C/C++中的struct位结构

来源:互联网 发布:网络通信的发展状况 编辑:程序博客网 时间:2024/05/22 17:19
位结构
位结构是一种特殊的结构, 在需按位访问一个字节或字的多个位时, 位结构比按位运算符更加方便。位结构定义的一般形式为:


struct位结构名{
数据类型 变量名: 整型常数;
数据类型 变量名: 整型常数;
} 位结构变量;


其中: 数据类型必须是int(unsigned或signed)。 整型常数必须是非负的整数, 范围是0~15, 表示二进制位的个数, 即表示有多少位。变量名是选择项, 可以不命名, 这样规定是为了排列需要。


例如: 下面定义了一个位结构。
struct{
unsigned incon: 8; /*incon占用低字节的0~7共8位*/
unsigned txcolor: 4;/*txcolor占用高字节的0~3位共4位*/
unsigned bgcolor: 3;/*bgcolor占用高字节的4~6位共3位*/
unsigned blink: 1; /*blink占用高字节的第7位*/
}ch;
位结构成员的访问与结构成员的访问相同。
例如: 访问上例位结构中的bgcolor成员可写成:
ch.bgcolor

注意:
1. 位结构中的成员可以定义为unsigned, 也可定义为signed, 但当成员长度为1时, 会被认为是unsigned类型。因为单个位不可能具有符号。
2. 位结构中的成员不能使用数组和指针, 但位结构变量可以是数组和指针, 如果是指针, 其成员访问方式同结构指针。
3. 位结构总长度(位数), 是各个位成员定义的位数之和, 可以超过两个字节。
4. 位结构成员可以与其它结构成员一起使用。
例如:
struct info{
char name[8];
int age;
struct addr address;
float pay;
unsigned state: 1;
unsigned pay: 1;
}workers;'
上例的结构定义了关于一个工从的信息。其中有两个位结构成员, 每个位结构成员只有一位, 因此只占一个字节但保存了两个信息, 该字节中第一位表示工人的状态, 第二位表示工资是否已发放。由此可见使用位结构可以节省存贮空间。

问题的解答
结构struct x,有三个成员s1,s2,s3每一个成员占3 bit,结构与char c union ;
char 一般机器占一个字节(8 bit ,100 二进制值为:01100100,所以s1后三bit(6,7,8 bit) :100,s2为中间三位(3,4,5 bit)为100 s3为01,所以printf("%d/n",v.x.s3)是1,其它是4。现在大多数系统都是将低字位放在前面,而结构体中位域的申明一般是先声明高位。

100 的二进制是 001 100 100

低位在前 高位在后

001----s3

100----s2

100----s1

所以结果应该是 1

如果先申明的在低位则:

001----s1

100----s2

100----s3

结果是 4

     其中unsigned short s1:3; 中的“:”又是什么意思?
指定位段, 3代表预定s1占3bit.

为什么是4?
struct
{
unsigned short s1:3; //一个字节. 虽然预定为3bit,但系统的存储空间为至少一字节.
unsigned short s2:3; //一个字节
unsigned short s3:3; //一个字节
}x;
这样在联合union中最大的成员为三个字节,而最终结果为了内存对齐(对齐为4的倍数).取为4.

 

-----------------------------------------------------------------------------------------------------------------------------------

 

在大多数情况下,我们一般这样定义结构体:

struct student

{

                unsigned int sex;

              unsigned int age;

};

对于一般的应用,这已经能很充分地实现数据了的 封装

但是,在实际工程中,往往碰到这样的情况:那就是要用一个基本类型变量中的不同的位表示不同的含义。譬如一个 cpu 内部的标志寄存器,假设为 16 bit ,而每个 bit 都可以表达不同的含义,有的表示结果是否为 0 ,有的表示是否越界等等。这个时候我们用什么数据结构来表达这个寄存器呢?

答案还是结构体!

为达到此目的,我们要用到结构体的高级特性,那就是在基本成员变量的后面添加“ : 数据位数”组成新的结构体:

struct xxx

{

              成员 1 类型成员 1 : 成员 1 位数 ;

               成员 2 类型成员 2 : 成员 2 位数 ;

               成员 3 类型成员 3 : 成员 3 位数 ;

};

基本的成员变量就会被拆分!这个语法在初级编程中很少用到,但是在高级程序设计中不断地被用到!例如:

struct student

{

                unsigned int sex : 1;

              unsigned int age : 15;

};

上述结构体中的两个成员 sex age 加起来只占用了一个 unsigned int 的空间(假设 unsigned int 16 位)。

基本成员变量被拆分后,访问的方法仍然和访问没有拆分的情况是一样的,例如:

struct student sweek;

sweek.sex = MALE;// 这里的 MALE 只能是 0 1 ,值不能大于 1

sweek.age = 20;

虽然拆分基本成员变量在语法上是得到支持的,但是并不等于我们想怎么分就怎么分,例如下面的拆分显然是不合理的:

struct student

{

                  unsigned int sex : 1;

                unsigned int age : 12;

};

这是因为 1+12 = 13 ,不能再组合成一个基本成员,不能组合成 char int 或任何类型,这显然是不能 自圆其说 的。

在拆分基本成员变量的情况下,我们要特别注意数据的存放顺序,这还与 CPU Big endian 还是 Little endian 来决定。 Little endian Big endian CPU 存放数据的两种不同顺序。对于整型、长整型等数据类型, Big endian 认为第一个字节是最高位字节(按照从低地址到高地址的顺序存放数据的高位字节到低位字节);而 Little endian 则相反,它认为第一个字节是最低位字节(按照从低地址到高地址的顺序存放数据的低位字节到高位字节)。

我们定义 IP 包头结构体为:

struct iphdr {

#if defined(__LITTLE_ENDIAN_BITFIELD)

       __u8       ihl:4,

              version:4;

#elif defined (__BIG_ENDIAN_BITFIELD)

       __u8       version:4,

            ihl:4;

#else

#error       "Please fix <asm/byteorder.h>"

#endif

       __u8       tos;

       __u16       tot_len;

       __u16       id;

       __u16       frag_off;

       __u8       ttl;

       __u8       protocol;

       __u16       check;

       __u32       saddr;

       __u32       daddr;

       /*The options start here. */

};

Little endian 模式下, iphdr 中定义:

       __u8       ihl:4,

              version:4;

其存放方式为:

1 字节低 4  ihl

1 字节高 4  version IP 的版本号)

若在 Big endian 模式下还这样定义,则存放方式为:

1 字节低 4  version IP 的版本号)

1 字节高 4  ihl

这与实际的 IP 协议是不匹配的,所以在 Linux 内核源代码中, IP 包头结构体的定义利用了宏:

#if defined(__LITTLE_ENDIAN_BITFIELD)

#elif defined (__BIG_ENDIAN_BITFIELD)

#endif

来区分两种不同的情况。

由此我们总结全文的主要观点:

1        C/C++ 语言的结构体支持对其中的基本成员变量按位拆分;

2        拆分的位数应该是合乎逻辑的,应仍然可以组合为基本成员变量;

要特别注意拆分后的数据的存放顺序,这一点要结合具体的 CPU 的结构。  

原创粉丝点击