Linux下用半同步/半异步实现进程池

来源:互联网 发布:伴随矩阵的性质 编辑:程序博客网 时间:2024/05/17 02:00
#ifndef PROCESSPOOL_H#define PROCESSPOOL_H#include <sys/types.h>#include <sys/socket.h>#include <netinet/in.h>#include <arpa/inet.h>#include <assert.h>#include <stdio.h>#include <unistd.h>#include <errno.h>#include <string.h>#include <fcntl.h>#include <stdlib.h>#include <sys/epoll.h>#include <signal.h>#include <sys/wait.h>#include <sys/stat.h>/* *描述一个子进程的类,m_pid是目标子进程的PID,m_pipefd是父进程和子进程通信的管道 */class process {public:process() :m_pid(-1) {}public:pid_t m_pid;int m_pipefd[2];};/* * 进程池类,将它定义为模板类是为了代码服用。其模板参数时处理逻辑任务的类。 */template<typename T>class processpool {private:/* * 将构造函数定义为私有的,因此我们只能通过后面的create静态函数来创建processpool实例 */processpool(int listenfd, int process_number = 8);public:/** * 单体模式,以保证程序最多创建一个processpool实例,这是程序正确处理信号的必要条件 */static processpool<T>* create(int listenfd, int process_number = 8) {if (!m_instance) {m_instance = new processpool<T> (listenfd, process_number);}return m_instance;}~processpool() {delete[] m_sub_process;}/*启动进程池*/void run();private:void setup_sig_pipe();void run_parent();void run_child();private:/*进程池允许的最大子进程数量*/static const int MAX_PROCESS_NUMBER = 16;/*每个子进程最多能处理的客户数量*/static const int USER_PER_PROCESS = 65536;/*epoll最多能处理的事件数*/static const int MAX_EVENT_NUMBER = 10000;/*进程池中进程总数*/int m_process_number;/*子进程在池中的序号,从0开始*/int m_idx;/*每个进程都有一个epoll内核事件表,用m_epollfd标识*/int m_epollfd;/*监听socket*/int m_listenfd;/*子进程通过m_stop来决定是否停止运行*/int m_stop;/*保存所有子进程的描述信息*/process* m_sub_process;/*进程池静态实例*/static processpool<T>* m_instance;};template<typename T>processpool<T>* processpool<T>::m_instance = NULL;/*用于处理信号的管道,以实现统一事件源,后面称之为信号管道*/static int sig_pipefd[2];static int setnonblocking(int fd) {int old_option = fcntl(fd, F_GETFL);int new_option = old_option | O_NONBLOCK;fcntl(fd, F_SETFL, new_option);return old_option;}static void addfd(int epollfd, int fd) {epoll_event event;event.data.fd = fd;event.events = EPOLLIN | EPOLLET;epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event);setnonblocking(fd);}/* *从epollfd标识的epoll内核事件表中删除fd上的所有注册测事件 */static void removefd(int epollfd, int fd) {epoll_ctl(epollfd, EPOLL_CTL_DEL, fd, 0);close(fd);}static void sig_handler(int sig) {int save_errno = errno;int msg = sig;send(sig_pipefd[1], (char*) &msg, 1, 0);errno = save_errno;}static void addsig(int sig, void( handler)(int), bool restart = true) {struct sigaction sa;memset(&sa, '\0', sizeof(sa));sa.sa_handler = handler;if (restart) {sa.sa_flags |= SA_RESTART;}sigfillset(&sa.sa_mask);assert( sigaction( sig, &sa, NULL ) != -1 );}/* * 进程池构造函数,参数listenfd是监听socket,它必须在创建进程池之前被创建, * 否则子进程无法直接引用它,参数process_number指定进程池中子进程的数量 */template<typename T>processpool<T>::processpool(int listenfd, int process_number) :m_listenfd(listenfd), m_process_number(process_number), m_idx(-1),m_stop(false) {assert( ( process_number > 0 ) && ( process_number <= MAX_PROCESS_NUMBER ) );m_sub_process = new process[process_number];assert( m_sub_process );/*创建process_number个子进程,并建立它们和父进程之间的管道*/for (int i = 0; i < process_number; ++i) {int ret =socketpair(PF_UNIX, SOCK_STREAM, 0, m_sub_process[i].m_pipefd);assert( ret == 0 );m_sub_process[i].m_pid = fork();assert( m_sub_process[i].m_pid >= 0 );if (m_sub_process[i].m_pid > 0) {close(m_sub_process[i].m_pipefd[1]);continue;} else {close(m_sub_process[i].m_pipefd[0]);m_idx = i;break;}}}/* *统一事件源 */template<typename T>void processpool<T>::setup_sig_pipe() {/*创建epoll事件监听表和信号管道*/m_epollfd = epoll_create(5);assert( m_epollfd != -1 );int ret = socketpair(PF_UNIX, SOCK_STREAM, 0, sig_pipefd);assert( ret != -1 );setnonblocking(sig_pipefd[1]);addfd(m_epollfd, sig_pipefd[0]);/*设置信号处理函数*/addsig(SIGCHLD, sig_handler);addsig(SIGTERM, sig_handler);addsig(SIGINT, sig_handler);addsig(SIGPIPE, SIG_IGN);}/*父进程中m_idx值为-1,子进程中m_idx值大于等于0,我们据此判断接下来要运行的 * 是父进程代码还是子进程代码*/template<typename T>void processpool<T>::run() {if (m_idx != -1) {run_child();return;}run_parent();}template<typename T>void processpool<T>::run_child() {setup_sig_pipe();/*每个子进程都通过其在进程池中的序列值m_idx找到与父进程通信的管道*/int pipefd = m_sub_process[m_idx].m_pipefd[1];/*子进程需要监听管道文件描述符pipefd,因为父进程将通过它来通知子进程 accept新连接*/addfd(m_epollfd, pipefd);epoll_event events[MAX_EVENT_NUMBER];T* users = new T[USER_PER_PROCESS];assert( users );int number = 0;int ret = -1;while (!m_stop) {number = epoll_wait(m_epollfd, events, MAX_EVENT_NUMBER, -1);if ((number < 0) && (errno != EINTR)) {printf("epoll failure\n");break;}for (int i = 0; i < number; i++) {int sockfd = events[i].data.fd;if ((sockfd == pipefd) && (events[i].events & EPOLLIN)) {int client = 0;/* * 从父,子进程之间的管道读取数据,并将结果保存在变量client中,如果读取 * 成功,则表示新客户连接到来。 */ret = recv(sockfd, (char*) &client, sizeof(client), 0);if (((ret < 0) && (errno != EAGAIN)) || ret == 0) {continue;} else {struct sockaddr_in client_address;socklen_t client_addrlength = sizeof(client_address);int connfd = accept(m_listenfd,(struct sockaddr*) &client_address,&client_addrlength);if (connfd < 0) {printf("errno is: %d\n", errno);continue;}addfd(m_epollfd, connfd);/*模板类T必须实现init方法,以初始化一个客户连接,我们直接使用connfd来 * 索引逻辑处理对象(T类型的对象),以提高程序效率*/users[connfd].init(m_epollfd, connfd, client_address);}}/*下面处理子进程接收到的信号*/else if ((sockfd == sig_pipefd[0]) && (events[i].events & EPOLLIN)) {int sig;char signals[1024];ret = recv(sig_pipefd[0], signals, sizeof(signals), 0);if (ret <= 0) {continue;} else {for (int i = 0; i < ret; ++i) {switch (signals[i]) {case SIGCHLD: {pid_t pid;int stat;while ((pid = waitpid(-1, &stat, WNOHANG)) > 0) {continue;}break;}case SIGTERM:case SIGINT: {m_stop = true;break;}default: {break;}}}}}/*如果是其他可读数据,那么必然是客户请求到来,调用逻辑处理对象的process方法处理值*/else if (events[i].events & EPOLLIN) {users[sockfd].process();} else {continue;}}}delete[] users;users = NULL;close(pipefd);//close( m_listenfd );/*我们将这句话注释掉,以提醒:应该由m_listenfd的创建者来关闭这个文件描述符 *即所谓的“对象“(比如一个文件描述符,又或者一段堆内存)由哪个函数创建,就应该 由那个函数销毁*/close(m_epollfd);}template<typename T>void processpool<T>::run_parent() {setup_sig_pipe();/*父进程监听m_listenfd*/addfd(m_epollfd, m_listenfd);epoll_event events[MAX_EVENT_NUMBER];int sub_process_counter = 0;int new_conn = 1;int number = 0;int ret = -1;while (!m_stop) {number = epoll_wait(m_epollfd, events, MAX_EVENT_NUMBER, -1);if ((number < 0) && (errno != EINTR)) {printf("epoll failure\n");break;}for (int i = 0; i < number; i++) {int sockfd = events[i].data.fd;if (sockfd == m_listenfd) {/*如果有新连接到来,就采用Round Robin方式将其分配给一个子进程处理*/int i = sub_process_counter;do {if (m_sub_process[i].m_pid != -1) {break;}i = (i + 1) % m_process_number;} while (i != sub_process_counter);if (m_sub_process[i].m_pid == -1) {m_stop = true;break;}sub_process_counter = (i + 1) % m_process_number;//send( m_sub_process[sub_process_counter++].m_pipefd[0], ( char* )&new_conn, sizeof( new_conn ), 0 );send(m_sub_process[i].m_pipefd[0], (char*) &new_conn,sizeof(new_conn), 0);printf("send request to child %d\n", i);//sub_process_counter %= m_process_number;}/*下面处理父进程接收到的信号*/else if ((sockfd == sig_pipefd[0]) && (events[i].events & EPOLLIN)) {int sig;char signals[1024];ret = recv(sig_pipefd[0], signals, sizeof(signals), 0);if (ret <= 0) {continue;} else {for (int i = 0; i < ret; ++i) {switch (signals[i]) {case SIGCHLD: {pid_t pid;int stat;while ((pid = waitpid(-1, &stat, WNOHANG)) > 0) {for (int i = 0; i < m_process_number; ++i) {/** * 如果进程池中第i个子进程退出了,则主进程关闭相应的通信管道,并设置对应的m_pid为 * -1,以标记该子进程已经退出 */if (m_sub_process[i].m_pid == pid) {printf("child %d join\n", i);close(m_sub_process[i].m_pipefd[0]);m_sub_process[i].m_pid = -1;}}}/*如果所有子进程都已经退出了,则父进程也退出*/m_stop = true;for (int i = 0; i < m_process_number; ++i) {if (m_sub_process[i].m_pid != -1) {m_stop = false;}}break;}case SIGTERM:case SIGINT: {/*如果父进程接收到终止信号,那么就杀死所有子进程,并等待它们全部销毁,当然,通知 * 子进程结束更好的方法是向父,子进程之间的通信管道发送特殊数据*/printf("kill all the clild now\n");for (int i = 0; i < m_process_number; ++i) {int pid = m_sub_process[i].m_pid;if (pid != -1) {kill(pid, SIGTERM);}}break;}default: {break;}}}}} else {continue;}}}//close( m_listenfd );/*由创建者关闭这个文件描述符*/close(m_epollfd);}#endif


0 0
原创粉丝点击