Linux线程同步

来源:互联网 发布:中国工控网软件下载 编辑:程序博客网 时间:2024/06/06 10:47

linux提供多种方式处理线程同步问题,最常用的是互斥锁、条件变量和信号量.

互斥锁

通过锁机制实现线程同步,只有获得锁的线程才能执行

  • 初始化锁,在linux下线程的互斥数据类型为pthread_mutex_t,在使用前需要进行初始化
    静态分配:

    pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

    动态分配:

    int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
  • 加锁,在对共享资源访问时,需要对互斥量加锁,如果互斥量已经被加锁,调用线程会阻塞,直到互斥量被解锁

    int pthread_mutex_lock(pthread_mutex *mutex);int pthread_mutex_trylock(pthread_mutex_t *mutex);
  • 解锁,在完成对共享资源的访问后,需要释放锁

    int pthread_mutex_unlock(pthread_mutex_t *mutex);
  • 销毁锁,锁在使用完后,需要销毁以释放资源

    int pthread_mutex_destroy(pthread_mutex *mutex);

可以用互斥锁解决主线程和子线程的打印问题

#include <iostream>#include <string.h>#include <pthread.h>#include <unistd.h>#include <semaphore.h>using namespace std;char* xwl = "xiewenlong";char* zdg = "zhangdaoguang";pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;void* print(void* arg){    pthread_mutex_lock(&mutex);    char* name = (char*)arg;    while(*name != '\0'){        printf("%c",*name);        name++;        Sleep(10);    }    pthread_mutex_unlock(&mutex);    return (void*)0;}int main(){    pthread_t t;    if(!pthread_create(&t,NULL,print,xwl)){        printf("%s\n","Create thread success!");    }else{        printf("%s\n","Create thread failed!");    }    print(zdg);    pthread_join(t,NULL);    pthread_mutex_destroy(&mutex);    return 0;}

该互斥锁等价于java中的lock

条件变量

前面介绍的互斥锁只是实现线程的同步,但多数情况下还需要线程的协作. 通常互斥锁和条件变量同时使用,条件变量包括条件和变量两部分,条件是由互斥量保护的,线程在改变条件状态时要先锁住互斥量. 条件变量主要有两个操作:线程等待条件成立而挂起;线程发出条件成立的信号,唤醒等待在该变量上的其他线程.

  • 初始化条件变量,静态初始化和动态初始化
pthread_cond_t cond = PTHREAD_COND_INITIALIER;int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
  • 等待条件成立,释放互斥锁,阻塞当前线程直到条件成立
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
  • 唤醒其他等待线程
int pthread_cond_signal(pthread_cond_t *cond);int pthread_cond_broadcast(pthread_cond_t *cond);//唤醒所有等待线程
  • 销毁条件变量
int pthread_cond_destroy(pthread_cond_t *cond);

利用条件变量解决生产者/消费者问题

#include <iostream>#include <string.h>#include <pthread.h>#include <unistd.h>#include <semaphore.h>using namespace std;pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;pthread_cond_t cond = PTHREAD_COND_INITIALIZER;struct node{    int num;    struct node* next;}*head=NULL;void cleanup_handler(void* arg){    printf("Clean up of thread!\n");    free(arg);    pthread_mutex_unlock(&mtx);}void* take(void* arg){    struct node* p = NULL;    pthread_cleanup_push(cleanup_handler,p);    for(int i=0; i<10; i++){        pthread_mutex_lock(&mtx);        while(head == NULL){            pthread_cond_wait(&cond,&mtx);        }        p = head;        head = head->next;        printf("get %d\n",p->num);        free(p);        pthread_cond_signal(&cond);        pthread_mutex_unlock(&mtx);    }    pthread_cleanup_pop(0);    return (void*)0;}void* put(void* arg){    struct node* p = (struct node*)arg;    pthread_cleanup_push(cleanup_handler,p);    for(int i=0; i<10; i++){        pthread_mutex_lock(&mtx);        while(head != NULL){            pthread_cond_wait(&cond,&mtx);        }        p = (struct node*)malloc(sizeof(struct node));        p->num = i;        p->next = NULL;        head = p;        printf("put %d\n",i);        pthread_cond_signal(&cond);        pthread_mutex_unlock(&mtx);    }    pthread_cleanup_pop(0);    return (void *)0;}int main(){    pthread_t c, p;    pthread_create(&c,NULL,take,NULL);    pthread_create(&p,NULL,put,NULL);    //pthread_cancel(c);    pthread_join(c,NULL);    pthread_join(p,NULL);    pthread_mutex_destroy(&mtx);    pthread_cond_destroy(&cond);    return 0;}

条件变量等价于java中wait和notify

信号量

前面介绍的互斥锁和条件变量允许单个线程执行互斥的代码,若想若干线程同时执行,可以使用信号量来保证同步.

  • 信号量初始化
int sem_init (sem_t *sem , int pshared, unsigned int value);
  • 等待信号量,阻塞当前线程,直到信号量改变为非零值,并做减法
int sem_wait(sem_t *sem);
  • 释放信号量,给信号量做加法,并通知其他等待线程
int sem_post(sem_t *sem);
  • 销毁信号量
int sem_destroy(sem_t *sem);

利用信号量实现两个线程轮流执行

#include <iostream>#include <string.h>#include <pthread.h>#include <unistd.h>#include <semaphore.h>using namespace std;sem_t has, em;void* take(void* arg){    for(int i=0; i<10; i++){        sem_wait(&has);        printf("take element..\n");        sem_post(&em);    }    return (void*)0;}void* put(void* arg){    for(int i=0; i<10; i++){        sem_wait(&em);        printf("put element..\n");        sem_post(&has);    }    return (void*)0;}int main(){    sem_init(&has,0,0);    sem_init(&em,0,1);    pthread_t c, p;    pthread_create(&c,NULL,take,NULL);    pthread_create(&p,NULL,put,NULL);    pthread_join(c,NULL);    pthread_join(p,NULL);    sem_destroy(&has);    sem_destroy(&em);    return 0;}
0 0
原创粉丝点击