Linux电源管理(8)_Wakeup count功能

来源:互联网 发布:淘宝看不到对方评论 编辑:程序博客网 时间:2024/04/27 17:12

1. 前言

Wakeup count是Wakeup events framework的组成部分,用于解决“system suspend和system wakeup events之间的同步问题”。本文将结合“Linux电源管理(6)_Generic PM之Suspend功能”和“Linux电源管理(7)_Wakeup events framework”两篇文章,分析wakeup count的功能、实现逻辑、背后的思考,同时也是对这两篇文章的复习和总结。

2. wakeup count在电源管理中的位置

wakeup count的实现位于wakeup events framework中(drivers/base/power/wakeup.c),主要为两个模块提供接口:通过PM core向用户空间提供sysfs接口;直接向autosleep(请参考下一篇文章)提供接口。

wakeup count architecture

3. wakeup count的功能

wakeup count的功能是suspend同步,实现思路是这样的:

1)任何想发起电源状态切换的实体(可以是用户空间电源管理进程,也可以是内核线程,简称C),在发起状态切换前,读取系统的wakeup counts(该值记录了当前的wakeup event总数),并将读取的counts告知wakeup events framework。

2)wakeup events framework记录该counts到一个全局变量中(saved_count)。

3)随后C发起电源状态切换(如STR),执行suspend过程。

4)在suspend的过程中,wakeup events framework照旧工作(直到系统中断被关闭),上报wakeup events,增加wakeup events counts。

5)suspend执行的一些时间点(可参考“Linux电源管理(6)_Generic PM之Suspend功能”),会调用wakeup  events framework提供的接口(pm_wakeup_pending),检查是否有wakeup没有处理。

6)检查逻辑很简单,就是比较当前的wakeup counts和saved wakeup counts(C发起电源状态切换时的counts),如果不同,就要终止suspend过程。

4. wakeup count的实现逻辑

4.1 一个例子

在进行代码分析之前,我们先用伪代码的形式,写出一个利用wakeup count进行suspend操作的例子,然后基于该例子,分析相关的实现。

   1: do {
   2:     ret = read(&cnt, "/sys/power/wakeup_count");
   3:     if (ret) {
   4:         ret = write(cnt, "/sys/power/wakeup_count");
   5:     } else {
   6:         countine;
   7:     }
   8: } while (!ret);
   9:  
  10: write("mem", "/sys/power/state");
  11:  
  12: /* goto here after wakeup */

例子很简单:

a)读取wakeup count值,如果成功,将读取的值回写。否则说明有正在处理的wakeup events,continue。

b)回写后,判断返回值是否成功,如果不成功(说明读、写的过程中产生了wakeup events),继续读、写,直到成功。成功后,可以触发电源状态切换。

4.2 /sys/power/wakeup_count

wakeup_count文件是在kernel/power/main.c中,利用power_attr注册的,如下(大家可以仔细研读一下那一大段注释,内核很多注释写的非常好,而好的注释,就是软件功力的体现):

   1: /*
   2:  * The 'wakeup_count' attribute, along with the functions defined in
   3:  * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
   4:  * handled in a non-racy way.
   5:  *
   6:  * If a wakeup event occurs when the system is in a sleep state, it simply is
   7:  * woken up.  In turn, if an event that would wake the system up from a sleep
   8:  * state occurs when it is undergoing a transition to that sleep state, the
   9:  * transition should be aborted.  Moreover, if such an event occurs when the
  10:  * system is in the working state, an attempt to start a transition to the
  11:  * given sleep state should fail during certain period after the detection of
  12:  * the event.  Using the 'state' attribute alone is not sufficient to satisfy
  13:  * these requirements, because a wakeup event may occur exactly when 'state'
  14:  * is being written to and may be delivered to user space right before it is
  15:  * frozen, so the event will remain only partially processed until the system is
  16:  * woken up by another event.  In particular, it won't cause the transition to
  17:  * a sleep state to be aborted.
  18:  *
  19:  * This difficulty may be overcome if user space uses 'wakeup_count' before
  20:  * writing to 'state'.  It first should read from 'wakeup_count' and store
  21:  * the read value.  Then, after carrying out its own preparations for the system
  22:  * transition to a sleep state, it should write the stored value to
  23:  * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
  24:  * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
  25:  * is allowed to write to 'state', but the transition will be aborted if there
  26:  * are any wakeup events detected after 'wakeup_count' was written to.
  27:  */
  28:  
  29: static ssize_t wakeup_count_show(struct kobject *kobj,
  30:                                 struct kobj_attribute *attr,
  31:                                 char *buf)
  32: {
  33:         unsigned int val;
  34:  
  35:         return pm_get_wakeup_count(&val, true) ?
  36:                 sprintf(buf, "%u\n", val) : -EINTR;
  37: }
  38:  
  39: static ssize_t wakeup_count_store(struct kobject *kobj,
  40:                                 struct kobj_attribute *attr,
  41:                                 const char *buf, size_t n)
  42: {
  43:         unsigned int val;
  44: int error;
  45:  
  46: error = pm_autosleep_lock();
  47: if (error)
  48:         return error;
  49:  
  50: if (pm_autosleep_state() > PM_SUSPEND_ON) {
  51:         error = -EBUSY;
  52:         goto out;
  53: }
  54:  
  55: error = -EINVAL;
  56: if (sscanf(buf, "%u", &val) == 1) {
  57:         if (pm_save_wakeup_count(val))
  58:                 error = n;
  59: }
  60:  
  61:  out:
  62: pm_autosleep_unlock();
  63: return error;
  64: }
  65:  
  66: tr(wakeup_count);

实现很简单:read时,直接调用pm_get_wakeup_count(注意第2个参数);write时,直接调用pm_save_wakeup_count(注意用户空间的wakeup count功能和auto sleep互斥,会在下篇文章解释原因)。这两个接口均是wakeup events framework提供的接口,跟着代码往下看吧。

4.3 pm_get_wakeup_count

pm_get_wakeup_count的实现如下:

   1: bool pm_get_wakeup_count(unsigned int *count, bool block)
   2: {
   3:         unsigned int cnt, inpr;
   4:  
   5:         if (block) {
   6:                 DEFINE_WAIT(wait);
   7:  
   8:                 for (;;) {
   9:                         prepare_to_wait(&wakeup_count_wait_queue, &wait,
  10:                                         TASK_INTERRUPTIBLE);
  11:                         split_counters(&cnt, &inpr);
  12:                         if (inpr == 0 || signal_pending(current))
  13:                                 break;
  14:  
  15:                         schedule();
  16:                 }
  17:                 finish_wait(&wakeup_count_wait_queue, &wait);
  18:         }
  19:  
  20:         split_counters(&cnt, &inpr);
  21:         *count = cnt;
  22:         return !inpr;
  23: }

该接口有两个参数,一个是保存返回的count值得指针,另一个指示是否block,具体请参考代码逻辑:

a)如果block为false,直接读取registered wakeup events和wakeup events in progress两个counter值,将registered wakeup events交给第一个参数,并返回wakeup events in progress的状态(若返回false,说明当前有wakeup events正在处理,不适合suspend)。

b)如果block为true,定义一个等待队列,等待wakeup events in progress为0,再返回counter。

 

注1:由4.2小节可知,sysfs发起的read动作,block为true,所以如果有正在处理的wakeup events,read进程会阻塞。其它模块(如auto sleep)发起的read,则可能不需要阻塞。

4.4 pm_save_wakeup_count

pm_save_wakeup_count的实现如下:

   1: bool pm_save_wakeup_count(unsigned int count)
   2: {
   3:         unsigned int cnt, inpr;
   4:         unsigned long flags;
   5:  
   6:         events_check_enabled = false;
   7:         spin_lock_irqsave(&events_lock, flags);
   8:         split_counters(&cnt, &inpr);
   9:         if (cnt == count && inpr == 0) {
  10:                 saved_count = count;
  11:                 events_check_enabled = true;
  12:         }
  13:         spin_unlock_irqrestore(&events_lock, flags);
  14:         return events_check_enabled;
  15: }

1)注意这个变量,events_check_enabled,如果它不为真,pm_wakeup_pending接口直接返回false,意味着如果不利用wakeup count功能,suspend过程中不会做任何wakeup events检查,也就不会进行任何的同步

2)解除当前的registered wakeup events、wakeup events in progress,保存在变量cnt和inpr中。

3)如果写入的值和cnt不同(说明读、写的过程中产生events),或者inpr不为零(说明有events正在被处理),返回false(说明此时不宜suspend)。

4)否则,events_check_enabled置位(后续的pm_wakeup_pending才会干活),返回true(可以suspend),并将当前的wakeup count保存在saved count变量中。

4.5 /sys/power/state

再回忆一下“Linux电源管理(6)_Generic PM之Suspend功能”中suspend的流程,在suspend_enter接口中,suspend前的最后一刻,会调用pm_wakeup_pending接口,代码如下:

   1: static int suspend_enter(suspend_state_t state, bool *wakeup)
   2: {
   3:     ...
   4:     error = syscore_suspend();
   5:     if (!error) {
   6:         *wakeup = pm_wakeup_pending();
   7:         if (!(suspend_test(TEST_CORE) || *wakeup)) {
   8:                 error = suspend_ops->enter(state);
   9:                 events_check_enabled = false;
  10:         }
  11:         syscore_resume();
  12:     }
  13:     ...
  14: }

在write wakeup_count到调用pm_wakeup_pending这一段时间内,wakeup events framework会照常产生wakeup events,因此如果pending返回true,则不能“enter”,终止suspend吧!

注2:wakeup后,会清除events_check_enabled标记。

“Linux电源管理(7)_Wakeup events framework”中已经介绍过pm_wakeup_pending了,让我们再看一遍吧:

   1: bool pm_wakeup_pending(void)
   2: {
   3:         unsigned long flags;
   4:         bool ret = false;
   5:  
   6:         spin_lock_irqsave(&events_lock, flags);
   7:         if (events_check_enabled) {
   8:                 unsigned int cnt, inpr;
   9:  
  10:                 split_counters(&cnt, &inpr);
  11:                 ret = (cnt != saved_count || inpr > 0);
  12:                 events_check_enabled = !ret;
  13:         }
  14:         spin_unlock_irqrestore(&events_lock, flags);
  15:  
  16:         if (ret)
  17:                 print_active_wakeup_sources();
  18:  
  19:         return ret;
  20: }

a)首先会判断events_check_enabled是否有效,无效直接返回false。有效的话:

b)获得cnt和inpr,如果cnt不等于saved_count(说明这段时间内有events产生),或者inpr不为0(说明有events正在被处理),返回true(告诉调用者,放弃吧,时机不到)。同时清除events_check_enabled的状态。

c)否则,返回false(放心睡吧),同时保持events_check_enabled的置位状态(以免pm_wakeup_pending再次调用)。

Okay,结束了,等待wakeup吧~~~~

 

转发出处。蜗窝科技,www.wowotech.net。

0 0
原创粉丝点击