Linux虚拟内存管理(glibc)

来源:互联网 发布:linux卸载php 编辑:程序博客网 时间:2024/06/05 13:22

http://blog.163.com/xychenbaihu@yeah/blog/static/132229655201311884819764/

Linux虚拟内存管理(glibc)

        在使用mysql作为DB开发的兑换券系统中,随着分区表的不断创建,发现mysqld出现了疑似“内存泄露”现象,但通过 valgrind 等工具检测后,并没发现类似的问题(最终原因是由于glibc的内存碎片造成)。

 

因此,需要深入学习 Linux 的虚拟内存管理方面的内容来解释这个现象;
Linux 的虚拟内存管理有几个关键概念: 
1、每个进程都有独立的虚拟地址空间,进程访问的虚拟地址并不是真正的物理地址; 
2、虚拟地址可通过每个进程上的页表(在每个进程的内核虚拟地址空间)与物理地址进行映射,获得真正物理地址; 
3、如果虚拟地址对应物理地址不在物理内存中,则产生缺页中断,真正分配物理地址,同时更新进程的页表;如果此时物理内存已耗尽,则根据内存替换算法淘汰部分页面至物理磁盘中。 
   
基于以上认识,进行了如下分析:
一、Linux 虚拟地址空间如何分布?
Linux 使用虚拟地址空间,大大增加了进程的寻址空间,由低地址到高地址分别为: 
1、只读段:该部分空间只能读,不可写;(包括:代码段、rodata 段(C常量字符串和#define定义的常量) )
2、数据段:保存全局变量、静态变量的空间; 
3、堆 :就是平时所说的动态内存, malloc/new 大部分都来源于此。其中堆顶的位置可通过函数 brk 和 sbrk 进行动态调整。 
4、文件映射区域 :动态库、共享内存等映射物理空间的内存,一般是 mmap 函数所分配的虚拟地址空间。 
5、栈:用于维护函数调用的上下文空间,一般为 8M ,可通过 ulimit –s 查看。 
6、内核虚拟空间:用户代码不可见的内存区域,由内核管理(页表就存放在内核虚拟空间)。
下图是 32 位系统典型的虚拟地址空间分布(来自《深入理解计算机系统》)。

内存分配的原理__Linux虚拟内存管理(glibc)_Linux的虚拟内存管理有几个关键概念_Linux 虚拟地址空间如何分布_malloc和free是如何分配和释放内存_既然堆内内存brk和sbrk不能直接释放,为什么不全部使用 mmap 来分配,munmap直接释放呢 - 无影 - 专注、坚持、思索

 
32 位系统有4G 的地址空间::

      其中 0x08048000~0xbfffffff 是用户空间,0xc0000000~0xffffffff 是内核空间,包括内核代码和数据、与进程相关的数据结构(如页表、内核栈)等。另外,%esp 执行栈顶,往低地址方向变化;brk/sbrk 函数控制堆顶_edata往高地址方向变化


64位系统结果怎样呢? 64 位系统是否拥有 2^64 的地址空间吗? 
事实上, 64 位系统的虚拟地址空间划分发生了改变: 
1、地址空间大小不是2^32,也不是2^64,而一般是2^48。因为并不需要 2^64 这么大的寻址空间,过大空间只会导致资源的浪费。64位Linux一般使用48位来表示虚拟地址空间,40位表示物理地址,
这可通过 /proc/cpuinfo 来查看 
address sizes   : 40 bits physical, 48 bits virtual 
2、其中,0x0000000000000000~0x00007fffffffffff 表示用户空间, 0xFFFF800000000000~ 0xFFFFFFFFFFFFFFFF 表示内核空间,共提供 256TB(2^48) 的寻址空间。
这两个区间的特点是,第 47 位与 48~63 位相同,若这些位为 0 表示用户空间,否则表示内核空间。 
3、用户空间由低地址到高地址仍然是只读段、数据段、堆、文件映射区域和栈

 

二、malloc和free是如何分配和释放内存?
参看博客:
http://blog.163.com/xychenbaihu@yeah/blog/static/132229655201210975312473/

 

三、如何查看堆内内存的碎片情况 ?

glibc 提供了以下结构和接口来查看堆内内存和 mmap 的使用情况。 
struct mallinfo { 
  int arena;            /* non-mmapped space allocated from system */ 
  int ordblks;         /* number of free chunks */ 
  int smblks;          /* number of fastbin blocks */ 
  int hblks;             /* number of mmapped regions */ 
  int hblkhd;           /* space in mmapped regions */ 
  int usmblks;        /* maximum total allocated space */ 
  int fsmblks;         /* space available in freed fastbin blocks */ 
  int uordblks;        /* total allocated space */ 
  int fordblks;         /* total free space */ 
  int keepcost;       /* top-most, releasable (via malloc_trim) space */ 
};

/*返回heap(main_arena)的内存使用情况,以 mallinfo 结构返回 */ 
struct mallinfo mallinfo();

/* 将heap和mmap的使用情况输出到stderr*/ 
void malloc_stats();

可通过以下例子来验证mallinfo和malloc_stats输出结果。 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <unistd.h> 
#include <sys/mman.h> 
#include <malloc.h>

size_t  heap_malloc_total, heap_free_total,mmap_total, mmap_count;

void print_info() 

    struct mallinfo mi = mallinfo(); 
 
    printf("count by itself:\n"); 
    printf("\theap_malloc_total=%lu heap_free_total=%lu heap_in_use=%lu\n\tmmap_total=%lu mmap_count=%lu\n", 
              heap_malloc_total*1024, heap_free_total*1024, heap_malloc_total*1024-heap_free_total*1024,
              mmap_total*1024, mmap_count); 
 
 printf("count by mallinfo:\n"); 
 printf("\theap_malloc_total=%lu heap_free_total=%lu heap_in_use=%lu\n\tmmap_total=%lu mmap_count=%lu\n", 
             mi.arena, mi.fordblks, mi.uordblks, 
             mi.hblkhd, mi.hblks); 
 
 printf("from malloc_stats:\n"); 
 malloc_stats(); 
}

#define ARRAY_SIZE 200 
int main(int argc, char** argv) 

    char** ptr_arr[ARRAY_SIZE]; 
    int i; 
    for( i = 0; i < ARRAY_SIZE; i++) 
    { 
            ptr_arr[i] = malloc(i * 1024); 
            if ( i < 128)                                      //glibc默认128k以上使用mmap
            {
                    heap_malloc_total += i; 
            }
            else 
            {
                    mmap_total += i; 
                   mmap_count++; 
            } 
    } 
    print_info(); 


    for( i = 0; i < ARRAY_SIZE; i++) 
    { 
           if ( i % 2 == 0) 
                continue; 
           free(ptr_arr[i]);

           if ( i < 128) 
           {
                   heap_free_total += i; 
           }
           else 
           { 
                  mmap_total -= i; 
                  mmap_count--; 
           } 
    } 
    
    printf("\nafter free\n"); 
    print_info(); 


    return 1; 
}

该例子第一个循环为指针数组每个成员分配索引位置 (KB) 大小的内存块,并通过 128 为分界分别对 heap 和 mmap 内存分配情况进行计数;
第二个循环是 free 索引下标为奇数的项,同时更新计数情况。通过程序的计数与mallinfo/malloc_stats 接口得到结果进行对比,并通过 print_info打印到终端。

  
下面是一个执行结果: 
count by itself: 
        heap_malloc_total=8323072 heap_free_total=0 heap_in_use=8323072 
        mmap_total=12054528 mmap_count=72 
  
count by mallinfo: 
        heap_malloc_total=8327168 heap_free_total=2032 heap_in_use=8325136 
        mmap_total=12238848 mmap_count=72

from malloc_stats: 
Arena 0: 
system bytes     =    8327168 
in use bytes     =    8325136 
Total (incl. mmap): 
system bytes     =   20566016 
in use bytes     =   20563984 
max mmap regions =         72 
max mmap bytes   =   12238848

after free 
count by itself: 
        heap_malloc_total=8323072 heap_free_total=4194304 heap_in_use=4128768 
        mmap_total=6008832 mmap_count=36

count by mallinfo: 
        heap_malloc_total=8327168 heap_free_total=4197360 heap_in_use=4129808 
        mmap_total=6119424 mmap_count=36

from malloc_stats: 
Arena 0: 
system bytes     =    8327168 
in use bytes     =    4129808 
Total (incl. mmap): 
system bytes     =   14446592 
in use bytes     =   10249232 
max mmap regions =         72 
max mmap bytes   =   12238848

由上可知,程序统计和mallinfo 得到的信息基本吻合,其中 heap_free_total 表示堆内已释放的内存碎片总和。 
 
       如果想知道堆内究竟有多少碎片,可通过 mallinfo 结构中的 fsmblks 、smblks 、ordblks 值得到,这些值表示不同大小区间的碎片总个数,这些区间分别是 0~80 字节,80~512 字节,512~128k 。如果 fsmblks 、 smblks 的值过大,那碎片问题可能比较严重了。 
    不过, mallinfo 结构有一个很致命的问题,就是其成员定义全部都是 int ,在 64 位环境中,其结构中的 uordblks/fordblks/arena/usmblks 很容易就会导致溢出,应该是历史遗留问题,使用时要注意!

 

四、既然堆内内存brk和sbrk不能直接释放,为什么不全部使用 mmap 来分配,munmap直接释放呢? 
        既然堆内碎片不能直接释放,导致疑似“内存泄露”问题,为什么 malloc 不全部使用 mmap 来实现呢(mmap分配的内存可以会通过 munmap 进行 free ,实现真正释放)?而是仅仅对于大于 128k 的大块内存才使用 mmap ? 

        其实,进程向 OS 申请和释放地址空间的接口 sbrk/mmap/munmap 都是系统调用,频繁调用系统调用都比较消耗系统资源的。并且, mmap 申请的内存被 munmap 后,重新申请会产生更多的缺页中断。例如使用 mmap 分配 1M 空间,第一次调用产生了大量缺页中断 (1M/4K 次 ) ,当munmap 后再次分配 1M 空间,会再次产生大量缺页中断。缺页中断是内核行为,会导致内核态CPU消耗较大。另外,如果使用 mmap 分配小内存,会导致地址空间的分片更多,内核的管理负担更大。
        同时堆是一个连续空间,并且堆内碎片由于没有归还 OS ,如果可重用碎片,再次访问该内存很可能不需产生任何系统调用和缺页中断,这将大大降低 CPU 的消耗。 因此, glibc 的 malloc 实现中,充分考虑了 sbrk 和 mmap 行为上的差异及优缺点,默认分配大块内存 (128k) 才使用 mmap 获得地址空间,也可通过 mallopt(M_MMAP_THRESHOLD, <SIZE>) 来修改这个临界值。

 

五、如何查看进程的缺页中断信息? 
可通过以下命令查看缺页中断信息 
ps -o majflt,minflt -C <program_name> 
ps -o majflt,minflt -p <pid> 
其中:: majflt 代表 major fault ,指大错误;

           minflt 代表 minor fault ,指小错误。

这两个数值表示一个进程自启动以来所发生的缺页中断的次数。
其中 majflt 与 minflt 的不同是::

        majflt 表示需要读写磁盘,可能是内存对应页面在磁盘中需要load 到物理内存中,也可能是此时物理内存不足,需要淘汰部分物理页面至磁盘中。

参看:: http://blog.163.com/xychenbaihu@yeah/blog/static/132229655201210975312473/

 

六、除了 glibc 的 malloc/free ,还有其他第三方实现吗?

        其实,很多人开始诟病 glibc 内存管理的实现,特别是高并发性能低下和内存碎片化问题都比较严重,因此,陆续出现一些第三方工具来替换 glibc 的实现,最著名的当属 google 的tcmalloc和facebook 的jemalloc 。 
        网上有很多资源,可以自己查(只用使用第三方库,代码不用修改,就可以使用第三方库中的malloc)。

 

参考资料: 
《深入理解计算机系统》第 10 章 
http://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

https://www.ibm.com/developerworks/cn/linux/l-lvm64/

http://www.kerneltravel.net/journal/v/mem.htm

http://blog.csdn.net/baiduforum/article/details/6126337

http://www.nosqlnotes.net/archives/105

0 0
原创粉丝点击