YARN源码分析(一)-----ApplicationMaster

来源:互联网 发布:杀手2影子阴谋mac 编辑:程序博客网 时间:2024/06/06 04:32

前言

在之前两周主要学了HDFS中的一些模块知识,其中的许多都或多或少有我们借鉴学习的地方,现在将目光转向另外一个块,被誉为MRv2,就是yarn,在Yarn中,解决了MR中JobTracker单点的问题,将此拆分成了ResourceManager和NodeManager这样的结构,在每个节点上,还会有ApplicationMaster来管理应用程序的整个生命周期,的确在Yarn中,多了许多优秀的设计,而今天,我主要分享的就是这个ApplicationMaster相关的一整套服务,他是隶属于ResoureManager的内部服务中的.了解了AM的启动机制,你将会更进一步了解Yarn的任务启动过程.


ApplicationMaster管理涉及类

ApplicationMaster管理涉及到了4大类,ApplicationMasterLauncher,AMLivelinessMonitor,ApplicationMasterService,以及ApplicationMaster自身类.下面介绍一下这些类的用途,在Yarn中,每个类都会有自己明确的功能模块的区分.

1.ApplicationMasterLauncher--姑且叫做AM启动关闭事件处理器,他既是一个服务也是一个处理器,在这个类中,只处理2类事件,launch和cleanup事件.分别对应启动应用和关闭应用的情形.

2.AMLivelinessMonitor--这个类从名字上可以看出他是监控类,监控的对象是AM存活状态的监控类,检测的方法与之前的HDFS一样,都是采用heartbeat的方式,如果有节点过期了,将会触发一次过期事件.

3.ApplicationMasterService--AM请求服务处理类.AMS存在于ResourceManager,中,服务的对象是各个节点上的ApplicationMaster,负责接收各个AM的注册请求,更新心跳包信息等.

4.ApplicationMaster--节点应用管理类,简单的说,ApplicationMaster负责管理整个应用的生命周期.

简答的描述完AM管理的相关类,下面从源码级别分析一下几个流程.


AM启动

要想让AM启动,启动的背景当然是有用户提交了新的Application的时候,之后ApplicationMasterLauncher会生成Launch事件,与对应的nodemanager通信,让其准备启动的新的AM的Container.在这里,就用到了ApplicationMasterLauncher这个类,之前在上文中已经提到,此类就处理2类事件,Launch启动和Cleanup清洗事件,先来看看这个类的基本变量设置

//Application应用事件处理器public class ApplicationMasterLauncher extends AbstractService implements    EventHandler<AMLauncherEvent> {  private static final Log LOG = LogFactory.getLog(      ApplicationMasterLauncher.class);  private final ThreadPoolExecutor launcherPool;  private LauncherThread launcherHandlingThread;    //事件队列  private final BlockingQueue<Runnable> masterEvents    = new LinkedBlockingQueue<Runnable>();  //资源管理器上下文  protected final RMContext context;    public ApplicationMasterLauncher(RMContext context) {    super(ApplicationMasterLauncher.class.getName());    this.context = context;    //初始化线程池    this.launcherPool = new ThreadPoolExecutor(10, 10, 1,         TimeUnit.HOURS, new LinkedBlockingQueue<Runnable>());    //新建处理线程    this.launcherHandlingThread = new LauncherThread();  }

还算比较简单,有一个masterEvents事件队列,还有执行线程以及所需的线程池执行环境。在RM相关的服务中,基本都是继承自AbstractService这个抽象服务类的。ApplicationMasterLauncher中主要处理2类事件,就是下面的展示的

@Override  public synchronized void  handle(AMLauncherEvent appEvent) {    AMLauncherEventType event = appEvent.getType();    RMAppAttempt application = appEvent.getAppAttempt();    //处理来自ApplicationMaster获取到的请求,分为启动事件和清洗事件2种    switch (event) {    case LAUNCH:      launch(application);      break;    case CLEANUP:      cleanup(application);    default:      break;    }  }
然后调用具体的实现方法,以启动事件launch事件为例

//添加应用启动事件  private void launch(RMAppAttempt application) {    Runnable launcher = createRunnableLauncher(application,         AMLauncherEventType.LAUNCH);    //将启动事件加入事件队列中    masterEvents.add(launcher);  }
这些事件被加入到事件队列之后,是如何被处理的呢,通过消息队列的形式,在一个独立的线程中逐一被执行

//执行线程实现  private class LauncherThread extends Thread {        public LauncherThread() {      super("ApplicationMaster Launcher");    }    @Override    public void run() {      while (!this.isInterrupted()) {        Runnable toLaunch;        try {          //执行方法为从事件队列中逐一取出事件          toLaunch = masterEvents.take();          //放入线程池池中进行执行          launcherPool.execute(toLaunch);        } catch (InterruptedException e) {          LOG.warn(this.getClass().getName() + " interrupted. Returning.");          return;        }      }    }  }
如果论到事件的具体执行方式,就要看具体AMLauch是如何执行的,AMLauch本身就是一个runnable实例。

/** * The launch of the AM itself. * Application事件执行器 */public class AMLauncher implements Runnable {  private static final Log LOG = LogFactory.getLog(AMLauncher.class);  private ContainerManagementProtocol containerMgrProxy;  private final RMAppAttempt application;  private final Configuration conf;  private final AMLauncherEventType eventType;  private final RMContext rmContext;  private final Container masterContainer;
在里面主要的run方法如下,就是按照事件类型进行区分操作

@SuppressWarnings("unchecked")  public void run() {  //AMLauncher分2中事件分别处理    switch (eventType) {    case LAUNCH:      try {        LOG.info("Launching master" + application.getAppAttemptId());        //调用启动方法        launch();        handler.handle(new RMAppAttemptEvent(application.getAppAttemptId(),            RMAppAttemptEventType.LAUNCHED));      ...      break;    case CLEANUP:      try {        LOG.info("Cleaning master " + application.getAppAttemptId());        //调用作业清洗方法        cleanup();      ...      break;    default:      LOG.warn("Received unknown event-type " + eventType + ". Ignoring.");      break;    }  }
后面的launch操作会调用RPC函数与远程的NodeManager通信来启动Container。然后到了ApplicationMaster的run()启动方法,在启动方法中,会进行应用注册的方法,
@SuppressWarnings({ "unchecked" })  public boolean run() throws YarnException, IOException {    LOG.info("Starting ApplicationMaster");    Credentials credentials =        UserGroupInformation.getCurrentUser().getCredentials();    DataOutputBuffer dob = new DataOutputBuffer();    credentials.writeTokenStorageToStream(dob);    // Now remove the AM->RM token so that containers cannot access it.    Iterator<Token<?>> iter = credentials.getAllTokens().iterator();    while (iter.hasNext()) {      Token<?> token = iter.next();      if (token.getKind().equals(AMRMTokenIdentifier.KIND_NAME)) {        iter.remove();      }    }    allTokens = ByteBuffer.wrap(dob.getData(), 0, dob.getLength());    //与ResourceManager通信,周期性发送心跳信息,包含了应用的最新信息    AMRMClientAsync.CallbackHandler allocListener = new RMCallbackHandler();    amRMClient = AMRMClientAsync.createAMRMClientAsync(1000, allocListener);    amRMClient.init(conf);    amRMClient.start();    .....    // Register self with ResourceManager    // This will start heartbeating to the RM    //启动之后进行AM的注册    appMasterHostname = NetUtils.getHostname();    RegisterApplicationMasterResponse response = amRMClient        .registerApplicationMaster(appMasterHostname, appMasterRpcPort,            appMasterTrackingUrl);    // Dump out information about cluster capability as seen by the    // resource manager    int maxMem = response.getMaximumResourceCapability().getMemory();    LOG.info("Max mem capabililty of resources in this cluster " + maxMem);    // A resource ask cannot exceed the max.    if (containerMemory > maxMem) {      LOG.info("Container memory specified above max threshold of cluster."          + " Using max value." + ", specified=" + containerMemory + ", max="          + maxMem);      containerMemory = maxMem;    }
在这个操作中,会将自己注册到AMLivelinessMonitor中,此刻开始启动心跳监控。


AMLiveLinessMonitor监控

在这里把重心从ApplicationMaster转移到AMLivelinessMonitor上,首先这是一个激活状态的监控线程,此类线程都有一个共同的父类

//应用存活状态监控线程public class AMLivelinessMonitor extends AbstractLivelinessMonitor<ApplicationAttemptId> {
在AbstractlinessMonitor中定义监控类线程的一类特征和方法

//进程存活状态监控类public abstract class AbstractLivelinessMonitor<O> extends AbstractService {  private static final Log LOG = LogFactory.getLog(AbstractLivelinessMonitor.class);  //thread which runs periodically to see the last time since a heartbeat is  //received.  //检查线程  private Thread checkerThread;  private volatile boolean stopped;  //默认超时时间5分钟  public static final int DEFAULT_EXPIRE = 5*60*1000;//5 mins  //超时时间  private int expireInterval = DEFAULT_EXPIRE;  //监控间隔检测时间,为超时时间的1/3  private int monitorInterval = expireInterval/3;  private final Clock clock;    //保存了心跳检验的结果记录  private Map<O, Long> running = new HashMap<O, Long>();
心跳检测本身非常的简单,做一次通信记录检查,然后更新一下,记录时间,当一个新的节点加入监控或解除监控操作

//新的节点注册心跳监控  public synchronized void register(O ob) {    running.put(ob, clock.getTime());  }    //节点移除心跳监控  public synchronized void unregister(O ob) {    running.remove(ob);  }
每次做心跳周期检测的时候,调用下述方法

//更新心跳监控检测最新时间  public synchronized void receivedPing(O ob) {    //only put for the registered objects    if (running.containsKey(ob)) {      running.put(ob, clock.getTime());    }  }
非常简单的更新方法,O ob对象在这里因场景而异,在AM监控中,为ApplicationID应用ID。在后面的AMS和AM的交互中会看到。新的应用加入AMLivelinessMonitor监控中后,后面的主要操作就是AMS与AM之间的交互操作了。


AM与AMS

在ApplicationMaster运行之后,会周期性的向ApplicationMasterService发送心跳信息,心跳信息包含有许多资源描述信息。

//ApplicationMaster心跳信息更新  @Override  public AllocateResponse allocate(AllocateRequest request)      throws YarnException, IOException {    ApplicationAttemptId appAttemptId = authorizeRequest();    //进行心跳信息时间的更新    this.amLivelinessMonitor.receivedPing(appAttemptId);    ....
每次心跳信息一来,就会更新最新监控时间。在AMS也有对应的注册应用的方法

    //ApplicationMaster在ApplicationMasterService上服务上进行应用注册  @Override  public RegisterApplicationMasterResponse registerApplicationMaster(      RegisterApplicationMasterRequest request) throws YarnException,      IOException {    ApplicationAttemptId applicationAttemptId = authorizeRequest();    ApplicationId appID = applicationAttemptId.getApplicationId();    .....            //在存活监控线程上进行心跳记录,更新检测时间,key为应用ID      this.amLivelinessMonitor.receivedPing(applicationAttemptId);      RMApp app = this.rmContext.getRMApps().get(appID);            // Setting the response id to 0 to identify if the      // application master is register for the respective attemptid      lastResponse.setResponseId(0);      responseMap.put(applicationAttemptId, lastResponse);      LOG.info("AM registration " + applicationAttemptId);      this.rmContext
如果在心跳监控中出现过期的现象,就会触发一个expire事件,在AMLiveLinessMonitor中,这部分的工作是交给CheckThread执行的

//进程存活状态监控类public abstract class AbstractLivelinessMonitor<O> extends AbstractService {  ...  //thread which runs periodically to see the last time since a heartbeat is  //received.  //检查线程  private Thread checkerThread;  ....  //默认超时时间5分钟  public static final int DEFAULT_EXPIRE = 5*60*1000;//5 mins  //超时时间  private int expireInterval = DEFAULT_EXPIRE;  //监控间隔检测时间,为超时时间的1/3  private int monitorInterval = expireInterval/3;  ....  //保存了心跳检验的结果记录  private Map<O, Long> running = new HashMap<O, Long>();  ...  private class PingChecker implements Runnable {    @Override    public void run() {      while (!stopped && !Thread.currentThread().isInterrupted()) {        synchronized (AbstractLivelinessMonitor.this) {          Iterator<Map.Entry<O, Long>> iterator =             running.entrySet().iterator();          //avoid calculating current time everytime in loop          long currentTime = clock.getTime();          while (iterator.hasNext()) {            Map.Entry<O, Long> entry = iterator.next();            //进行超时检测            if (currentTime > entry.getValue() + expireInterval) {              iterator.remove();              //调用超时处理方法,将处理事件交由调度器处理              expire(entry.getKey());              LOG.info("Expired:" + entry.getKey().toString() +                       " Timed out after " + expireInterval/1000 + " secs");            }          }        }
check线程主要做的事件就是遍历每个节点的最新心跳更新时间,通过计算差值进行判断是否过期,过期调用expire方法。此方法由其子类实现

//应用存活状态监控线程public class AMLivelinessMonitor extends AbstractLivelinessMonitor<ApplicationAttemptId> {  //中央调度处理器  private EventHandler dispatcher;  ...  @Override  protected void expire(ApplicationAttemptId id) {   //一旦应用过期,处理器处理过期事件处理    dispatcher.handle(        new RMAppAttemptEvent(id, RMAppAttemptEventType.EXPIRE));  }}
产生应用超期事件,然后发给中央调度器去处理。之所以采用的这样的方式,是因为在RM中,所有的模块设计是以事件驱动的形式工作,最大程度的保证了各个模块间的解耦。不同模块通过不同的事件转变为不同的状态,可以理解为状态机的改变。最后用一张书中的截图简单的展示AM模块相关的调用过程。




全部代码的分析请点击链接https://github.com/linyiqun/hadoop-yarn,后续将会继续更新YARN其他方面的代码分析。


参考文献

《Hadoop技术内部–HDFS结构设计与实现原理》.蔡斌等

4 0
原创粉丝点击