Java集合之WeakHashMap

来源:互联网 发布:宜宾淘宝网 编辑:程序博客网 时间:2024/06/01 08:02
纸上得来终觉浅,绝知此事要躬行  --陆游    问渠那得清如许,为有源头活水来  --朱熹

WeakHashMap继承于AbstractMap,同时实现了Map接口。
和HashMap一样,WeakHashMap也是一个散列表,存储的内容也是键值对 key-value映射,并且键和值都可以是null。WeakHashMap的键都是弱键,给定一个键,其映射的存在并不阻止垃圾回收器对该键的丢弃,使该键成为可终止,然后被回收。弱键的原理就是Entry继承了WeakReference接口,当GC 回收时,”弱键“同时也会被添加到ReferenceQueue队列中。
实现的步骤:
(1)新建WeakHashMap,将键值对添加到WeakHashMap中,WeakHashMap同样也是通过table保存Entry(键值对),每一个Entry实际上是一个单向链表。
(2)当某个弱键不再被其他对象引用,并被GC回收时,在GC回收该弱键时,这个弱键也同时会被添加到ReferenceQueue(queue)队列中。
(3)下一次需要操作WeakHashMap时,会先同步table和queue。table中保存了全部的键值对,而queue中保存被GC回收的键值对,同时会删除table中被GC回收的键值对。WeakHashMap也不是线程安全的。
WeakHashMap的关系图:

(1)WeakHashMap继承于AbstractMap,并且实现了Map接口。
(2)WeakHashMap是哈希表,它的键时弱键,WeakHashMap同样有几个重要的成员变量:table,size,threshold,loadFactor,modCount,queue。
table一个Entry[]数组类型,而每个Entry实际上就是一个单向链表,哈希表的key-value键值对都是存储在Entry数组中的。
size是Hashtable的大小,它是Hashtable保存的键值对的数量。
threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值=”容量*加载因子“
loadFactor加载因子
modCount是用来实现fail-fast机制
queue保存的是已经被GC清楚的弱引用的键。

WeakHashMap主要的函数
void                   clear()
Object clone()
boolean containsKey(Object key)
boolean containsValue(Object value)
Set<Entry<K, V>> entrySet()
V get(Object key)
boolean isEmpty()
Set<K> keySet()
V put(K key, V value)
void putAll(Map<? extends K, ? extends V> map)
V remove(Object key)
int size()
Collection<V> values()
WeakHashMap的遍历方式
(1)遍历WeakHashMap的键值对:首先根据entrySet()获得键值对集合,然后对集合通过迭代器Iterator遍历得到键值。
Integer integ = null;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext())
{
Map.Entry entry = (Map.Entry)iter.next();
// 获取key
key = (String)entry.getKey();
// 获取value
integ = (Integer)entry.getValue();
}
(2)遍历WeakHashMap的键:首先通过keySet()获取WeakHashMap的键的set集合,通过Iterator迭代器遍历集合来获得键值。
String key = null;
Integer integ = null;
Iterator iter = map.keySet().iterator();
while (iter.hasNext()) {
// 获取key
key = (String)iter.next();
// 根据key,获取value
integ = (Integer)map.get(key);
}
(3)遍历WeakHashMap的值:首先通过values()获取WeakHashMap的value集合,然后对集合进行迭代获得数据。
Integer value = null;
Collection c = map.values();
Iterator iter= c.iterator();
while (iter.hasNext())
{
value = (Integer)iter.next();
}
WeakHashMap示例程序:
public class Hello {    public static void main(String[] args) throws Exception {        testWeakHashMapAPIs();    }    private static void testWeakHashMapAPIs()    {        // 初始化3个“弱键”        String w1 = new String("one");        String w2 = new String("two");        String w3 = new String("three");        // 新建WeakHashMap        Map wmap = new WeakHashMap();        // 添加键值对        wmap.put(w1, "w1");        wmap.put(w2, "w2");        wmap.put(w3, "w3");        // 打印出wmap        System.out.printf("\nwmap:%s\n",wmap );        // containsKey(Object key) :是否包含键key        System.out.printf("contains key two : %s\n",wmap.containsKey("two"));        System.out.printf("contains key five : %s\n",wmap.containsKey("five"));        // containsValue(Object value) :是否包含值value        System.out.printf("contains value 0 : %s\n",wmap.containsValue(new Integer(0)));        // remove(Object key) : 删除键key对应的键值对        wmap.remove("three");        System.out.printf("wmap: %s\n",wmap );        // ---- 测试 WeakHashMap 的自动回收特性 ----        // 将w1设置null。        // 这意味着“弱键”w1再没有被其它对象引用,调用gc时会回收WeakHashMap中与“w1”对应的键值对        w1 = null;        // 内存回收。这里,会回收WeakHashMap中与“w1”对应的键值对        System.gc();        // 遍历WeakHashMap        Iterator iter = wmap.entrySet().iterator();        while (iter.hasNext())        {            Map.Entry en = (Map.Entry)iter.next();            System.out.printf("next : %s - %s\n",en.getKey(),en.getValue());        }        // 打印WeakHashMap的实际大小        System.out.printf(" after gc WeakHashMap size:%s\n", wmap.size());    }}

运行结果:
wmap:{three=w3, one=w1, two=w2}
contains key two : true
contains key five : false
contains value 0 : false
wmap: {one=w1, two=w2}
next : two - w2
 after gc WeakHashMap size:1

基于Java8的WeakHashMap源代码:

public class WeakHashMap<K,V> extends AbstractMap<K,V>        implements Map<K,V> {    private static final int DEFAULT_INITIAL_CAPACITY = 16;//默认初始大小,必须是2的次幂    private static final int MAXIMUM_CAPACITY = 1 << 30;//最大值2的30次方    private static final float DEFAULT_LOAD_FACTOR = 0.75f;//加载因子    Entry<K,V>[] table;    private int size;//数目    private int threshold;//阈值    private final float loadFactor;//加载因子    private final ReferenceQueue<Object> queue = new ReferenceQueue<>();//引用队列    int modCount;//fail-fast    @SuppressWarnings("unchecked")    private Entry<K,V>[] newTable(int n) {        return (Entry<K,V>[]) new Entry<?,?>[n];    }    //构造函数    public WeakHashMap(int initialCapacity, float loadFactor) {        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal Initial Capacity: "+                    initialCapacity);        if (initialCapacity > MAXIMUM_CAPACITY)            initialCapacity = MAXIMUM_CAPACITY;        if (loadFactor <= 0 || Float.isNaN(loadFactor))            throw new IllegalArgumentException("Illegal Load factor: "+                    loadFactor);        int capacity = 1;        while (capacity < initialCapacity)            capacity <<= 1;        table = newTable(capacity);        this.loadFactor = loadFactor;        threshold = (int)(capacity * loadFactor);    }    //初始值的构造函数    public WeakHashMap(int initialCapacity) {        this(initialCapacity, DEFAULT_LOAD_FACTOR);    }    //构造函数    public WeakHashMap() {        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);    }    public WeakHashMap(Map<? extends K, ? extends V> m) {        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,                        DEFAULT_INITIAL_CAPACITY),                DEFAULT_LOAD_FACTOR);        putAll(m);    }    // internal utilities    /**     * Value representing null keys inside tables.     */    private static final Object NULL_KEY = new Object();    /**     * Use NULL_KEY for key if it is null.     */    private static Object maskNull(Object key) {        return (key == null) ? NULL_KEY : key;    }    /**     * Returns internal representation of null key back to caller as null.     */    static Object unmaskNull(Object key) {        return (key == NULL_KEY) ? null : key;    }    /**     * Checks for equality of non-null reference x and possibly-null y.  By     * default uses Object.equals.     */    private static boolean eq(Object x, Object y) {        return x == y || x.equals(y);    }    /**     * Retrieve object hash code and applies a supplemental hash function to the     * result hash, which defends against poor quality hash functions.  This is     * critical because HashMap uses power-of-two length hash tables, that     * otherwise encounter collisions for hashCodes that do not differ     * in lower bits.     */    //计算k的hash    final int hash(Object k) {        int h = k.hashCode();        // This function ensures that hashCodes that differ only by        // constant multiples at each bit position have a bounded        // number of collisions (approximately 8 at default load factor).        h ^= (h >>> 20) ^ (h >>> 12);        return h ^ (h >>> 7) ^ (h >>> 4);    }    /**     * Returns index for hash code h.     */    private static int indexFor(int h, int length) {        return h & (length-1);    }    /**     * Expunges stale entries from the table.     */    private void expungeStaleEntries() {        for (Object x; (x = queue.poll()) != null; ) {            synchronized (queue) {                @SuppressWarnings("unchecked")                Entry<K,V> e = (Entry<K,V>) x;                int i = indexFor(e.hash, table.length);                Entry<K,V> prev = table[i];                Entry<K,V> p = prev;                while (p != null) {                    Entry<K,V> next = p.next;                    if (p == e) {                        if (prev == e)                            table[i] = next;                        else                            prev.next = next;                        // Must not null out e.next;                        // stale entries may be in use by a HashIterator                        e.value = null; // Help GC                        size--;                        break;                    }                    prev = p;                    p = next;                }            }        }    }    /**     * Returns the table after first expunging stale entries.     */    private Entry<K,V>[] getTable() {        expungeStaleEntries();        return table;    }    /**     * Returns the number of key-value mappings in this map.     * This result is a snapshot, and may not reflect unprocessed     * entries that will be removed before next attempted access     * because they are no longer referenced.     */    //返回数目    public int size() {        if (size == 0)            return 0;        expungeStaleEntries();        return size;    }    /**     * Returns <tt>true</tt> if this map contains no key-value mappings.     * This result is a snapshot, and may not reflect unprocessed     * entries that will be removed before next attempted access     * because they are no longer referenced.     */    //判断是否为空    public boolean isEmpty() {        return size() == 0;    }    /**     * Returns the value to which the specified key is mapped,     * or {@code null} if this map contains no mapping for the key.     *     * <p>More formally, if this map contains a mapping from a key     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :     * key.equals(k))}, then this method returns {@code v}; otherwise     * it returns {@code null}.  (There can be at most one such mapping.)     *     * <p>A return value of {@code null} does not <i>necessarily</i>     * indicate that the map contains no mapping for the key; it's also     * possible that the map explicitly maps the key to {@code null}.     * The {@link #containsKey containsKey} operation may be used to     * distinguish these two cases.     *     * @see #put(Object, Object)     */    //通过key获得value    public V get(Object key) {        Object k = maskNull(key);        int h = hash(k);        Entry<K,V>[] tab = getTable();        int index = indexFor(h, tab.length);        Entry<K,V> e = tab[index];        while (e != null) {            if (e.hash == h && eq(k, e.get()))                return e.value;            e = e.next;        }        return null;    }    /**     * Returns <tt>true</tt> if this map contains a mapping for the     * specified key.     *     * @param  key   The key whose presence in this map is to be tested     * @return <tt>true</tt> if there is a mapping for <tt>key</tt>;     *         <tt>false</tt> otherwise     */    //判断是否包含某个key    public boolean containsKey(Object key) {        return getEntry(key) != null;    }    /**     * Returns the entry associated with the specified key in this map.     * Returns null if the map contains no mapping for this key.     */    //通过key获得entry    Entry<K,V> getEntry(Object key) {        Object k = maskNull(key);        int h = hash(k);        Entry<K,V>[] tab = getTable();        int index = indexFor(h, tab.length);        Entry<K,V> e = tab[index];        while (e != null && !(e.hash == h && eq(k, e.get())))            e = e.next;        return e;    }    /**     * Associates the specified value with the specified key in this map.     * If the map previously contained a mapping for this key, the old     * value is replaced.     *     * @param key key with which the specified value is to be associated.     * @param value value to be associated with the specified key.     * @return the previous value associated with <tt>key</tt>, or     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.     *         (A <tt>null</tt> return can also indicate that the map     *         previously associated <tt>null</tt> with <tt>key</tt>.)     */    //插入key和value    public V put(K key, V value) {        Object k = maskNull(key);        int h = hash(k);        Entry<K,V>[] tab = getTable();        int i = indexFor(h, tab.length);        for (Entry<K,V> e = tab[i]; e != null; e = e.next) {            if (h == e.hash && eq(k, e.get())) {                V oldValue = e.value;                if (value != oldValue)                    e.value = value;                return oldValue;            }        }        modCount++;        Entry<K,V> e = tab[i];        tab[i] = new Entry<>(k, value, queue, h, e);        if (++size >= threshold)            resize(tab.length * 2);        return null;    }    /**     * Rehashes the contents of this map into a new array with a     * larger capacity.  This method is called automatically when the     * number of keys in this map reaches its threshold.     *     * If current capacity is MAXIMUM_CAPACITY, this method does not     * resize the map, but sets threshold to Integer.MAX_VALUE.     * This has the effect of preventing future calls.     *     * @param newCapacity the new capacity, MUST be a power of two;     *        must be greater than current capacity unless current     *        capacity is MAXIMUM_CAPACITY (in which case value     *        is irrelevant).     */    //跳转大小    void resize(int newCapacity) {        Entry<K,V>[] oldTable = getTable();        int oldCapacity = oldTable.length;        if (oldCapacity == MAXIMUM_CAPACITY) {            threshold = Integer.MAX_VALUE;            return;        }        Entry<K,V>[] newTable = newTable(newCapacity);        transfer(oldTable, newTable);        table = newTable;        /*         * If ignoring null elements and processing ref queue caused massive         * shrinkage, then restore old table.  This should be rare, but avoids         * unbounded expansion of garbage-filled tables.         */        if (size >= threshold / 2) {            threshold = (int)(newCapacity * loadFactor);        } else {            expungeStaleEntries();            transfer(newTable, oldTable);            table = oldTable;        }    }    /** Transfers all entries from src to dest tables */    private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {        for (int j = 0; j < src.length; ++j) {            Entry<K,V> e = src[j];            src[j] = null;            while (e != null) {                Entry<K,V> next = e.next;                Object key = e.get();                if (key == null) {                    e.next = null;  // Help GC                    e.value = null; //  "   "                    size--;                } else {                    int i = indexFor(e.hash, dest.length);                    e.next = dest[i];                    dest[i] = e;                }                e = next;            }        }    }    /**     * Copies all of the mappings from the specified map to this map.     * These mappings will replace any mappings that this map had for any     * of the keys currently in the specified map.     *     * @param m mappings to be stored in this map.     * @throws  NullPointerException if the specified map is null.     */    public void putAll(Map<? extends K, ? extends V> m) {        int numKeysToBeAdded = m.size();        if (numKeysToBeAdded == 0)            return;        /*         * Expand the map if the map if the number of mappings to be added         * is greater than or equal to threshold.  This is conservative; the         * obvious condition is (m.size() + size) >= threshold, but this         * condition could result in a map with twice the appropriate capacity,         * if the keys to be added overlap with the keys already in this map.         * By using the conservative calculation, we subject ourself         * to at most one extra resize.         */        if (numKeysToBeAdded > threshold) {            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);            if (targetCapacity > MAXIMUM_CAPACITY)                targetCapacity = MAXIMUM_CAPACITY;            int newCapacity = table.length;            while (newCapacity < targetCapacity)                newCapacity <<= 1;            if (newCapacity > table.length)                resize(newCapacity);        }        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())            put(e.getKey(), e.getValue());    }    /**     * Removes the mapping for a key from this weak hash map if it is present.     * More formally, if this map contains a mapping from key <tt>k</tt> to     * value <tt>v</tt> such that <code>(key==null ?  k==null :     * key.equals(k))</code>, that mapping is removed.  (The map can contain     * at most one such mapping.)     *     * <p>Returns the value to which this map previously associated the key,     * or <tt>null</tt> if the map contained no mapping for the key.  A     * return value of <tt>null</tt> does not <i>necessarily</i> indicate     * that the map contained no mapping for the key; it's also possible     * that the map explicitly mapped the key to <tt>null</tt>.     *     * <p>The map will not contain a mapping for the specified key once the     * call returns.     *     * @param key key whose mapping is to be removed from the map     * @return the previous value associated with <tt>key</tt>, or     *         <tt>null</tt> if there was no mapping for <tt>key</tt>     */    //根据key删除    public V remove(Object key) {        Object k = maskNull(key);        int h = hash(k);        Entry<K,V>[] tab = getTable();        int i = indexFor(h, tab.length);        Entry<K,V> prev = tab[i];        Entry<K,V> e = prev;        while (e != null) {            Entry<K,V> next = e.next;            if (h == e.hash && eq(k, e.get())) {                modCount++;                size--;                if (prev == e)                    tab[i] = next;                else                    prev.next = next;                return e.value;            }            prev = e;            e = next;        }        return null;    }    /** Special version of remove needed by Entry set */    boolean removeMapping(Object o) {        if (!(o instanceof Map.Entry))            return false;        Entry<K,V>[] tab = getTable();        Map.Entry<?,?> entry = (Map.Entry<?,?>)o;        Object k = maskNull(entry.getKey());        int h = hash(k);        int i = indexFor(h, tab.length);        Entry<K,V> prev = tab[i];        Entry<K,V> e = prev;        while (e != null) {            Entry<K,V> next = e.next;            if (h == e.hash && e.equals(entry)) {                modCount++;                size--;                if (prev == e)                    tab[i] = next;                else                    prev.next = next;                return true;            }            prev = e;            e = next;        }        return false;    }    /**     * Removes all of the mappings from this map.     * The map will be empty after this call returns.     */    //清空    public void clear() {        // clear out ref queue. We don't need to expunge entries        // since table is getting cleared.        while (queue.poll() != null)            ;        modCount++;        Arrays.fill(table, null);        size = 0;        // Allocation of array may have caused GC, which may have caused        // additional entries to go stale.  Removing these entries from the        // reference queue will make them eligible for reclamation.        while (queue.poll() != null)            ;    }    /**     * Returns <tt>true</tt> if this map maps one or more keys to the     * specified value.     *     * @param value value whose presence in this map is to be tested     * @return <tt>true</tt> if this map maps one or more keys to the     *         specified value     */    //判断是否包含某个值    public boolean containsValue(Object value) {        if (value==null)            return containsNullValue();        Entry<K,V>[] tab = getTable();        for (int i = tab.length; i-- > 0;)            for (Entry<K,V> e = tab[i]; e != null; e = e.next)                if (value.equals(e.value))                    return true;        return false;    }    /**     * Special-case code for containsValue with null argument     */    //判断是否有空值    private boolean containsNullValue() {        Entry<K,V>[] tab = getTable();        for (int i = tab.length; i-- > 0;)            for (Entry<K,V> e = tab[i]; e != null; e = e.next)                if (e.value==null)                    return true;        return false;    }    /**     * The entries in this hash table extend WeakReference, using its main ref     * field as the key.     */    //entry继承了虚引用    private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {        V value;        final int hash;        Entry<K,V> next;        /**         * Creates new entry.         */        Entry(Object key, V value,              ReferenceQueue<Object> queue,              int hash, Entry<K,V> next) {            super(key, queue);            this.value = value;            this.hash  = hash;            this.next  = next;        }        @SuppressWarnings("unchecked")        public K getKey() {            return (K) WeakHashMap.unmaskNull(get());        }        public V getValue() {            return value;        }        public V setValue(V newValue) {            V oldValue = value;            value = newValue;            return oldValue;        }        public boolean equals(Object o) {            if (!(o instanceof Map.Entry))                return false;            Map.Entry<?,?> e = (Map.Entry<?,?>)o;            K k1 = getKey();            Object k2 = e.getKey();            if (k1 == k2 || (k1 != null && k1.equals(k2))) {                V v1 = getValue();                Object v2 = e.getValue();                if (v1 == v2 || (v1 != null && v1.equals(v2)))                    return true;            }            return false;        }        public int hashCode() {            K k = getKey();            V v = getValue();            return Objects.hashCode(k) ^ Objects.hashCode(v);        }        public String toString() {            return getKey() + "=" + getValue();        }    }    private abstract class HashIterator<T> implements Iterator<T> {        private int index;        private Entry<K,V> entry;        private Entry<K,V> lastReturned;        private int expectedModCount = modCount;        /**         * Strong reference needed to avoid disappearance of key         * between hasNext and next         */        private Object nextKey;        /**         * Strong reference needed to avoid disappearance of key         * between nextEntry() and any use of the entry         */        private Object currentKey;        HashIterator() {            index = isEmpty() ? 0 : table.length;        }        public boolean hasNext() {            Entry<K,V>[] t = table;            while (nextKey == null) {                Entry<K,V> e = entry;                int i = index;                while (e == null && i > 0)                    e = t[--i];                entry = e;                index = i;                if (e == null) {                    currentKey = null;                    return false;                }                nextKey = e.get(); // hold on to key in strong ref                if (nextKey == null)                    entry = entry.next;            }            return true;        }        /** The common parts of next() across different types of iterators */        protected Entry<K,V> nextEntry() {            if (modCount != expectedModCount)                throw new ConcurrentModificationException();            if (nextKey == null && !hasNext())                throw new NoSuchElementException();            lastReturned = entry;            entry = entry.next;            currentKey = nextKey;            nextKey = null;            return lastReturned;        }        public void remove() {            if (lastReturned == null)                throw new IllegalStateException();            if (modCount != expectedModCount)                throw new ConcurrentModificationException();            WeakHashMap.this.remove(currentKey);            expectedModCount = modCount;            lastReturned = null;            currentKey = null;        }    }    private class ValueIterator extends HashIterator<V> {        public V next() {            return nextEntry().value;        }    }    private class KeyIterator extends HashIterator<K> {        public K next() {            return nextEntry().getKey();        }    }    private class EntryIterator extends HashIterator<Map.Entry<K,V>> {        public Map.Entry<K,V> next() {            return nextEntry();        }    }// Views    private transient Set<Map.Entry<K,V>> entrySet;    /**     * Returns a {@link Set} view of the keys contained in this map.     * The set is backed by the map, so changes to the map are     * reflected in the set, and vice-versa.  If the map is modified     * while an iteration over the set is in progress (except through     * the iterator's own <tt>remove</tt> operation), the results of     * the iteration are undefined.  The set supports element removal,     * which removes the corresponding mapping from the map, via the     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>     * operations.     */    public Set<K> keySet() {        Set<K> ks = keySet;        return (ks != null ? ks : (keySet = new KeySet()));    }    private class KeySet extends AbstractSet<K> {        public Iterator<K> iterator() {            return new KeyIterator();        }        public int size() {            return WeakHashMap.this.size();        }        public boolean contains(Object o) {            return containsKey(o);        }        public boolean remove(Object o) {            if (containsKey(o)) {                WeakHashMap.this.remove(o);                return true;            }            else                return false;        }        public void clear() {            WeakHashMap.this.clear();        }        public Spliterator<K> spliterator() {            return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);        }    }    /**     * Returns a {@link Collection} view of the values contained in this map.     * The collection is backed by the map, so changes to the map are     * reflected in the collection, and vice-versa.  If the map is     * modified while an iteration over the collection is in progress     * (except through the iterator's own <tt>remove</tt> operation),     * the results of the iteration are undefined.  The collection     * supports element removal, which removes the corresponding     * mapping from the map, via the <tt>Iterator.remove</tt>,     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not     * support the <tt>add</tt> or <tt>addAll</tt> operations.     */    public Collection<V> values() {        Collection<V> vs = values;        return (vs != null) ? vs : (values = new Values());    }    private class Values extends AbstractCollection<V> {        public Iterator<V> iterator() {            return new ValueIterator();        }        public int size() {            return WeakHashMap.this.size();        }        public boolean contains(Object o) {            return containsValue(o);        }        public void clear() {            WeakHashMap.this.clear();        }        public Spliterator<V> spliterator() {            return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);        }    }    /**     * Returns a {@link Set} view of the mappings contained in this map.     * The set is backed by the map, so changes to the map are     * reflected in the set, and vice-versa.  If the map is modified     * while an iteration over the set is in progress (except through     * the iterator's own <tt>remove</tt> operation, or through the     * <tt>setValue</tt> operation on a map entry returned by the     * iterator) the results of the iteration are undefined.  The set     * supports element removal, which removes the corresponding     * mapping from the map, via the <tt>Iterator.remove</tt>,     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and     * <tt>clear</tt> operations.  It does not support the     * <tt>add</tt> or <tt>addAll</tt> operations.     */    public Set<Map.Entry<K,V>> entrySet() {        Set<Map.Entry<K,V>> es = entrySet;        return es != null ? es : (entrySet = new EntrySet());    }    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {        public Iterator<Map.Entry<K,V>> iterator() {            return new EntryIterator();        }        public boolean contains(Object o) {            if (!(o instanceof Map.Entry))                return false;            Map.Entry<?,?> e = (Map.Entry<?,?>)o;            Entry<K,V> candidate = getEntry(e.getKey());            return candidate != null && candidate.equals(e);        }        public boolean remove(Object o) {            return removeMapping(o);        }        public int size() {            return WeakHashMap.this.size();        }        public void clear() {            WeakHashMap.this.clear();        }        private List<Map.Entry<K,V>> deepCopy() {            List<Map.Entry<K,V>> list = new ArrayList<>(size());            for (Map.Entry<K,V> e : this)                list.add(new AbstractMap.SimpleEntry<>(e));            return list;        }        public Object[] toArray() {            return deepCopy().toArray();        }        public <T> T[] toArray(T[] a) {            return deepCopy().toArray(a);        }        public Spliterator<Map.Entry<K,V>> spliterator() {            return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);        }    }    @SuppressWarnings("unchecked")    @Override    public void forEach(BiConsumer<? super K, ? super V> action) {        Objects.requireNonNull(action);        int expectedModCount = modCount;        Entry<K, V>[] tab = getTable();        for (Entry<K, V> entry : tab) {            while (entry != null) {                Object key = entry.get();                if (key != null) {                    action.accept((K)WeakHashMap.unmaskNull(key), entry.value);                }                entry = entry.next;                if (expectedModCount != modCount) {                    throw new ConcurrentModificationException();                }            }        }    }    @SuppressWarnings("unchecked")    @Override    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {        Objects.requireNonNull(function);        int expectedModCount = modCount;        Entry<K, V>[] tab = getTable();;        for (Entry<K, V> entry : tab) {            while (entry != null) {                Object key = entry.get();                if (key != null) {                    entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);                }                entry = entry.next;                if (expectedModCount != modCount) {                    throw new ConcurrentModificationException();                }            }        }    }    /**     * Similar form as other hash Spliterators, but skips dead     * elements.     */    static class WeakHashMapSpliterator<K,V> {        final WeakHashMap<K,V> map;        WeakHashMap.Entry<K,V> current; // current node        int index;             // current index, modified on advance/split        int fence;             // -1 until first use; then one past last index        int est;               // size estimate        int expectedModCount;  // for comodification checks        WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,                               int fence, int est,                               int expectedModCount) {            this.map = m;            this.index = origin;            this.fence = fence;            this.est = est;            this.expectedModCount = expectedModCount;        }        final int getFence() { // initialize fence and size on first use            int hi;            if ((hi = fence) < 0) {                WeakHashMap<K,V> m = map;                est = m.size();                expectedModCount = m.modCount;                hi = fence = m.table.length;            }            return hi;        }        public final long estimateSize() {            getFence(); // force init            return (long) est;        }    }    static final class KeySpliterator<K,V>            extends WeakHashMapSpliterator<K,V>            implements Spliterator<K> {        KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,                       int expectedModCount) {            super(m, origin, fence, est, expectedModCount);        }        public KeySpliterator<K,V> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid) ? null :                    new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,                            expectedModCount);        }        public void forEachRemaining(Consumer<? super K> action) {            int i, hi, mc;            if (action == null)                throw new NullPointerException();            WeakHashMap<K,V> m = map;            WeakHashMap.Entry<K,V>[] tab = m.table;            if ((hi = fence) < 0) {                mc = expectedModCount = m.modCount;                hi = fence = tab.length;            }            else                mc = expectedModCount;            if (tab.length >= hi && (i = index) >= 0 &&                    (i < (index = hi) || current != null)) {                WeakHashMap.Entry<K,V> p = current;                current = null; // exhaust                do {                    if (p == null)                        p = tab[i++];                    else {                        Object x = p.get();                        p = p.next;                        if (x != null) {                            @SuppressWarnings("unchecked") K k =                                    (K) WeakHashMap.unmaskNull(x);                            action.accept(k);                        }                    }                } while (p != null || i < hi);            }            if (m.modCount != mc)                throw new ConcurrentModificationException();        }        public boolean tryAdvance(Consumer<? super K> action) {            int hi;            if (action == null)                throw new NullPointerException();            WeakHashMap.Entry<K,V>[] tab = map.table;            if (tab.length >= (hi = getFence()) && index >= 0) {                while (current != null || index < hi) {                    if (current == null)                        current = tab[index++];                    else {                        Object x = current.get();                        current = current.next;                        if (x != null) {                            @SuppressWarnings("unchecked") K k =                                    (K) WeakHashMap.unmaskNull(x);                            action.accept(k);                            if (map.modCount != expectedModCount)                                throw new ConcurrentModificationException();                            return true;                        }                    }                }            }            return false;        }        public int characteristics() {            return Spliterator.DISTINCT;        }    }    static final class ValueSpliterator<K,V>            extends WeakHashMapSpliterator<K,V>            implements Spliterator<V> {        ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,                         int expectedModCount) {            super(m, origin, fence, est, expectedModCount);        }        public ValueSpliterator<K,V> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid) ? null :                    new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,                            expectedModCount);        }        public void forEachRemaining(Consumer<? super V> action) {            int i, hi, mc;            if (action == null)                throw new NullPointerException();            WeakHashMap<K,V> m = map;            WeakHashMap.Entry<K,V>[] tab = m.table;            if ((hi = fence) < 0) {                mc = expectedModCount = m.modCount;                hi = fence = tab.length;            }            else                mc = expectedModCount;            if (tab.length >= hi && (i = index) >= 0 &&                    (i < (index = hi) || current != null)) {                WeakHashMap.Entry<K,V> p = current;                current = null; // exhaust                do {                    if (p == null)                        p = tab[i++];                    else {                        Object x = p.get();                        V v = p.value;                        p = p.next;                        if (x != null)                            action.accept(v);                    }                } while (p != null || i < hi);            }            if (m.modCount != mc)                throw new ConcurrentModificationException();        }        public boolean tryAdvance(Consumer<? super V> action) {            int hi;            if (action == null)                throw new NullPointerException();            WeakHashMap.Entry<K,V>[] tab = map.table;            if (tab.length >= (hi = getFence()) && index >= 0) {                while (current != null || index < hi) {                    if (current == null)                        current = tab[index++];                    else {                        Object x = current.get();                        V v = current.value;                        current = current.next;                        if (x != null) {                            action.accept(v);                            if (map.modCount != expectedModCount)                                throw new ConcurrentModificationException();                            return true;                        }                    }                }            }            return false;        }        public int characteristics() {            return 0;        }    }    static final class EntrySpliterator<K,V>            extends WeakHashMapSpliterator<K,V>            implements Spliterator<Map.Entry<K,V>> {        EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,                         int expectedModCount) {            super(m, origin, fence, est, expectedModCount);        }        public EntrySpliterator<K,V> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid) ? null :                    new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,                            expectedModCount);        }        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {            int i, hi, mc;            if (action == null)                throw new NullPointerException();            WeakHashMap<K,V> m = map;            WeakHashMap.Entry<K,V>[] tab = m.table;            if ((hi = fence) < 0) {                mc = expectedModCount = m.modCount;                hi = fence = tab.length;            }            else                mc = expectedModCount;            if (tab.length >= hi && (i = index) >= 0 &&                    (i < (index = hi) || current != null)) {                WeakHashMap.Entry<K,V> p = current;                current = null; // exhaust                do {                    if (p == null)                        p = tab[i++];                    else {                        Object x = p.get();                        V v = p.value;                        p = p.next;                        if (x != null) {                            @SuppressWarnings("unchecked") K k =                                    (K) WeakHashMap.unmaskNull(x);                            action.accept                                    (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));                        }                    }                } while (p != null || i < hi);            }            if (m.modCount != mc)                throw new ConcurrentModificationException();        }        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {            int hi;            if (action == null)                throw new NullPointerException();            WeakHashMap.Entry<K,V>[] tab = map.table;            if (tab.length >= (hi = getFence()) && index >= 0) {                while (current != null || index < hi) {                    if (current == null)                        current = tab[index++];                    else {                        Object x = current.get();                        V v = current.value;                        current = current.next;                        if (x != null) {                            @SuppressWarnings("unchecked") K k =                                    (K) WeakHashMap.unmaskNull(x);                            action.accept                                    (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));                            if (map.modCount != expectedModCount)                                throw new ConcurrentModificationException();                            return true;                        }                    }                }            }            return false;        }        public int characteristics() {            return Spliterator.DISTINCT;        }    }}

1 0