【学霸养成记】学计算机网络的同学…

来源:互联网 发布:工口动作数据 编辑:程序博客网 时间:2024/05/01 12:34

一、概


1.1 五层模型


互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。


用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。


如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释。


【学霸养成记】学计算机网络的同学看过来(1)

如 上图所示,最底下的一层叫做"实体层"(PhysicalLayer),最上面的一层叫做"应用层"(Application Layer),中间的三层(自下而上)分别是"链接层"(LinkLayer)、"网络层"(Network Layer)和"传输层"(TransportLayer)。越下面的层,越靠近硬件;越上面的层,越靠近用户。


它们叫什么名字,其实并不重要。只需要知道,互联网分成若干层就可以了。


1.2 层与协议


每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。


大家都遵守的规则,就叫做"协议"(protocol)。


互联网的每一层,都定义了很多协议。这些协议的总称,就叫做"互联网协议"(Internet ProtocolSuite)。它们是互联网的核心,下面介绍每一层的功能,主要就是介绍每一层的主要协议。


二、实体层


我们从最底下的一层开始。


电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。


【学霸养成记】学计算机网络的同学看过来(1)

这就叫做"实体层",它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。


三、链接层


3.1 定义


单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?这就是"链接层"的功能,它在"实体层"的上方,确定了0和1的分组方式。


3.2 以太网协议


早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做"以太网"(Ethernet)的协议,占据了主导地位。


以太网规定,一组电信号构成一个数据包,叫做"帧"(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。


【学霸养成记】学计算机网络的同学看过来(1)

"标头"包含数据包的一些说明项,比如发送者、接受者、数据类型等等;"数据"则是数据包的具体内容。


"标头"的长度,固定为18字节。"数据"的长度,最短为46字节,最长为1500字节。因此,整个"帧"最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。


3.3 MAC地址


上面提到,以太网数据包的"标头",包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?


以太网规定,连入网络的所有设备,都必须具有"网卡"接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。


【学霸养成记】学计算机网络的同学看过来(1)

每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。


【学霸养成记】学计算机网络的同学看过来(1)

前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。


3.4 广播


定义地址只是第一步,后面还有更多的步骤。


首先,一块网卡怎么会知道另一块网卡的MAC地址?


回答是有一种ARP协议,可以解决这个问题。这个留到后面介绍,这里只需要知道,以太网数据包必须知道接收方的MAC地址,然后才能发送。


其次,就算有了MAC地址,系统怎样才能把数据包准确送到接收方?


回答是以太网采用了一种很"原始"的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机发送,让每台计算机自己判断,是否为接收方。


【学霸养成记】学计算机网络的同学看过来(1)

上图中,1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的"标头",找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做"广播"(broadcasting)。


有了数据包的定义、网卡的MAC地址、广播的发送方式,"链接层"就可以在多台计算机之间传送数据了。


四、网络层


4.1 网络层的由来


以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。


但是,这样做有一个重大的缺点。以太网采用广播方式发送数据包,所有成员人手一"包",不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。


互联网是无数子网络共同组成的一个巨型网络,很像想象上海和洛杉矶的电脑会在同一个子网络,这几乎是不可能的。


【学霸养成记】学计算机网络的同学看过来(1)

因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用"路由"方式发送。("路由"的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。


这就导致了"网络层"的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做"网络地址",简称"网址"。


于是,"网络层"出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。


网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。


4.2 IP协议


规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。


目前,广泛采用的是IP协议第四版,简称IPv4。这个版本规定,网络地址由32个二进制位组成。


【学霸养成记】学计算机网络的同学看过来(1)

习惯上,我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。


互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。比如,IP地址172.16.254.1,这是一个32位的地址,假定它的网络部分是前24位(172.16.254),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说172.16.254.2应该与172.16.254.1处在同一个子网络。


但是,问题在于单单从IP地址,我们无法判断网络部分。还是以172.16.254.1为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。


那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数"子网掩码"(subnetmask)。


所谓"子网掩码",就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。


知道"子网掩码",我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。


比如,已知IP地址172.16.254.1和172.16.254.233的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,结果都是172.16.254.0,因此它们在同一个子网络。


总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。


4.3 IP数据包


根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。


但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?


回答是不需要,我们可以把IP数据包直接放进以太网数据包的"数据"部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。


具体来说,IP数据包也分为"标头"和"数据"两个部分。


【学霸养成记】学计算机网络的同学看过来(1)

"标头"部分主要包括版本、长度、IP地址等信息,"数据"部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样。


【学霸养成记】学计算机网络的同学看过来(1)

4.4 ARP协议


关于"网络层",还有最后一点需要说明。


因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的(后文会解释),但是我们不知道它的MAC地址。


所以,我们需要一种机制,能够从IP地址得到MAC地址。


这里又可以分成两种情况。第一种情况,如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的"网关"(gateway),让网关去处理。


第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个"广播"地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。


总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。

0 0