Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock

来源:互联网 发布:java转义字符 & 编辑:程序博客网 时间:2024/06/04 19:12

Java多线程系列-目录
[笔记][Java7并发编程实战手册]系列目录


概要

本章对ReentrantLock包进行基本介绍,这一章主要对ReentrantLock进行概括性的介绍


ReentrantLock介绍

ReentrantLock是一个可重入的互斥锁,又被称为“独占锁”。

顾名思义,ReentrantLock锁在同一个时间点只能被一个线程锁持有;而可重入的意思是,ReentrantLock锁,可以被单个线程多次获取。
ReentrantLock分为“公平锁”和“非公平锁”。它们的区别体现在获取锁的机制上是否公平。
锁”是为了保护竞争资源,防止多个线程同时操作线程而出错,ReentrantLock在同一个时间点只能被一个线程获取(当某线程获取到“锁”时,其它线程就必须等待);ReentraantLock是通过一个FIFO的等待队列来管理获取该锁所有线程的。在“公平锁”的机制下,线程依次排队获取锁;
而“非公平锁”在锁是可获取状态时,不管自己是不是在队列的开头都会获取锁。


ReentrantLock函数列表

// 创建一个 ReentrantLock ,默认是“非公平锁”。ReentrantLock()// 创建策略是fair的 ReentrantLock。fair为true表示是公平锁,fair为false表示是非公平锁。ReentrantLock(boolean fair)// 查询当前线程保持此锁的次数。int getHoldCount()// 返回目前拥有此锁的线程,如果此锁不被任何线程拥有,则返回 null。protected Thread getOwner()// 返回一个 collection,它包含可能正等待获取此锁的线程。protected Collection<Thread> getQueuedThreads()// 返回正等待获取此锁的线程估计数。int getQueueLength()// 返回一个 collection,它包含可能正在等待与此锁相关给定条件的那些线程。protected Collection<Thread> getWaitingThreads(Condition condition)// 返回等待与此锁相关的给定条件的线程估计数。int getWaitQueueLength(Condition condition)// 查询给定线程是否正在等待获取此锁。boolean hasQueuedThread(Thread thread)// 查询是否有些线程正在等待获取此锁。boolean hasQueuedThreads()// 查询是否有些线程正在等待与此锁有关的给定条件。boolean hasWaiters(Condition condition)// 如果是“公平锁”返回true,否则返回falseboolean isFair()// 查询当前线程是否保持此锁。boolean isHeldByCurrentThread()// 查询此锁是否由任意线程保持。boolean isLocked()// 获取锁。void lock()// 如果当前线程未被中断,则获取锁。void lockInterruptibly()// 返回用来与此 Lock 实例一起使用的 Condition 实例。Condition newCondition()// 仅在调用时锁未被另一个线程保持的情况下,才获取该锁。boolean tryLock()// 如果锁在给定等待时间内没有被另一个线程保持,且当前线程未被中断,则获取该锁。boolean tryLock(long timeout, TimeUnit unit)// 试图释放此锁。void unlock()

ReentrantLock示例

示例1

/** * Created by zhuqiang on 2015/7/30. */public class LockTest1 {    public static void main(String[] args) {        Depot mDepot = new Depot();        Producer mPro = new Producer(mDepot);        Customer mCus = new Customer(mDepot);        mPro.produce(60);        mPro.produce(120);        mCus.consume(90);        mCus.consume(150);        mPro.produce(110);    }}// LockTest1.java// 仓库class Depot {    private int size;        // 仓库的实际数量    private Lock lock;        // 独占锁    public Depot() {        this.size = 0;        this.lock = new ReentrantLock();    }    public void produce(int val) {        lock.lock();        try {            size += val;            System.out.printf("%s produce(%d) --> size=%d\n",                    Thread.currentThread().getName(), val, size);        } finally {            lock.unlock();        }    }    public void consume(int val) {        lock.lock();        try {            size -= val;            System.out.printf("%s consume(%d) <-- size=%d\n",                    Thread.currentThread().getName(), val, size);        } finally {            lock.unlock();        }    }};// 生产者class Producer {    private Depot depot;    public Producer(Depot depot) {        this.depot = depot;    }    // 消费产品:新建一个线程向仓库中生产产品。    public void produce(final int val) {        new Thread() {            public void run() {                depot.produce(val);            }        }.start();    }}// 消费者class Customer {    private Depot depot;    public Customer(Depot depot) {        this.depot = depot;    }    // 消费产品:新建一个线程从仓库中消费产品。    public void consume(final int val) {        new Thread() {            public void run() {                depot.consume(val);            }        }.start();    }

运行结果:

Thread-0 produce(60) --> size=60Thread-1 produce(120) --> size=180Thread-3 consume(150) <-- size=30Thread-2 consume(90) <-- size=-60Thread-4 produce(110) --> size=50

结果分析:
(01) Depot 是个仓库。通过produce()能往仓库中生产货物,通过consume()能消费仓库中的货物。通过独占锁lock实现对仓库的互斥访问:在操作(生产/消费)仓库中货品前,会先通过lock()锁住仓库,操作完之后再通过unlock()解锁。
(02) Producer是生产者类。调用Producer中的produce()函数可以新建一个线程往仓库中生产产品。
(03) Customer是消费者类。调用Customer中的consume()函数可以新建一个线程消费仓库中的产品。
(04) 在主线程main中,我们会新建1个生产者mPro,同时新建1个消费者mCus。它们分别向仓库中生产/消费产品。
根据main中的生产/消费数量,仓库最终剩余的产品应该是50。运行结果是符合我们预期的!

这个模型存在两个问题:
(01) 现实中,仓库的容量不可能为负数。但是,此模型中的仓库容量可以为负数,这与现实相矛盾!
(02) 现实中,仓库的容量是有限制的。但是,此模型中的容量确实没有限制的!
这两个问题,我们稍微会讲到如何解决。

示例二,我觉得没有必要贴出来了,把上面的列子把 lock()和unlock()的代码部分注释掉,就和未同步的程序一样了,不能保证数据的正确性, 大家可以试着在produce、consume方法体上加上synchronized,同样的能达到正确的效果。


示例3

在“示例3”中,我们通过Condition去解决“示例1”中的两个问题:“仓库的容量不可能为负数”以及“仓库的容量是有限制的”。
解决该问题是通过Condition。
Condition是需要和Lock联合使用的:
  通过Condition中的await()方法,能让线程阻塞[类似于wait()];
  通过Condition的signal()方法,能让唤醒线程[类似于notify()]。

public class LockTest3 {    public static void main(String[] args) {        Depot mDepot = new Depot(100);        Producer mPro = new Producer(mDepot);        Customer mCus = new Customer(mDepot);        mPro.produce(60);        mPro.produce(120);        mCus.consume(90);        mCus.consume(150);        mPro.produce(110);    }}// LockTest3.java// 仓库class Depot {    private int capacity;    // 仓库的容量    private int size;        // 仓库的实际数量    private Lock lock;        // 独占锁    private Condition fullCondtion;            // 生产条件    private Condition emptyCondtion;        // 消费条件    public Depot(int capacity) {        this.capacity = capacity;        this.size = 0;        this.lock = new ReentrantLock();        this.fullCondtion = lock.newCondition();        this.emptyCondtion = lock.newCondition();    }    public void produce(int val) {        lock.lock();        try {            // left 表示“想要生产的数量”(有可能生产量太多,需多此生产)            int left = val;            while (left > 0) {                // 库存已满时,等待“消费者”消费产品。                while (size >= capacity)                    fullCondtion.await();                // 获取“实际生产的数量”(即库存中新增的数量)                // 如果“库存”+“想要生产的数量”>“总的容量”,则“实际增量”=“总的容量”-“当前容量”。(此时填满仓库)                // 否则“实际增量”=“想要生产的数量”                int inc = (size+left)>capacity ? (capacity-size) : left;                size += inc;                left -= inc;                System.out.printf("%s produce(%3d) --> left=%3d, inc=%3d, size=%3d\n",                        Thread.currentThread().getName(), val, left, inc, size);                // 通知“消费者”可以消费了。                emptyCondtion.signal();            }        } catch (InterruptedException e) {        } finally {            lock.unlock();        }    }    public void consume(int val) {        lock.lock();        try {            // left 表示“客户要消费数量”(有可能消费量太大,库存不够,需多此消费)            int left = val;            while (left > 0) {                // 库存为0时,等待“生产者”生产产品。                while (size <= 0)                    emptyCondtion.await();                // 获取“实际消费的数量”(即库存中实际减少的数量)                // 如果“库存”<“客户要消费的数量”,则“实际消费量”=“库存”;                // 否则,“实际消费量”=“客户要消费的数量”。                int dec = (size<left) ? size : left;                size -= dec;                left -= dec;                System.out.printf("%s consume(%3d) <-- left=%3d, dec=%3d, size=%3d\n",                        Thread.currentThread().getName(), val, left, dec, size);                fullCondtion.signal();            }        } catch (InterruptedException e) {        } finally {            lock.unlock();        }    }    public String toString() {        return "capacity:"+capacity+", actual size:"+size;    }};// 生产者class Producer {    private Depot depot;    public Producer(Depot depot) {        this.depot = depot;    }    // 消费产品:新建一个线程向仓库中生产产品。    public void produce(final int val) {        new Thread() {            public void run() {                depot.produce(val);            }        }.start();    }}// 消费者class Customer {    private Depot depot;    public Customer(Depot depot) {        this.depot = depot;    }    // 消费产品:新建一个线程从仓库中消费产品。    public void consume(final int val) {        new Thread() {            public void run() {                depot.consume(val);            }        }.start();    }}

某一次运行结果

Thread-0 produce( 60) --> left=  0, inc= 60, size= 60Thread-1 produce(120) --> left= 80, inc= 40, size=100Thread-2 consume( 90) <-- left=  0, dec= 90, size= 10Thread-3 consume(150) <-- left=140, dec= 10, size=  0Thread-4 produce(110) --> left= 10, inc=100, size=100Thread-3 consume(150) <-- left= 40, dec=100, size=  0Thread-4 produce(110) --> left=  0, inc= 10, size= 10Thread-3 consume(150) <-- left= 30, dec= 10, size=  0Thread-1 produce(120) --> left=  0, inc= 80, size= 80Thread-3 consume(150) <-- left=  0, dec= 30, size= 50

代码中的已经包含了很详细的注释,这里就不再说明了。
更多“生产者/消费者模型”的更多内容,可以参考“Java多线程系列–“基础篇”11之 生产消费者问题”。
而关于Condition的内容,在后面我们会详细介绍。


本文From:http://www.cnblogs.com/skywang12345/p/3496101.html

0 0
原创粉丝点击