聊聊高并发(四十一)解析java.util.concurrent各个组件(十七) 任务的异步执行和状态控制

来源:互联网 发布:linux top 进程状态 编辑:程序博客网 时间:2024/06/05 22:49

聊聊高并发(三十九)解析java.util.concurrent各个组件(十五) 理解ExecutorService接口的设计这篇说了ExecutorService接口扩展了Executor接口,在执行任务的基础上,提供了执行框架生命周期的管理,任务的异步执行,批量任务的执行的能力。AbstractExecutorService抽象类实现了ExecutorService接口,提供了任务异步执行和批量执行的默认实现。这篇说说任务的异步执行和状态控制

说明一点,使用Executor框架执行任务的方式基本都是异步执行的,交给线程池的线程来执行。ExecutorService在任务异步执行的基础上,通过Future接口来对异步执行的任务进行状态控制。


submit方法可以返回Future对象来对异步执行任务进行控制。submit方法有三种调用方式,传递Runnable, Runnable和result,Callable。

 public Future<?> submit(Runnable task) {        if (task == null) throw new NullPointerException();        RunnableFuture<Void> ftask = newTaskFor(task, null);        execute(ftask);        return ftask;    }    public <T> Future<T> submit(Runnable task, T result) {        if (task == null) throw new NullPointerException();        RunnableFuture<T> ftask = newTaskFor(task, result);        execute(ftask);        return ftask;    }    public <T> Future<T> submit(Callable<T> task) {        if (task == null) throw new NullPointerException();        RunnableFuture<T> ftask = newTaskFor(task);        execute(ftask);        return ftask;    }

从submit的实现可以看到,都是使用了newTaskFor方法进行了接口的适配,返回一个RunnableFuture类型

protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {        return new FutureTask<T>(runnable, value);    }       protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {        return new FutureTask<T>(callable);    }

来看一下对异步执行的任务进行控制的Future接口相关的类

1. Ruuable表示可被Thread执行的任务,它的run方法没有返回值,并且没有显式的异常

2. Callable表示可以调用的任务,它的call方法可以有返回值,可以抛出显式的异常

3. Future接口是对异步执行的任务的控制,包括取消任务,判断任务状态,获取任务结果等操作

4. RunnableFuture是对Runnable接口和Future接口的适配,表示可以被控制状态的Runnable

5. RunnableAdapter是对Runnable和Callalbe的适配,实现了Callable接口,并聚合了Runnable对象

6. FutureTask实现了RunnableFuture接口,通过RunnableAdapter对传入的Callable和Runnable参数进行统一处理



public interface Runnable {    public abstract void run();}public interface Callable<V> {    V call() throws Exception;}static final class RunnableAdapter<T> implements Callable<T> {        final Runnable task;        final T result;        RunnableAdapter(Runnable task, T result) {            this.task = task;            this.result = result;        }        public T call() {            task.run();            return result;        }    }public interface Future<V> {    boolean cancel(boolean mayInterruptIfRunning);       boolean isCancelled();       boolean isDone();    V get() throws InterruptedException, ExecutionException;    V get(long timeout, TimeUnit unit)        throws InterruptedException, ExecutionException, TimeoutException;}public interface RunnableFuture<V> extends Runnable, Future<V> {    void run();}

在ExecutorService的submit方法中可以看到最终被执行的任务是包装成了RunnableFuture类型,它既是Runnable可以被Executor执行,又是Future,可以控制异步执行的Runnable的状态。

重点来看一下RunnableFuture的实现类FutureTask,异步执行的任务的状态控制都是在这个类中实现的。

FutureTask的主要属性

1.  private volatile int state; volatile类型的state,保存当前任务的状态,状态有下面几种

    private static final int NEW          = 0;
    private static final int COMPLETING   = 1;
    private static final int NORMAL       = 2;
    private static final int EXCEPTIONAL  = 3;
    private static final int CANCELLED    = 4;
    private static final int INTERRUPTING = 5;
    private static final int INTERRUPTED  = 6;


2. private Callable<V> callable; 可以获得计算结果的callable对象,封装了传入的任务

3. private Object outcome; 任务执行的结果,可以是正常计算得到的结果,也可以是要返回的异常

4. private volatile Thread runner; 执行任务的线程

5. private volatile WaitNode waiters; 等待的线程链表

FutureTask对state, runner, waiters这3个需要原子操作的对象,没有使用AtomicXXX原子变量,而是使用了Unsafe对象来直接操作内存进行原子操作。关于Unsafe对象请参考这篇聊聊高并发(十七)解析java.util.concurrent各个组件(一) 了解sun.misc.Unsafe类

 // Unsafe mechanics    private static final sun.misc.Unsafe UNSAFE;    private static final long stateOffset;    private static final long runnerOffset;    private static final long waitersOffset;    static {        try {            UNSAFE = sun.misc.Unsafe.getUnsafe();            Class<?> k = FutureTask.class;            stateOffset = UNSAFE.objectFieldOffset                (k.getDeclaredField("state"));            runnerOffset = UNSAFE.objectFieldOffset                (k.getDeclaredField("runner"));            waitersOffset = UNSAFE.objectFieldOffset                (k.getDeclaredField("waiters"));        } catch (Exception e) {            throw new Error(e);        }    }

来看看FutureTask的主要方法

构造函数支持Callable类型和Runnable类型,当使用Runnable类型的参数时,需要传入result作为Callable的计算结果,利用RunnableAdapter进行从Runnable到Callable的适配。FutureTask的初始状态是NEW

 public FutureTask(Callable<V> callable) {        if (callable == null)            throw new NullPointerException();        this.callable = callable;        this.state = NEW;       // ensure visibility of callable    } public FutureTask(Runnable runnable, V result) {        this.callable = Executors.callable(runnable, result);        this.state = NEW;       // ensure visibility of callable    }// Executors.callable() public static <T> Callable<T> callable(Runnable task, T result) {        if (task == null)            throw new NullPointerException();        return new RunnableAdapter<T>(task, result);    }

run方法会被Executor的工作线程调用,因为FutureTask是作为Runnable对象传递给Executor的execute方法的。

1. 把当前线程设置成FutureTask的runner。

2. 执行传入的Callable的call方法,并把结果传给result对象。如果call方法产生异常,就调用setException方法把异常对象传递给outcome属性,并设置FutureTask的相应状态,先设置成COMPLETING,再设置成EXCEPTIONAL

3. 如果call方法正常执行完成,调用set()方法把结果传递给outcome属性,并设置FutureTask的相应状态,先设置成COMPLETING,再设置成NORMAL

4. 调用finishCompletion方法来唤醒在get()方法中阻塞的线程

public void run() {        if (state != NEW ||            !UNSAFE.compareAndSwapObject(this, runnerOffset,                                         null, Thread.currentThread()))            return;        try {            Callable<V> c = callable;            if (c != null && state == NEW) {                V result;                boolean ran;                try {                    result = c.call();                    ran = true;                } catch (Throwable ex) {                    result = null;                    ran = false;                    setException(ex);                }                if (ran)                    set(result);            }        } finally {            // runner must be non-null until state is settled to            // prevent concurrent calls to run()            runner = null;            // state must be re-read after nulling runner to prevent            // leaked interrupts            int s = state;            if (s >= INTERRUPTING)                handlePossibleCancellationInterrupt(s);        }    } protected void setException(Throwable t) {        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {            outcome = t;            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state            finishCompletion();        }    }protected void set(V v) {        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {            outcome = v;            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state            finishCompletion();        }    }

cancel方法会取消执行的任务。当state为NEW的时候才能被取消。如果取消任务时要中断任务,会先把FutureTask状态设置为INTERRUPTING,然后调用执行任务的线程的interrupt()方法去中断任务,然后把状态设置成INTERRUPTED。如果取消任务时不中断任务,直接把FutureTask状态设置成CANCELLED。最后调用finishCompletiong方法来唤醒和删除在get方法中等待的线程

  public boolean cancel(boolean mayInterruptIfRunning) {        if (state != NEW)            return false;        if (mayInterruptIfRunning) {            if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING))                return false;            Thread t = runner;            if (t != null)                t.interrupt();            UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state        }        else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED))            return false;        finishCompletion();        return true;    } private void finishCompletion() {        // assert state > COMPLETING;        for (WaitNode q; (q = waiters) != null;) {            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {                for (;;) {                    Thread t = q.thread;                    if (t != null) {                        q.thread = null;                        LockSupport.unpark(t);                    }                    WaitNode next = q.next;                    if (next == null)                        break;                    q.next = null; // unlink to help gc                    q = next;                }                break;            }        }        done();        callable = null;        // to reduce footprint    }// 钩子方法protected void done() { }

get()和get(long timeout, TimeUnit unit)方法会尝试获取FutureTask的运行结果。前者会一直等待,直到FutureTask的状态大于COMPLETING,即call执行结束,然后report()方法返回结果。后者会等待timeout时间,如果timeout就抛出TimeoutException,否则report()方法返回结果

 public V get() throws InterruptedException, ExecutionException {        int s = state;        if (s <= COMPLETING)            s = awaitDone(false, 0L);        return report(s);    }    /**     * @throws CancellationException {@inheritDoc}     */    public V get(long timeout, TimeUnit unit)        throws InterruptedException, ExecutionException, TimeoutException {        if (unit == null)            throw new NullPointerException();        int s = state;        if (s <= COMPLETING &&            (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)            throw new TimeoutException();        return report(s);    }

awaitDone方法利用了LockSupport对象来实现条件队列操作,LockSupport.park()  LockSupport.unpark()方法相当于即Object.wait(),Object.notify()方法。

private int awaitDone(boolean timed, long nanos)        throws InterruptedException {        final long deadline = timed ? System.nanoTime() + nanos : 0L;        WaitNode q = null;        boolean queued = false;        for (;;) {            if (Thread.interrupted()) {                removeWaiter(q);                throw new InterruptedException();            }            int s = state;            if (s > COMPLETING) {                if (q != null)                    q.thread = null;                return s;            }            else if (s == COMPLETING) // cannot time out yet                Thread.yield();            else if (q == null)                q = new WaitNode();            else if (!queued)                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,                                                     q.next = waiters, q);            else if (timed) {                nanos = deadline - System.nanoTime();                if (nanos <= 0L) {                    removeWaiter(q);                    return state;                }                LockSupport.parkNanos(this, nanos);            }            else                LockSupport.park(this);        }    }

report方法处理FutureTask的返回值,如果正常执行,就返回正常结果,如果是取消或者中断,就抛出CancellationException,如果执行过程中发生了异常,就用ExecutionException来封装抛出的异常,并抛出ExecutionException

private V report(int s) throws ExecutionException {        Object x = outcome;        if (s == NORMAL)            return (V)x;        if (s >= CANCELLED)            throw new CancellationException();        throw new ExecutionException((Throwable)x);    }

提交任务的生产者线程和执行任务的消费者工作线程共享FutureTask对象,这两个线程之间可以通过FutureTask的状态相互作用




0 0
原创粉丝点击