Scheduler类源代码不完全分析(分量足

来源:互联网 发布:淘宝多功能油炸锅 编辑:程序博客网 时间:2024/05/15 07:43
一,Timer类
1,是Ref的子类,采用引用计数管理内存
2,主要方法update( )实现了一个定时器逻辑
3,抽象类,必须被继承使用
 virtualvoid trigger() = 0;//到时触发的方法
 virtualvoid cancel() = 0; //取消定时器
//两个为纯虚函数,需要在子类重载实现

protected:
   
   Scheduler* _scheduler; // weak ref 弱引用,在这个指针被赋值时并没有增加对_scheduler的引用计数
   float _elapsed;   //度过的时间
   bool _runForever; //标记是否永久运行
   bool _useDelay;   //标记是否使用延迟
   unsigned int _timesExecuted; //纪录已经执行的次数
   unsigned int _repeat; //0 = once, 1 is 2  executed 定义执行的总次数(_repeat+1次)
   float _delay;     //延迟时间
   float _interval;  //时间间隔,隔_interval调用一次

//初始化方法
   void setupTimerWithInterval(floatseconds, unsigned intrepeat, float delay);
{
_elapsed = -1;  
_interval = seconds;
_delay = delay;
_useDelay = (_delay > 0.0f) ?true : false;
_repeat = repeat;
_runForever= (_repeat== CC_REPEAT_FOREVER) ? true : false;
//无限重复次数为一个unsignedint的最大值 #define CC_REPEAT_FOREVER (UINT_MAX -1)
}

4,Timer的子类TimerTargetSelector(绑定Ref基类对象)
//初始化方法
  bool initWithSelector(Scheduler* scheduler,SEL_SCHEDULE selector, Ref* target,float seconds, unsignedint repeat, floatdelay);
//SEL_SCHEDULE是一个Ref函数指针定义

voidTimerTargetSelector::trigger()
{
   
if (_target && _selector)
    {
        (
_target->*_selector)(_elapsed);//调用初始化传进来的回调方法
    }
}

void TimerTargetSelector::cancel()
{
   
_scheduler->unschedule(_selector,_target);
}

5,TimerTargetCallback(绑定任意对象)

boolTimerTargetCallback::initWithCallback(Scheduler* scheduler,const ccSchedulerFunc& callback, void *target, const std::string& key,float seconds, unsignedint repeat, floatdelay)
{
   
_scheduler= scheduler;
   
_target = target;
   
_callback= callback;
   
_key = key;
   
setupTimerWithInterval(seconds, repeat, delay);
   
return true;
}

void TimerTargetCallback::trigger()
{
   
if (_callback)
    {
       
_callback(_elapsed);
    }
}

void TimerTargetCallback::cancel()
{
   
_scheduler->unschedule(_key,_target);
}

6.TimerScriptHandler与以上两个类似,有关脚本的



二,Scheduler类
巨多。。好难。。看不懂。。

首先,
Scheduler有两种调度模式:
1,按帧调度(被集成在Node类中)
 
数据结构:
typedefstruct _listEntry //双向链表
{
   
struct _listEntry  *prev, *next;
   
ccSchedulerFunc    callback;
   
void                *target;
   
int                priority;
   
bool                paused;
   
bool                markedForDeletion;// 标识是否需要删除selector will no longer be called and entry will be removed at end of the next tick
} tListEntry;

typedefstruct _hashUpdateEntry //
{
   
tListEntry          **list;       // Which list does it belong to ?
   
tListEntry          *entry;       // entry in the list
   
void                *target;
   
ccSchedulerFunc    callback;
   
UT_hash_handle      hh;
} tHashUpdateEntry;

  提供了3个双向链表来维护(按优先级区分,Scheduler::update调用时,遍历三个链表来区分优先级)
    struct_listEntry *_updatesNegList;        // list of priority < 0
   
struct _listEntry *_updates0List;           // list priority == 0
   struct _listEntry *_updatesPosList;        // list priority > 0
 提供了一个_hashForUpdates(_hashUpdateEntry结构体链表头指针)来实现快速查找等操作
 
相关构造函数:
    void schedulePerFrame(constccSchedulerFunc& callback,void *target, intpriority, bool paused);
   // update specific
  void priorityIn(struct_listEntry **list, const ccSchedulerFunc& callback,void *target, int priority, bool paused);//优先级不为0的添加方法
  void appendIn(struct_listEntry **list, const ccSchedulerFunc& callback,void *target, bool paused);//优先级为0的添加方法

2,按时间间隔调度

数据结构:
   typedef struct _hashSelectorEntry
{
   
ccArray            *timers;
   
void                *target;
   
int                timerIndex;
   
Timer              *currentTimer;
   
bool                currentTimerSalvaged;//清理标识
   
bool                paused;
   
UT_hash_handle      hh;
} tHashTimerEntry;

 由一个HashTable来维护(开源第三方数据结构Uthash),所有的时间间隔调度事件都存储在这个HashTable中,这个HashTable的 Key = target(注册的对象),Value = tHashTimerEntry结构体,_hashForTimers_hashSelectorEntry这个结构体链表的头指针
按时间间隔调度还可以分为两种对象形式,一是Ref基类的对象,一种是任意对象
结构体中:
tHashTimerEntry这个结构体用来记录一个Ref对象所有注册的定时器
Timer类是用来绑定对象与回调方法(不同对象有不同的绑定方法)
timers是一个数组,用来存储所有的Timer对象,所以一个对象可以注册多个调度事件。

其次,主要逻辑
程序每一次事件循环mainLoop()中都会调用Scheduler::update()(此时的scheduler是全局共享的一个单例对象),然后在这个update中会 1,遍历三个双向链表,查找当前可以执行的回调。2,遍历hashtable中的对象(结构体),调用每个结构体中timers数组中所有Timer对象的update()方法(此时的update是Timer类中的,实现定时器功能)。

再,贴源代码解释
ps:
HASH_FIND_PTR是uthash中的接口,作用是查找hash表中是否存在某个数据
HASH_FIND_PTR(_hashForUpdates, &target, hashElement);
查找_hashForUpdates表中key为target的数据,如果存在则返回给hashElement,没有则无操作

HASH_ADD_PTR(_hashForTimers,target, element);//添加key = target,value = element的数据进表中
HASH_DEL(_hashForUpdates, element);//删除数据
1.按帧调度
首先在Node::scheduleUpdate()中会最终调用到Scheduler::schedulePerFrame(注册按帧更新的方法)
voidScheduler::schedulePerFrame(constccSchedulerFunc& callback,void *target, intpriority, bool paused)
{
    //在_hashForUpdates中检查当前target是否有注册
   tHashUpdateEntry *hashElement = nullptr;
   HASH_FIND_PTR(_hashForUpdates, &target, hashElement);
   if (hashElement)//存在数据,不进行插入,也就是说一个node只能加入一次帧调度列表中,也只能有一个回调过程,即Node::update(),所以如果想实现自己的方法应该重载这个update。
    {
       
// check if priority has changed  判断优先级是否变化
       
if ((*hashElement->list)->priority!= priority)//优先级改变
        {
           if (_updateHashLocked)//正在执行update,则暂时不删除
            {
               
CCLOG("warning: you CANNOT change update priority in scheduled function");
                hashElement->
entry->markedForDeletion= false;
                hashElement->
entry->paused= paused;
               
return;
            }
           
else
            {
                //不在执行update,则直接删除
           // will be added again outside if (hashElement).
               
unscheduleUpdate(target);
            }
        }
       
else
        {
            //优先级没变,标记不被删除,退出
            hashElement->entry->markedForDeletion= false;
            hashElement->
entry->paused= paused;
           
return;
        }
    }

         //不存在数据,则按照优先级插入到对应的双向链表中
   // most of the updates are going to be 0, that's way there
   
// is an special list for updates with priority 0
   
if (priority == 0)
    {
       
appendIn(&_updates0List, callback, target, paused);
    }
   
else if (priority < 0)
    {
       
priorityIn(&_updatesNegList, callback, target, priority, paused);
    }
   
else
    {
       
// priority > 0
       
priorityIn(&_updatesPosList, callback, target, priority, paused);
    }
}

voidScheduler::appendIn(_listEntry**list, const ccSchedulerFunc& callback,void *target, boolpaused)
{
   
tListEntry*listElement = new tListEntry();//建双向链表
    //赋值
    listElement->
callback= callback;
    listElement->
target= target;
    listElement->
paused= paused;
    listElement->
priority= 0;
    listElement->
markedForDeletion= false;
    //添加到*list链表中
   
DL_APPEND(*list, listElement);

   // update hash entry for quicker access再将这个新的链表添加到_hashForUpdates中
   tHashUpdateEntry *hashElement = (tHashUpdateEntry*)calloc(sizeof(*hashElement),1);
    hashElement->
target= target;
    hashElement->
list= list;
    hashElement->
entry= listElement;
   
HASH_ADD_PTR(_hashForUpdates,target, hashElement);
}
priorityIn是按照优先级加入表中
取消注册unschedulerupdate()
2.按时间间隔调度
注册方法有两种
任意参数:
    voidschedule(constccSchedulerFunc& callback,void *target, floatinterval, unsigned intrepeat, float delay, bool paused, const std::string& key);
   void schedule(constccSchedulerFunc& callback,void *target, floatinterval, bool paused, const std::string& key);

Ref基类:
   void schedule(SEL_SCHEDULEselector, Ref *target, float interval, unsigned intrepeat, float delay, bool paused);
   void schedule(SEL_SCHEDULEselector, Ref *target, float interval, bool paused);


voidScheduler::schedule(SEL_SCHEDULEselector, Ref *target, float interval, unsigned intrepeat, float delay, bool paused)
{
   
CCASSERT(target,"Argument target must be non-nullptr");
   
   
tHashTimerEntry*element = nullptr;
   
HASH_FIND_PTR(_hashForTimers, &target, element);//查找当前target有没有注册
   
   
if (! element)
    {
        //没有的话分配空间,设置target后加入到_hashForTimers中,并设置状态为pause
        element = (tHashTimerEntry*)calloc(sizeof(*element),1);
        element->
target= target;
       
       
HASH_ADD_PTR(_hashForTimers,target, element);
       
       
// Is this the 1st element ? Then set the pause level to all the selectors of this target
        element->
paused= paused;
    }
   
else
    {
       CCASSERT(element->paused == paused,");//设置状态为pause
    }
   
    if (element->timers== nullptr)
    {
        //如果timers数组为空,则新分配10个空间
        element->timers= ccArrayNew(10);
    }
   
else
    {
        //不为空,则遍历timers数组
       for (int i = 0; i < element->timers->num; ++i)
        {
           
TimerTargetSelector*timer = dynamic_cast<TimerTargetSelector*>(element->timers->arr[i]);
            //查找跟当前selector相同的timer对象,更新他的时间间隔,也就是说一个selector只能注册一次
           
if(timer && selector == timer->getSelector())
            {
               
CCLOG("CCScheduler#scheduleSelector. Selector already scheduled. Updating interval from: %.4f to %.4f", timer->getInterval(), interval);
                timer->
setInterval(interval);
               
return;
            }
        }
       ccArrayEnsureExtraCapacity(element->timers,1);//将timers数组空间扩大1个单位,确保能存储
    }
    //新建timer对象,并封装selector,target等参数后添加到timers数组中
   TimerTargetSelector*timer = new (std::nothrow)TimerTargetSelector();
    timer->
initWithSelector(this, selector, target, interval, repeat, delay);
   
ccArrayAppendObject(element->timers, timer);
    timer->
release();//因为添加到数组的操作有retain(),所以应该release一次
}
voidScheduler::schedule(SEL_SCHEDULEselector, Ref *target, float interval, bool paused)
{
   
this->schedule(selector, target, interval,CC_REPEAT_FOREVER,0.0f, paused);
}


voidScheduler::schedule(constccSchedulerFunc& callback,void *target, floatinterval, unsigned intrepeat, float delay, bool paused, const std::string& key)
{
           if (timer && key == timer->getKey())
            {
               
CCLOG("CCScheduler#scheduleSelector. Selector already scheduled. Updating interval from: %.4f to %.4f", timer->getInterval(), interval);
                timer->
setInterval(interval);
               
return;
                                   }
}
voidScheduler::schedule(constccSchedulerFunc& callback,void *target, floatinterval, bool paused, const std::string& key)
{
   
this->schedule(callback, target, interval,CC_REPEAT_FOREVER,0.0f, paused, key);
}
Tips:任意参数的注册方法和定义中都比Ref类的多了一个Key,这是因为SEL_SCHEDULE可以当成key,ccSchedulerFunc不能,因为前者有唯一的标识(查看指向类中方法的函数指针)

取消注册的方法也很简单

3.Scheduler::update()
// main loop
void Scheduler::update(floatdt)
{
   
_updateHashLocked= true;//状态锁

   
if (_timeScale != 1.0f)//时间线
    {
        dt *=
_timeScale;
    }

   
//
   // Selector callbacks
   //
//处理按帧调度
  // Iterate over all the Updates’ selectors 
   tListEntry *entry, *tmp;//定义两个指针用于链表遍历
    //依次遍历三个双向链表,对活动有效的定时器进行回调
   // updates with priority < 0
   
DL_FOREACH_SAFE(_updatesNegList, entry, tmp)
    {
       
if ((! entry->paused) && (! entry->markedForDeletion))
        {
            entry->
callback(dt);
        }
    }

   
// updates with priority == 0
   
DL_FOREACH_SAFE(_updates0List, entry, tmp)
    {
       
if ((! entry->paused) && (! entry->markedForDeletion))
        {
            entry->
callback(dt);
        }
    }

   
// updates with priority > 0
   
DL_FOREACH_SAFE(_updatesPosList, entry, tmp)
    {
       
if ((! entry->paused) && (! entry->markedForDeletion))
        {
            entry->
callback(dt);
        }
    }

//处理按时间间隔调度
   
// Iterate over all the custom selectors
   for (tHashTimerEntry *elt =_hashForTimers; elt != nullptr; )
//遍历_hashForTimers中的对象
    {
       _currentTarget = elt;  //主循环中用来标记当前执行到哪个target对象
       _currentTargetSalvaged= false;//标记_currentTarget是否需要进行清除

       
if (! _currentTarget->paused)
        {
           // The 'timers' array may change while inside this loop
            //遍历timers数组
           for (elt->timerIndex= 0; elt->timerIndex< elt->timers->num; ++(elt->timerIndex))
            {
                elt->
currentTimer= (Timer*)(elt->timers->arr[elt->timerIndex]);
                elt->
currentTimerSalvaged= false;

                elt->
currentTimer->update(dt);//调用Timer::update()

               
if(elt->currentTimerSalvaged)
                {
                   
// The currentTimer told the remove itself. To prevent the timer from
                   
// accidentally deallocating itself before finishing its step, we retained
                   // it. Now that step is done, it's safe to release it.
// currentTimerSalvaged的作用是标记当前这个定时器是否已经失效,在设置失效的时候我们对定时器增加过一次引用记数,这里调用release来减少那次引用记数,这样释放很安全,这里用到了这个小技巧,延迟释放,这样后面的程序不会出现非法引用定时器指针而出现错误
                    elt->currentTimer->release();
                }

                elt->
currentTimer= nullptr;
            }
        }

       
// elt, at this moment, is still valid
       // so it is safe to ask this here (issue #490)
        //下面可能会清理当前对象,所以趁还存活时找到链表的下一指针
        elt = (tHashTimerEntry*)elt->hh.next;

       
// only delete currentTarget if no actions were scheduled during the cycle (issue #481)
       
if (_currentTargetSalvaged&& _currentTarget->timers->num== 0)
        {
           
removeHashElement(_currentTarget);
        }
    }

   // delete all updates that are marked for deletion下面三个也是清理工作
   // updates with priority < 0
   
DL_FOREACH_SAFE(_updatesNegList, entry, tmp)
    {
       
if (entry->markedForDeletion)
        {
           
this->removeUpdateFromHash(entry);
        }
    }

   
// updates with priority == 0
   
DL_FOREACH_SAFE(_updates0List, entry, tmp)
    {
       
if (entry->markedForDeletion)
        {
           
this->removeUpdateFromHash(entry);
        }
    }

   
// updates with priority > 0
   
DL_FOREACH_SAFE(_updatesPosList, entry, tmp)
    {
       
if (entry->markedForDeletion)
        {
           
this->removeUpdateFromHash(entry);
        }
    }

   
_updateHashLocked= false;
   
_currentTarget= nullptr;

#if CC_ENABLE_SCRIPT_BINDING
    //
   
// Script callbacks
   
//

   
// Iterate over all the script callbacks
   
if (!_scriptHandlerEntries.empty())
    {
       
for (auto i = _scriptHandlerEntries.size() -1; i >=0; i--)
        {
           
SchedulerScriptHandlerEntry* eachEntry =_scriptHandlerEntries.at(i);
           
if(eachEntry->isMarkedForDeletion())
            {
               
_scriptHandlerEntries.erase(i);
            }
           
elseif (!eachEntry->isPaused())
            {
                eachEntry->
getTimer()->update(dt);
            }
        }
    }
#endif
    //
   
// Functions allocated from another thread
   
//
    //多线程处理函数的定时任务
   
// Testing size is faster than locking / unlocking.
   
// And almost never there will be functions scheduled to be called.
   
if( !_functionsToPerform.empty() ) {
       
_performMutex.lock();
       
// fixed #4123: Save the callback functions, they must be invoked after '_performMutex.unlock()', otherwise if new functions are added in callback, it will cause thread deadlock.
       
autotemp = _functionsToPerform;
       
_functionsToPerform.clear();
       
_performMutex.unlock();
       
for(const auto &function : temp ) {
            function();
        }
       
    }
}
0 0
原创粉丝点击