FFmpeg的HEVC解码器源代码简单分析:解码器主干部分

来源:互联网 发布:三星手机数据迁移 编辑:程序博客网 时间:2024/05/17 07:03

=====================================================

HEVC源代码分析文章列表:

【解码 -libavcodec HEVC 解码器】

FFmpeg的HEVC解码器源代码简单分析:概述

FFmpeg的HEVC解码器源代码简单分析:解析器(Parser)部分

FFmpeg的HEVC解码器源代码简单分析:解码器主干部分

FFmpeg的HEVC解码器源代码简单分析:CTU解码(CTU Decode)部分-PU

FFmpeg的HEVC解码器源代码简单分析:CTU解码(CTU Decode)部分-TU

FFmpeg的HEVC解码器源代码简单分析:环路滤波(LoopFilter)

=====================================================


本文分析FFmpeg的libavcodec中的HEVC解码器的主干部分。“主干部分”是相对于“CTU解码”、 “环路滤波”这些细节部分而言的。它包含了HEVC解码器直到hls_decode_entry()前面的函数调用关系(hls_decode_entry()后面就是HEVC解码器的细节部分,主要包含了“CTU解码”、 “环路滤波”2个部分)。


函数调用关系图

FFmpeg HEVC解码器主干部分在整个HEVC解码器中的位置如下图所示。
 
单击查看更清晰的大图

HEVC解码器主干部分的源代码的调用关系如下图所示。
 
单击查看更清晰的大图

从图中可以看出,HEVC解码器初始化函数是hevc_decode_init(),解码函数是hevc_decode_frame(),关闭函数是hevc_decode_free()。其中hevc_decode_frame()调用了decode_nal_units()进行一帧NALU的解码,decode_nal_units()又调用了decode_nal_unit()进行一个NALU的解码。
decode_nal_unit()一方面调用解析函数ff_hevc_decode_nal_vps(),ff_hevc_decode_nal_sps(),ff_hevc_decode_nal_pps()等对VPS、SPS、PPS进行解析;另一方面调用了hls_slice_header()和hls_slice_data()对Slice数据进行解码。
hls_slice_data()中调用了hls_decode_entry(),在其中完成了Slice Data解码的流程。该流程包含了CU、PU、TU解码,环路滤波、SAO滤波等环节。

ff_hevc_decoder

ff_hevc_decoder是HEVC解码器对应的AVCodec结构体。该结构体的定义位于libavcodec\hevc.c,如下所示。
AVCodec ff_hevc_decoder = {    .name                  = "hevc",    .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),    .type                  = AVMEDIA_TYPE_VIDEO,    .id                    = AV_CODEC_ID_HEVC,    .priv_data_size        = sizeof(HEVCContext),    .priv_class            = &hevc_decoder_class,    .init                  = hevc_decode_init,    .close                 = hevc_decode_free,    .decode                = hevc_decode_frame,    .flush                 = hevc_decode_flush,    .update_thread_context = hevc_update_thread_context,    .init_thread_copy      = hevc_init_thread_copy,    .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |                             CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,    .profiles              = NULL_IF_CONFIG_SMALL(profiles),};
从源代码可以看出,HEVC解码器初始化函数是hevc_decode_init(),解码函数是hevc_decode_frame(),关闭函数是hevc_decode_free()。

hevc_decode_init()

hevc_decode_init()用于初始化HEVC解码器。该函数的定义如下。
//初始化HEVC解码器static av_cold int hevc_decode_init(AVCodecContext *avctx){    HEVCContext *s = avctx->priv_data;    int ret;    //初始化CABAC    ff_init_cabac_states();    avctx->internal->allocate_progress = 1;    //为HEVCContext中的变量分配内存空间    ret = hevc_init_context(avctx);    if (ret < 0)        return ret;    s->enable_parallel_tiles = 0;    s->picture_struct = 0;    if(avctx->active_thread_type & FF_THREAD_SLICE)        s->threads_number = avctx->thread_count;    else        s->threads_number = 1;    //如果AVCodecContext中包含extradata,则解码之    if (avctx->extradata_size > 0 && avctx->extradata) {        ret = hevc_decode_extradata(s);        if (ret < 0) {            hevc_decode_free(avctx);            return ret;        }    }    if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)            s->threads_type = FF_THREAD_FRAME;        else            s->threads_type = FF_THREAD_SLICE;    return 0;}

从源代码中可以看出,hevc_decode_init()对HEVCContext中的变量做了一些初始化工作。其中调用了一个函数hevc_init_context()用于给HEVCContext中的变量分配内存空间。

hevc_init_context()

hevc_init_context()用于给HEVCContext中的变量分配内存空间。该函数的定义如下所示。
//为HEVCContext中的变量分配内存空间static av_cold int hevc_init_context(AVCodecContext *avctx){    HEVCContext *s = avctx->priv_data;    int i;    s->avctx = avctx;    s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));    if (!s->HEVClc)        goto fail;    s->HEVClcList[0] = s->HEVClc;    s->sList[0] = s;    s->cabac_state = av_malloc(HEVC_CONTEXTS);    if (!s->cabac_state)        goto fail;    s->tmp_frame = av_frame_alloc();    if (!s->tmp_frame)        goto fail;    s->output_frame = av_frame_alloc();    if (!s->output_frame)        goto fail;    for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {        s->DPB[i].frame = av_frame_alloc();        if (!s->DPB[i].frame)            goto fail;        s->DPB[i].tf.f = s->DPB[i].frame;    }    s->max_ra = INT_MAX;    s->md5_ctx = av_md5_alloc();    if (!s->md5_ctx)        goto fail;    ff_bswapdsp_init(&s->bdsp);    s->context_initialized = 1;    s->eos = 0;    return 0;fail:    hevc_decode_free(avctx);    return AVERROR(ENOMEM);}

hevc_decode_free()

hevc_decode_free()用于关闭HEVC解码器。该函数的定义如下所示。
//关闭HEVC解码器static av_cold int hevc_decode_free(AVCodecContext *avctx){    HEVCContext       *s = avctx->priv_data;    int i;    pic_arrays_free(s);    av_freep(&s->md5_ctx);    for(i=0; i < s->nals_allocated; i++) {        av_freep(&s->skipped_bytes_pos_nal[i]);    }    av_freep(&s->skipped_bytes_pos_size_nal);    av_freep(&s->skipped_bytes_nal);    av_freep(&s->skipped_bytes_pos_nal);    av_freep(&s->cabac_state);    av_frame_free(&s->tmp_frame);    av_frame_free(&s->output_frame);    for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {        ff_hevc_unref_frame(s, &s->DPB[i], ~0);        av_frame_free(&s->DPB[i].frame);    }    for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)        av_buffer_unref(&s->vps_list[i]);    for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)        av_buffer_unref(&s->sps_list[i]);    for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)        av_buffer_unref(&s->pps_list[i]);    s->sps = NULL;    s->pps = NULL;    s->vps = NULL;    av_buffer_unref(&s->current_sps);    av_freep(&s->sh.entry_point_offset);    av_freep(&s->sh.offset);    av_freep(&s->sh.size);    for (i = 1; i < s->threads_number; i++) {        HEVCLocalContext *lc = s->HEVClcList[i];        if (lc) {            av_freep(&s->HEVClcList[i]);            av_freep(&s->sList[i]);        }    }    if (s->HEVClc == s->HEVClcList[0])        s->HEVClc = NULL;    av_freep(&s->HEVClcList[0]);    for (i = 0; i < s->nals_allocated; i++)        av_freep(&s->nals[i].rbsp_buffer);    av_freep(&s->nals);    s->nals_allocated = 0;    return 0;}

从源代码可以看出,hevc_decode_free()释放了HEVCContext中的内存。

hevc_decode_frame()

hevc_decode_frame()是HEVC解码器中最关键的函数,用于解码一帧数据。该函数的定义如下所示。
/* * 解码一帧数据 * * 注释:雷霄骅 * leixiaohua1020@126.com * http://blog.csdn.net/leixiaohua1020 * */static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,                             AVPacket *avpkt){    int ret;    HEVCContext *s = avctx->priv_data;    //没有输入码流的时候,输出解码器中剩余数据    //对应“Flush Decoder”功能    if (!avpkt->size) {    //第3个参数flush取值为1        ret = ff_hevc_output_frame(s, data, 1);        if (ret < 0)            return ret;        *got_output = ret;        return 0;    }    s->ref = NULL;    //解码一帧数据    ret    = decode_nal_units(s, avpkt->data, avpkt->size);    if (ret < 0)        return ret;    /* verify the SEI checksum */    if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&        s->is_md5) {        ret = verify_md5(s, s->ref->frame);        if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {            ff_hevc_unref_frame(s, s->ref, ~0);            return ret;        }    }    s->is_md5 = 0;    if (s->is_decoded) {        av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);        s->is_decoded = 0;    }    if (s->output_frame->buf[0]) {    //输出解码后数据        av_frame_move_ref(data, s->output_frame);        *got_output = 1;    }    return avpkt->size;}

从源代码可以看出,hevc_decode_frame()根据输入的AVPacket的data是否为NULL分成两个情况:
(1)AVPacket的data为NULL的时候,代表没有输入码流,这时候直接调用ff_hevc_output_frame()输出解码器中缓存的帧。
(2)AVPacket的data不为NULL的时候,调用decode_nal_units()解码输入的一帧数据的NALU。
下面看一下一帧NALU的解码函数decode_nal_units()。

decode_nal_units()

decode_nal_units()用于解码一帧NALU。该函数的定义如下所示。
//解码一帧数据static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length){    int i, consumed, ret = 0;    s->ref = NULL;    s->last_eos = s->eos;    s->eos = 0;    /* split the input packet into NAL units, so we know the upper bound on the     * number of slices in the frame */    s->nb_nals = 0;    while (length >= 4) {        HEVCNAL *nal;        int extract_length = 0;        if (s->is_nalff) {            int i;            for (i = 0; i < s->nal_length_size; i++)                extract_length = (extract_length << 8) | buf[i];            buf    += s->nal_length_size;            length -= s->nal_length_size;            if (extract_length > length) {                av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");                ret = AVERROR_INVALIDDATA;                goto fail;            }        } else {            /* search start code */        //查找起始码0x000001            while (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {                ++buf;                --length;                if (length < 4) {                    av_log(s->avctx, AV_LOG_ERROR, "No start code is found.\n");                    ret = AVERROR_INVALIDDATA;                    goto fail;                }            }            //找到后,跳过起始码(3Byte)            buf           += 3;            length        -= 3;        }        if (!s->is_nalff)            extract_length = length;        if (s->nals_allocated < s->nb_nals + 1) {            int new_size = s->nals_allocated + 1;            HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));            if (!tmp) {                ret = AVERROR(ENOMEM);                goto fail;            }            s->nals = tmp;            memset(s->nals + s->nals_allocated, 0,                   (new_size - s->nals_allocated) * sizeof(*tmp));            av_reallocp_array(&s->skipped_bytes_nal, new_size, sizeof(*s->skipped_bytes_nal));            av_reallocp_array(&s->skipped_bytes_pos_size_nal, new_size, sizeof(*s->skipped_bytes_pos_size_nal));            av_reallocp_array(&s->skipped_bytes_pos_nal, new_size, sizeof(*s->skipped_bytes_pos_nal));            s->skipped_bytes_pos_size_nal[s->nals_allocated] = 1024; // initial buffer size            s->skipped_bytes_pos_nal[s->nals_allocated] = av_malloc_array(s->skipped_bytes_pos_size_nal[s->nals_allocated], sizeof(*s->skipped_bytes_pos));            s->nals_allocated = new_size;        }        s->skipped_bytes_pos_size = s->skipped_bytes_pos_size_nal[s->nb_nals];        s->skipped_bytes_pos = s->skipped_bytes_pos_nal[s->nb_nals];        nal = &s->nals[s->nb_nals];        consumed = ff_hevc_extract_rbsp(s, buf, extract_length, nal);        s->skipped_bytes_nal[s->nb_nals] = s->skipped_bytes;        s->skipped_bytes_pos_size_nal[s->nb_nals] = s->skipped_bytes_pos_size;        s->skipped_bytes_pos_nal[s->nb_nals++] = s->skipped_bytes_pos;        if (consumed < 0) {            ret = consumed;            goto fail;        }        ret = init_get_bits8(&s->HEVClc->gb, nal->data, nal->size);        if (ret < 0)            goto fail;        hls_nal_unit(s);        if (s->nal_unit_type == NAL_EOB_NUT ||            s->nal_unit_type == NAL_EOS_NUT)            s->eos = 1;        buf    += consumed;        length -= consumed;    }    /* parse the NAL units */    for (i = 0; i < s->nb_nals; i++) {        int ret;        s->skipped_bytes = s->skipped_bytes_nal[i];        s->skipped_bytes_pos = s->skipped_bytes_pos_nal[i];        //解码NALU        ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);        if (ret < 0) {            av_log(s->avctx, AV_LOG_WARNING,                   "Error parsing NAL unit #%d.\n", i);            goto fail;        }    }fail:    if (s->ref && s->threads_type == FF_THREAD_FRAME)        ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);    return ret;}

从源代码可以看出,decode_nal_units()中又调用了另一个函数decode_nal_unit(),两者的名字只相差一个“s”。由此可以看出decode_nal_unit()作用是解码一个NALU。

decode_nal_unit()

decode_nal_unit()用于解码一个NALU。该函数的定义如下所示。
//解码一个NALUstatic int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length){    HEVCLocalContext *lc = s->HEVClc;    GetBitContext *gb    = &lc->gb;    int ctb_addr_ts, ret;    ret = init_get_bits8(gb, nal, length);    if (ret < 0)        return ret;    ret = hls_nal_unit(s);    if (ret < 0) {        av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",               s->nal_unit_type);        goto fail;    } else if (!ret)        return 0;    switch (s->nal_unit_type) {    case NAL_VPS:    //解析VPS        ret = ff_hevc_decode_nal_vps(s);        if (ret < 0)            goto fail;        break;    case NAL_SPS:    //解析SPS        ret = ff_hevc_decode_nal_sps(s);        if (ret < 0)            goto fail;        break;    case NAL_PPS:    //解析PPS        ret = ff_hevc_decode_nal_pps(s);        if (ret < 0)            goto fail;        break;    case NAL_SEI_PREFIX:    case NAL_SEI_SUFFIX:    //解析SEI        ret = ff_hevc_decode_nal_sei(s);        if (ret < 0)            goto fail;        break;    case NAL_TRAIL_R:    case NAL_TRAIL_N:    case NAL_TSA_N:    case NAL_TSA_R:    case NAL_STSA_N:    case NAL_STSA_R:    case NAL_BLA_W_LP:    case NAL_BLA_W_RADL:    case NAL_BLA_N_LP:    case NAL_IDR_W_RADL:    case NAL_IDR_N_LP:    case NAL_CRA_NUT:    case NAL_RADL_N:    case NAL_RADL_R:    case NAL_RASL_N:    case NAL_RASL_R:    //解析Slice    //解析Slice Header        ret = hls_slice_header(s);        if (ret < 0)            return ret;        if (s->max_ra == INT_MAX) {            if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {                s->max_ra = s->poc;            } else {                if (IS_IDR(s))                    s->max_ra = INT_MIN;            }        }        if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&            s->poc <= s->max_ra) {            s->is_decoded = 0;            break;        } else {            if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)                s->max_ra = INT_MIN;        }        if (s->sh.first_slice_in_pic_flag) {            ret = hevc_frame_start(s);            if (ret < 0)                return ret;        } else if (!s->ref) {            av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");            goto fail;        }        if (s->nal_unit_type != s->first_nal_type) {            av_log(s->avctx, AV_LOG_ERROR,                   "Non-matching NAL types of the VCL NALUs: %d %d\n",                   s->first_nal_type, s->nal_unit_type);            return AVERROR_INVALIDDATA;        }        if (!s->sh.dependent_slice_segment_flag &&            s->sh.slice_type != I_SLICE) {            ret = ff_hevc_slice_rpl(s);            if (ret < 0) {                av_log(s->avctx, AV_LOG_WARNING,                       "Error constructing the reference lists for the current slice.\n");                goto fail;            }        }        //解码 Slice Data        if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)            ctb_addr_ts = hls_slice_data_wpp(s, nal, length);        else            ctb_addr_ts = hls_slice_data(s);        if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {            s->is_decoded = 1;        }        if (ctb_addr_ts < 0) {            ret = ctb_addr_ts;            goto fail;        }        break;    case NAL_EOS_NUT:    case NAL_EOB_NUT:        s->seq_decode = (s->seq_decode + 1) & 0xff;        s->max_ra     = INT_MAX;        break;    case NAL_AUD:    case NAL_FD_NUT:        break;    default:        av_log(s->avctx, AV_LOG_INFO,               "Skipping NAL unit %d\n", s->nal_unit_type);    }    return 0;fail:    if (s->avctx->err_recognition & AV_EF_EXPLODE)        return ret;    return 0;}

从源代码可以看出,decode_nal_unit()根据不同的NALU类型调用了不同的处理函数。这些处理函数可以分为两类——解析函数和解码函数,如下所示。
(1)解析函数(获取信息):
ff_hevc_decode_nal_vps():解析VPS。
ff_hevc_decode_nal_sps():解析SPS。
ff_hevc_decode_nal_pps():解析PPS。
ff_hevc_decode_nal_sei():解析SEI。
hls_slice_header():解析Slice Header。
(2)解码函数(解码得到图像):
hls_slice_data():解码Slice Data。
其中解析函数在文章《FFmpeg的HEVC解码器源代码简单分析:解析器(Parser)部分》已经有过介绍,就不再重复叙述了。解码函数hls_slice_data()完成了解码Slice的工作,下面看一下该函数的定义。

hls_slice_data()

hls_slice_data()用于解码Slice Data。该函数的定义如下所示。
//解码Slice Datastatic int hls_slice_data(HEVCContext *s){    int arg[2];    int ret[2];    arg[0] = 0;    arg[1] = 1;    //解码入口函数    s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));    return ret[0];}

可以看出该函数的源代码很简单,调用了另一个函数hls_decode_entry()。

hls_decode_entry()

hls_decode_entry()是Slice Data解码的入口函数。该函数的定义如下所示。
/* * 解码入口函数 * * 注释:雷霄骅 * leixiaohua1020@126.com * http://blog.csdn.net/leixiaohua1020 * */static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread){    HEVCContext *s  = avctxt->priv_data;    //CTB尺寸    int ctb_size    = 1 << s->sps->log2_ctb_size;    int more_data   = 1;    int x_ctb       = 0;    int y_ctb       = 0;    int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];    if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {        av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");        return AVERROR_INVALIDDATA;    }    if (s->sh.dependent_slice_segment_flag) {        int prev_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];        if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {            av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");            return AVERROR_INVALIDDATA;        }    }    while (more_data && ctb_addr_ts < s->sps->ctb_size) {        int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];        //CTB的位置x和y        x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;        y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;        //初始化周围的参数        hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);        //初始化CABAC        ff_hevc_cabac_init(s, ctb_addr_ts);        //样点自适应补偿参数        hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);        s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;        s->deblock[ctb_addr_rs].tc_offset   = s->sh.tc_offset;        s->filter_slice_edges[ctb_addr_rs]  = s->sh.slice_loop_filter_across_slices_enabled_flag;        /*         * CU示意图         * * 64x64块 * * 深度d=0 * split_flag=1时候划分为4个32x32 * * +--------+--------+--------+--------+--------+--------+--------+--------+ * |                                                                       | * |                                   |                                   | * |                                                                       | * +                                   |                                   + * |                                                                       | * |                                   |                                   | * |                                                                       | * +                                   |                                   + * |                                                                       | * |                                   |                                   | * |                                                                       | * +                                   |                                   + * |                                                                       | * |                                   |                                   | * |                                                                       | * + --  --  --  --  --  --  --  --  --+ --  --  --  --  --  --  --  --  --+ * |                                   |                                   | * |                                                                       | * |                                   |                                   | * +                                                                       + * |                                   |                                   | * |                                                                       | * |                                   |                                   | * +                                                                       + * |                                   |                                   | * |                                                                       | * |                                   |                                   | * +                                                                       + * |                                   |                                   | * |                                                                       | * |                                   |                                   | * +--------+--------+--------+--------+--------+--------+--------+--------+         *         * * 32x32 块 * 深度d=1 * split_flag=1时候划分为4个16x16 * * +--------+--------+--------+--------+ * |                                   | * |                 |                 | * |                                   | * +                 |                 + * |                                   | * |                 |                 | * |                                   | * + --  --  --  --  + --  --  --  --  + * |                                   | * |                 |                 | * |                                   | * +                 |                 + * |                                   | * |                 |                 | * |                                   | * +--------+--------+--------+--------+         *         * * 16x16 块 * 深度d=2 * split_flag=1时候划分为4个8x8 * * +--------+--------+ * |                 | * |        |        | * |                 | * +  --  --+ --  -- + * |                 | * |        |        | * |                 | * +--------+--------+         *         *         * 8x8块 * 深度d=3 * split_flag=1时候划分为4个4x4         * * +----+----+ * |    |    | * + -- + -- + * |    |    | * +----+----+         *         */        /*         * 解析四叉树结构,并且解码         *         * hls_coding_quadtree(HEVCContext *s, int x0, int y0, int log2_cb_size, int cb_depth)中:         * s:HEVCContext上下文结构体         * x_ctb:CB位置的x坐标         * y_ctb:CB位置的y坐标         * log2_cb_size:CB大小取log2之后的值         * cb_depth:深度         *         */        more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);        if (more_data < 0) {            s->tab_slice_address[ctb_addr_rs] = -1;            return more_data;        }        ctb_addr_ts++;        //保存解码信息以供下次使用        ff_hevc_save_states(s, ctb_addr_ts);        //去块效应滤波        ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);    }    if (x_ctb + ctb_size >= s->sps->width &&        y_ctb + ctb_size >= s->sps->height)        ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);    return ctb_addr_ts;}

从源代码可以看出,hls_decode_entry()以CTB为单位处理输入的视频流。每个CTB的压缩数据经过下面两个基本步骤进行处理:
(1)调用hls_coding_quadtree()对CTB解码。其中包括了CU、PU、TU的解码。
(2)调用ff_hevc_hls_filters()进行滤波。其中包括去块效应滤波和SAO滤波。
hls_decode_entry()的函数调用关系如下图所示。后续的几篇文章将会对其调用的函数进行分析。
 

至此,FFmpeg HEVC解码器的主干部分的源代码就分析完毕了。




雷霄骅
leixiaohua1020@126.com
http://blog.csdn.net/leixiaohua1020




3 0