Libevent0.1学习之queue.h

来源:互联网 发布:通信工程学java有用吗 编辑:程序博客网 时间:2024/04/28 19:07

最近打算研究一下libevent网络库,发现用了FreeBSD的queue.h中的尾队列来存储各种事件队列。下面就是一些学习queue.h的一些笔记。

queue.h中定义了一系列的宏操作去实现单链表、双链表、简单队列、尾队列和循环链表(queue.h的内容见文章结尾)。他们的特点对比如下:
单链表:
头部定义:一个指向第一个元素的指针
entry定义:一个指向下一个元素的指针
删除任意元素时的开销:O(n)
可插入的位置:头部、元素后面

双链表:
头部定义:一个指向第一个元素的指针
entry定义:一个指向下一个元素的指针,和一个指向前一个元素的le_next的地址的指针
删除任意元素时的开销:O(1)
可插入的位置:头部、元素前面、元素后面

简单队列
头部定义:一个指向第一个元素的指针和一个指向最后一个元素的sqe_next地址的指针
entry定义:一个指向下一个元素的指针
删除任意元素时的开销:O(n)
可插入的位置:头部、尾部、元素后面

尾队列
头部定义:一个指向第一个元素的指针和一个指向最后一个元素的tqe_next地址的指针
entry定义:一个指向下一个元素的指针和一个指向前一个元素的tqe_next地址的指针
删除任意元素时的开销:O(1)
可插入的位置:头部、尾部、元素后面、元素前面

循环队列
头部定义:一个指向第一个元素的指针和一个指向最后一个元素的指针
entry定义:一个指向下一个元素的指针和一个指向前一个元素的指针
删除任意元素时的开销:O(1)
可插入的位置:头部、尾部、元素后面、元素前面

其中尾队列和双链表的元素entry定义都包含了一个指针*_prev,它指向前一个元素的*_next变量的地址,也就是二级指针,这么设计我想是因为:
他们都有一个头部,这个头部都包含有一个指向第一个元素的指针。所以当在他们头部插入一个元素时(执行*_INSERT_HEAD宏),使用这种二级指针可以很方便的插入。

libevent中尾队列的使用

libevent中使用了尾队列来存储各种事件。

event结构体定义

struct event {    TAILQ_ENTRY (event) ev_read_next;    TAILQ_ENTRY (event) ev_write_next;    TAILQ_ENTRY (event) ev_timeout_next;    TAILQ_ENTRY (event) ev_add_next;    int ev_fd;    short ev_events;    struct timeval ev_timeout;    void (*ev_callback)(int, short, void *arg);    void *ev_arg;    int ev_flags;};

可以看出event中包含4种事件队列,ev_read_next变量中的tqe_next指向下一个event,这样就形成了一个队列。

各种事件队列的头部定义

TAILQ_HEAD (timeout_list, event) timequeue;TAILQ_HEAD (event_wlist, event) writequeue;TAILQ_HEAD (event_rlist, event) readqueue;TAILQ_HEAD (event_ilist, event) addqueue;

上面定义了4种事件队列头,定时器事件队列,写事件队列,读事件队列,待添加事件队列。待添加事件队列中的事件为需要延时加入的事件。

queue.h内容

/* * Copyright (c) 1991, 1993 *  The Regents of the University of California.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * *  @(#)queue.h 8.5 (Berkeley) 8/20/94 */#ifndef _SYS_QUEUE_H_#define _SYS_QUEUE_H_/* * This file defines five types of data structures: singly-linked lists, * lists, simple queues, tail queues, and circular queues. * * A singly-linked list is headed by a single forward pointer. The * elements are singly linked for minimum space and pointer manipulation * overhead at the expense of O(n) removal for arbitrary elements. New * elements can be added to the list after an existing element or at the * head of the list.  Elements being removed from the head of the list * should use the explicit macro for this purpose for optimum * efficiency. A singly-linked list may only be traversed in the forward * direction.  Singly-linked lists are ideal for applications with large * datasets and few or no removals or for implementing a LIFO queue. * * A list is headed by a single forward pointer (or an array of forward * pointers for a hash table header). The elements are doubly linked * so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before * or after an existing element or at the head of the list. A list * may only be traversed in the forward direction. * * A simple queue is headed by a pair of pointers, one the head of the * list and the other to the tail of the list. The elements are singly * linked to save space, so elements can only be removed from the * head of the list. New elements can be added to the list after * an existing element, at the head of the list, or at the end of the * list. A simple queue may only be traversed in the forward direction. * * A tail queue is headed by a pair of pointers, one to the head of the * list and the other to the tail of the list. The elements are doubly * linked so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before or * after an existing element, at the head of the list, or at the end of * the list. A tail queue may be traversed in either direction. * * A circle queue is headed by a pair of pointers, one to the head of the * list and the other to the tail of the list. The elements are doubly * linked so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before or after * an existing element, at the head of the list, or at the end of the list. * A circle queue may be traversed in either direction, but has a more * complex end of list detection. * * For details on the use of these macros, see the queue(3) manual page. *//* * List definitions. */#define LIST_HEAD(name, type)                       \struct name {                               \    struct type *lh_first;  /* first element */         \}#define LIST_HEAD_INITIALIZER(head)                 \    { NULL }#define LIST_ENTRY(type)                        \struct {                                \    struct type *le_next;   /* next element */          \    struct type **le_prev;  /* address of previous next element */  \}/* * List functions. */#define LIST_INIT(head) do {                        \    (head)->lh_first = NULL;                    \} while (/*CONSTCOND*/0)#define LIST_INSERT_AFTER(listelm, elm, field) do {         \    if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)  \        (listelm)->field.le_next->field.le_prev =       \            &(elm)->field.le_next;              \    (listelm)->field.le_next = (elm);               \    (elm)->field.le_prev = &(listelm)->field.le_next;       \} while (/*CONSTCOND*/0)#define LIST_INSERT_BEFORE(listelm, elm, field) do {            \    (elm)->field.le_prev = (listelm)->field.le_prev;        \    (elm)->field.le_next = (listelm);               \    *(listelm)->field.le_prev = (elm);              \    (listelm)->field.le_prev = &(elm)->field.le_next;       \} while (/*CONSTCOND*/0)#define LIST_INSERT_HEAD(head, elm, field) do {             \    if (((elm)->field.le_next = (head)->lh_first) != NULL)      \        (head)->lh_first->field.le_prev = &(elm)->field.le_next;\    (head)->lh_first = (elm);                   \    (elm)->field.le_prev = &(head)->lh_first;           \} while (/*CONSTCOND*/0)#define LIST_REMOVE(elm, field) do {                    \    if ((elm)->field.le_next != NULL)               \        (elm)->field.le_next->field.le_prev =           \            (elm)->field.le_prev;               \    *(elm)->field.le_prev = (elm)->field.le_next;           \} while (/*CONSTCOND*/0)#define LIST_FOREACH(var, head, field)                  \    for ((var) = ((head)->lh_first);                \        (var);                          \        (var) = ((var)->field.le_next))/* * List access methods. */#define LIST_EMPTY(head)        ((head)->lh_first == NULL)#define LIST_FIRST(head)        ((head)->lh_first)#define LIST_NEXT(elm, field)       ((elm)->field.le_next)/* * Singly-linked List definitions. */#define SLIST_HEAD(name, type)                      \struct name {                               \    struct type *slh_first; /* first element */         \}#define SLIST_HEAD_INITIALIZER(head)                    \    { NULL }#define SLIST_ENTRY(type)                       \struct {                                \    struct type *sle_next;  /* next element */          \}/* * Singly-linked List functions. */#define SLIST_INIT(head) do {                       \    (head)->slh_first = NULL;                   \} while (/*CONSTCOND*/0)#define SLIST_INSERT_AFTER(slistelm, elm, field) do {           \    (elm)->field.sle_next = (slistelm)->field.sle_next;     \    (slistelm)->field.sle_next = (elm);             \} while (/*CONSTCOND*/0)#define SLIST_INSERT_HEAD(head, elm, field) do {            \    (elm)->field.sle_next = (head)->slh_first;          \    (head)->slh_first = (elm);                  \} while (/*CONSTCOND*/0)#define SLIST_REMOVE_HEAD(head, field) do {             \    (head)->slh_first = (head)->slh_first->field.sle_next;      \} while (/*CONSTCOND*/0)#define SLIST_REMOVE(head, elm, type, field) do {           \    if ((head)->slh_first == (elm)) {               \        SLIST_REMOVE_HEAD((head), field);           \    }                               \    else {                              \        struct type *curelm = (head)->slh_first;        \        while(curelm->field.sle_next != (elm))          \            curelm = curelm->field.sle_next;        \        curelm->field.sle_next =                \            curelm->field.sle_next->field.sle_next;     \    }                               \} while (/*CONSTCOND*/0)#define SLIST_FOREACH(var, head, field)                 \    for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)/* * Singly-linked List access methods. */#define SLIST_EMPTY(head)   ((head)->slh_first == NULL)#define SLIST_FIRST(head)   ((head)->slh_first)#define SLIST_NEXT(elm, field)  ((elm)->field.sle_next)/* * Singly-linked Tail queue declarations. */#define STAILQ_HEAD(name, type)                 \struct name {                               \    struct type *stqh_first;    /* first element */         \    struct type **stqh_last;    /* addr of last next element */     \}#define STAILQ_HEAD_INITIALIZER(head)                   \    { NULL, &(head).stqh_first }#define STAILQ_ENTRY(type)                      \struct {                                \    struct type *stqe_next; /* next element */          \}/* * Singly-linked Tail queue functions. */#define STAILQ_INIT(head) do {                      \    (head)->stqh_first = NULL;                  \    (head)->stqh_last = &(head)->stqh_first;                \} while (/*CONSTCOND*/0)#define STAILQ_INSERT_HEAD(head, elm, field) do {           \    if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)  \        (head)->stqh_last = &(elm)->field.stqe_next;        \    (head)->stqh_first = (elm);                 \} while (/*CONSTCOND*/0)#define STAILQ_INSERT_TAIL(head, elm, field) do {           \    (elm)->field.stqe_next = NULL;                  \    *(head)->stqh_last = (elm);                 \    (head)->stqh_last = &(elm)->field.stqe_next;            \} while (/*CONSTCOND*/0)#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do {     \    if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\        (head)->stqh_last = &(elm)->field.stqe_next;        \    (listelm)->field.stqe_next = (elm);             \} while (/*CONSTCOND*/0)#define STAILQ_REMOVE_HEAD(head, field) do {                \    if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \        (head)->stqh_last = &(head)->stqh_first;            \} while (/*CONSTCOND*/0)#define STAILQ_REMOVE(head, elm, type, field) do {          \    if ((head)->stqh_first == (elm)) {              \        STAILQ_REMOVE_HEAD((head), field);          \    } else {                            \        struct type *curelm = (head)->stqh_first;       \        while (curelm->field.stqe_next != (elm))            \            curelm = curelm->field.stqe_next;       \        if ((curelm->field.stqe_next =              \            curelm->field.stqe_next->field.stqe_next) == NULL) \                (head)->stqh_last = &(curelm)->field.stqe_next; \    }                               \} while (/*CONSTCOND*/0)#define STAILQ_FOREACH(var, head, field)                \    for ((var) = ((head)->stqh_first);              \        (var);                          \        (var) = ((var)->field.stqe_next))#define STAILQ_CONCAT(head1, head2) do {                \    if (!STAILQ_EMPTY((head2))) {                   \        *(head1)->stqh_last = (head2)->stqh_first;      \        (head1)->stqh_last = (head2)->stqh_last;        \        STAILQ_INIT((head2));                   \    }                               \} while (/*CONSTCOND*/0)/* * Singly-linked Tail queue access methods. */#define STAILQ_EMPTY(head)  ((head)->stqh_first == NULL)#define STAILQ_FIRST(head)  ((head)->stqh_first)#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)/* * Simple queue definitions. */#define SIMPLEQ_HEAD(name, type)                    \struct name {                               \    struct type *sqh_first; /* first element */         \    struct type **sqh_last; /* addr of last next element */     \}#define SIMPLEQ_HEAD_INITIALIZER(head)                  \    { NULL, &(head).sqh_first }#define SIMPLEQ_ENTRY(type)                     \struct {                                \    struct type *sqe_next;  /* next element */          \}/* * Simple queue functions. */#define SIMPLEQ_INIT(head) do {                     \    (head)->sqh_first = NULL;                   \    (head)->sqh_last = &(head)->sqh_first;              \} while (/*CONSTCOND*/0)#define SIMPLEQ_INSERT_HEAD(head, elm, field) do {          \    if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)    \        (head)->sqh_last = &(elm)->field.sqe_next;      \    (head)->sqh_first = (elm);                  \} while (/*CONSTCOND*/0)#define SIMPLEQ_INSERT_TAIL(head, elm, field) do {          \    (elm)->field.sqe_next = NULL;                   \    *(head)->sqh_last = (elm);                  \    (head)->sqh_last = &(elm)->field.sqe_next;          \} while (/*CONSTCOND*/0)#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {        \    if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\        (head)->sqh_last = &(elm)->field.sqe_next;      \    (listelm)->field.sqe_next = (elm);              \} while (/*CONSTCOND*/0)#define SIMPLEQ_REMOVE_HEAD(head, field) do {               \    if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \        (head)->sqh_last = &(head)->sqh_first;          \} while (/*CONSTCOND*/0)#define SIMPLEQ_REMOVE(head, elm, type, field) do {         \    if ((head)->sqh_first == (elm)) {               \        SIMPLEQ_REMOVE_HEAD((head), field);         \    } else {                            \        struct type *curelm = (head)->sqh_first;        \        while (curelm->field.sqe_next != (elm))         \            curelm = curelm->field.sqe_next;        \        if ((curelm->field.sqe_next =               \            curelm->field.sqe_next->field.sqe_next) == NULL) \                (head)->sqh_last = &(curelm)->field.sqe_next; \    }                               \} while (/*CONSTCOND*/0)#define SIMPLEQ_FOREACH(var, head, field)               \    for ((var) = ((head)->sqh_first);               \        (var);                          \        (var) = ((var)->field.sqe_next))/* * Simple queue access methods. */#define SIMPLEQ_EMPTY(head)     ((head)->sqh_first == NULL)#define SIMPLEQ_FIRST(head)     ((head)->sqh_first)#define SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)/* * Tail queue definitions. */#define _TAILQ_HEAD(name, type, qual)                   \struct name {                               \    qual type *tqh_first;       /* first element */     \    qual type *qual *tqh_last;  /* addr of last next element */ \}#define TAILQ_HEAD(name, type)  _TAILQ_HEAD(name, struct type,)#define TAILQ_HEAD_INITIALIZER(head)                    \    { NULL, &(head).tqh_first }#define _TAILQ_ENTRY(type, qual)                    \struct {                                \    qual type *tqe_next;        /* next element */      \    qual type *qual *tqe_prev;  /* address of previous next element */\}#define TAILQ_ENTRY(type)   _TAILQ_ENTRY(struct type,)/* * Tail queue functions. */#define TAILQ_INIT(head) do {                       \    (head)->tqh_first = NULL;                   \    (head)->tqh_last = &(head)->tqh_first;              \} while (/*CONSTCOND*/0)#define TAILQ_INSERT_HEAD(head, elm, field) do {            \    if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)    \        (head)->tqh_first->field.tqe_prev =         \            &(elm)->field.tqe_next;             \    else                                \        (head)->tqh_last = &(elm)->field.tqe_next;      \    (head)->tqh_first = (elm);                  \    (elm)->field.tqe_prev = &(head)->tqh_first;         \} while (/*CONSTCOND*/0)#define TAILQ_INSERT_TAIL(head, elm, field) do {            \    (elm)->field.tqe_next = NULL;                   \    (elm)->field.tqe_prev = (head)->tqh_last;           \    *(head)->tqh_last = (elm);                  \    (head)->tqh_last = &(elm)->field.tqe_next;          \} while (/*CONSTCOND*/0)#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {      \    if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\        (elm)->field.tqe_next->field.tqe_prev =         \            &(elm)->field.tqe_next;             \    else                                \        (head)->tqh_last = &(elm)->field.tqe_next;      \    (listelm)->field.tqe_next = (elm);              \    (elm)->field.tqe_prev = &(listelm)->field.tqe_next;     \} while (/*CONSTCOND*/0)#define TAILQ_INSERT_BEFORE(listelm, elm, field) do {           \    (elm)->field.tqe_prev = (listelm)->field.tqe_prev;      \    (elm)->field.tqe_next = (listelm);              \    *(listelm)->field.tqe_prev = (elm);             \    (listelm)->field.tqe_prev = &(elm)->field.tqe_next;     \} while (/*CONSTCOND*/0)#define TAILQ_REMOVE(head, elm, field) do {             \    if (((elm)->field.tqe_next) != NULL)                \        (elm)->field.tqe_next->field.tqe_prev =         \            (elm)->field.tqe_prev;              \    else                                \        (head)->tqh_last = (elm)->field.tqe_prev;       \    *(elm)->field.tqe_prev = (elm)->field.tqe_next;         \} while (/*CONSTCOND*/0)#define TAILQ_FOREACH(var, head, field)                 \    for ((var) = ((head)->tqh_first);               \        (var);                          \        (var) = ((var)->field.tqe_next))#define TAILQ_FOREACH_REVERSE(var, head, headname, field)       \    for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));    \        (var);                          \        (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))#define TAILQ_CONCAT(head1, head2, field) do {              \    if (!TAILQ_EMPTY(head2)) {                  \        *(head1)->tqh_last = (head2)->tqh_first;        \        (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \        (head1)->tqh_last = (head2)->tqh_last;          \        TAILQ_INIT((head2));                    \    }                               \} while (/*CONSTCOND*/0)/* * Tail queue access methods. */#define TAILQ_EMPTY(head)       ((head)->tqh_first == NULL)#define TAILQ_FIRST(head)       ((head)->tqh_first)#define TAILQ_NEXT(elm, field)      ((elm)->field.tqe_next)#define TAILQ_LAST(head, headname) \    (*(((struct headname *)((head)->tqh_last))->tqh_last))#define TAILQ_PREV(elm, headname, field) \    (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))/* * Circular queue definitions. */#define CIRCLEQ_HEAD(name, type)                    \struct name {                               \    struct type *cqh_first;     /* first element */     \    struct type *cqh_last;      /* last element */      \}#define CIRCLEQ_HEAD_INITIALIZER(head)                  \    { (void *)&head, (void *)&head }#define CIRCLEQ_ENTRY(type)                     \struct {                                \    struct type *cqe_next;      /* next element */      \    struct type *cqe_prev;      /* previous element */      \}/* * Circular queue functions. */#define CIRCLEQ_INIT(head) do {                     \    (head)->cqh_first = (void *)(head);             \    (head)->cqh_last = (void *)(head);              \} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {        \    (elm)->field.cqe_next = (listelm)->field.cqe_next;      \    (elm)->field.cqe_prev = (listelm);              \    if ((listelm)->field.cqe_next == (void *)(head))        \        (head)->cqh_last = (elm);               \    else                                \        (listelm)->field.cqe_next->field.cqe_prev = (elm);  \    (listelm)->field.cqe_next = (elm);              \} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {       \    (elm)->field.cqe_next = (listelm);              \    (elm)->field.cqe_prev = (listelm)->field.cqe_prev;      \    if ((listelm)->field.cqe_prev == (void *)(head))        \        (head)->cqh_first = (elm);              \    else                                \        (listelm)->field.cqe_prev->field.cqe_next = (elm);  \    (listelm)->field.cqe_prev = (elm);              \} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {          \    (elm)->field.cqe_next = (head)->cqh_first;          \    (elm)->field.cqe_prev = (void *)(head);             \    if ((head)->cqh_last == (void *)(head))             \        (head)->cqh_last = (elm);               \    else                                \        (head)->cqh_first->field.cqe_prev = (elm);      \    (head)->cqh_first = (elm);                  \} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {          \    (elm)->field.cqe_next = (void *)(head);             \    (elm)->field.cqe_prev = (head)->cqh_last;           \    if ((head)->cqh_first == (void *)(head))            \        (head)->cqh_first = (elm);              \    else                                \        (head)->cqh_last->field.cqe_next = (elm);       \    (head)->cqh_last = (elm);                   \} while (/*CONSTCOND*/0)#define CIRCLEQ_REMOVE(head, elm, field) do {               \    if ((elm)->field.cqe_next == (void *)(head))            \        (head)->cqh_last = (elm)->field.cqe_prev;       \    else                                \        (elm)->field.cqe_next->field.cqe_prev =         \            (elm)->field.cqe_prev;              \    if ((elm)->field.cqe_prev == (void *)(head))            \        (head)->cqh_first = (elm)->field.cqe_next;      \    else                                \        (elm)->field.cqe_prev->field.cqe_next =         \            (elm)->field.cqe_next;              \} while (/*CONSTCOND*/0)#define CIRCLEQ_FOREACH(var, head, field)               \    for ((var) = ((head)->cqh_first);               \        (var) != (const void *)(head);              \        (var) = ((var)->field.cqe_next))#define CIRCLEQ_FOREACH_REVERSE(var, head, field)           \    for ((var) = ((head)->cqh_last);                \        (var) != (const void *)(head);              \        (var) = ((var)->field.cqe_prev))/* * Circular queue access methods. */#define CIRCLEQ_EMPTY(head)     ((head)->cqh_first == (void *)(head))#define CIRCLEQ_FIRST(head)     ((head)->cqh_first)#define CIRCLEQ_LAST(head)      ((head)->cqh_last)#define CIRCLEQ_NEXT(elm, field)    ((elm)->field.cqe_next)#define CIRCLEQ_PREV(elm, field)    ((elm)->field.cqe_prev)#define CIRCLEQ_LOOP_NEXT(head, elm, field)             \    (((elm)->field.cqe_next == (void *)(head))          \        ? ((head)->cqh_first)                   \        : (elm->field.cqe_next))#define CIRCLEQ_LOOP_PREV(head, elm, field)             \    (((elm)->field.cqe_prev == (void *)(head))          \        ? ((head)->cqh_last)                    \        : (elm->field.cqe_prev))#endif  /* sys/queue.h */
0 0
原创粉丝点击