别注意!!!关键之所在!

  (2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。

利 用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[i]与D[len],若A[i] > D[len],则将A[i]接在D[len]后将得到一个更长的上升子序列,len = len + 1,D[len+1] = A[i];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[i].令k = j + 1,则有D[j] < A[i] <= D[k],将A[i]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[i].最后,len即为所要求的最长上升子序列的长度。

  在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于 共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步.但是由于D[]的特 点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高.需要注意的 是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列.

这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意.

二、实现

// By Fandywang 2008.7.21

// Call: LIS(a, n); 求最大递增/上升子序列(如果为最大非降子序列,只需把上面的注释部分给与替换)

const int N = 1001;

int a[N], f[N], d[N]; // d[i]用于记录a[0...i]的最大长度

int bsearch(const int *f, int size, const int &a)

{

    int l=0, r=size-1;

    while( l <= r )

    {

        int mid = (l+r)/2;

        if( a > f[mid-1] && a <= f[mid] ) return mid; // >&&<= 换为: >= && <

        else if( a < f[mid] ) r = mid-1;

        else l = mid+1;

    }

}

int LIS(const int *a, const int &n){

     int i, j, size = 1;

     f[0] = a[0]; d[0] = 1;

     for( i=1; i < n; ++i ){

          if( a[i] <= f[0] ) j = 0;                 // <= 换为: <

         else if( a[i] > f[size-1] ) j = size++;   // > 换为: >=

         else j = bsearch(f, size, a[i]);

         f[j] = a[i]; d[i] = j+1;

     }

     return size;

}

写的很好!点赞!
0 0