一只简单的网络爬虫(基于linux C/C++)————浅谈并发(IO复用)模型

来源:互联网 发布:周琦 知乎 编辑:程序博客网 时间:2024/06/06 09:17

Linux常用的并发模型

Linux 下设计并发网络程序,有典型的 Apache 模型( Process Per Connection ,简称 PPC ), TPC ( Thread Per Connection )模型,以及 select 模型, poll 模型和epoll模型。
1 、PPC/TPC 模型
这两种模型思想类似,就是让每一个到来的连接一边自己做事去,别再来烦我 。只是 PPC 是为它开了一个进程,而 TPC 开了一个线程。可是别烦我是有代价的,它要时间和空间啊,连接多了之后,那么多的进程 / 线程切换,这开销就上来了;因此这类模型能接受的最大连接数都不会高,一般在几百个左右。

2 、select 模型
1. 最大并发数限制,因为一个进程所打开的 FD (文件描述符)是有限制的,由 FD_SETSIZE 设置,默认值是 1024/2048 ,因此 Select 模型的最大并发数就被相应限制了。当然自己可以修改这个 FD_SETSIZE 但是仍然存在其他的问题。
2. 效率问题, select 每次调用都会线性扫描全部的 FD 集合,这样效率就会呈现线性下降,把 FD_SETSIZE 改大的后果就是,线性扫描时间会增大从而可能导致超时
3. 内核 / 用户空间 内存拷贝问题,如何让内核把 FD 消息通知给用户空间呢?在这个问题上 select 采取了内存拷贝方法。
3、 poll 模型
基本上效率和 select 是相同的, select 缺点的 2 和 3 它都没有改掉。
4.epoll模型
epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。Epoll 的改进之处如下
1. Epoll 没有最大并发连接的限制,上限是最大可以打开文件的数目,这个数字一般远大于 2048, 一般来说这个数目和系统内存关系很大 ,具体数目可以 cat /proc/sys/fs/file-max 察看。
这里写图片描述
2. 效率提升, Epoll 最大的优点就在于它只管你“活跃”的连接 ,而跟连接总数无关,因此在实际的网络环境中, Epoll 的效率就会远远高于 select 和 poll 。
3. 内存拷贝, Epoll 在这点上使用了“共享内存 ”,这个内存拷贝也省略了。

基于这样的考虑,爬虫的IO复用模型是采用epoll模型,下面在深入理解一下epoll模型

EPOLL

Epoll 为什么高效
Epoll 的高效和其数据结构的设计是密不可分的。
首先回忆一下 select 模型,当有 I/O 事件到来时, select 通知应用程序有事件到了快去处理,而应用程序必须轮询所有的 FD 集合,测试每个 FD 是否有事件发生,并处理事件。
epoll的数据结构

struct epoll_event {   __uint32_t events;      // Epollevents   epoll_data_t data;      // Userdata variable};typedef union epoll_data {   void *ptr;   int fd;   __uint32_t u32;   __uint64_t u64;} epoll_data_t;
int res = select(maxfd+1, &readfds, NULL, NULL, 120);if (res > 0){//这里必须遍历所有,包括活跃和不活跃的事件    for (int i = 0; i < MAX_CONNECTION; i++)    {        if (FD_ISSET(allConnection[i], &readfds))        {            handleEvent(allConnection[i]);        }    }}// if(res == 0) handle timeout, res < 0 handle error

Epoll 不仅会告诉应用程序有I/0 事件到来,还会告诉应用程序相关的信息,这些信息是应用程序填充的,因此根据这些信息应用程序就能直接定位到事件,而不必遍历整个FD 集合。

int res = epoll_wait(epfd, events, 20, 120);for (int i = 0; i < res;i++){//epoll_wait返回的都是活跃的事件    handleEvent(events[n]);}

epoll的接口
epoll的接口非常简单,一共就三个函数:

1. int epoll_create(int size);

创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大(自从linux2.6.8之后,size参数是被忽略的)。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。控制某个 Epoll 文件描述符上的事件:注册、修改、删除。

第一个参数是epoll_create()的返回值,创建 Epoll 专用的文件描述符。相对于 select 模型中的 FD_SET 和 FD_CLR 宏。
第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,
第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:

struct epoll_event {  __uint32_t events;  /* Epoll events */  epoll_data_t data;  /* User data variable */};

events可以是以下几个宏的集合:
EPOLLIN : 表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT: 表示对应的文件描述符可以写;
EPOLLPRI: 表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR: 表示对应的文件描述符发生错误;
EPOLLHUP: 表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT: 只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里

3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);

等待 I/O 事件的发生;参数说明:
epfd: 由 epoll_create() 生成的 Epoll 专用的文件描述符;
epoll_event: 用于回传代处理事件的数组;
maxevents: 每次能处理的事件数;
timeout: 等待 I/O 事件发生的超时值;
返回发生事件数。
相对于 select 模型中的 select 函数。

参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

生成一个 Epoll 专用的文件描述符,其实是申请一个内核空间,用来存放你想关注的 socket fd 上是否发生以及发生了什么事件。 size 就是你在这个 Epoll fd 上能关注的最大 socket fd 数,大小自定,只要内存足够。
EPOLL的两种模式
epoll有两种工作模式,这个和触发器的叫法差不多,分为LT(电平触发)和ET(边沿触发)
Edge Triggered (ET) 边沿触发 只有数据到来,才触发,不管缓存区中是否还有数据。
Level Triggered (LT) 电平触发 只要有数据都会触发。
这个触发方式和触发器类似,不难理解。下面看看从别处看到的一个例子
例如:
1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符
2. 这个时候从管道的另一端被写入了2KB的数据
3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作
4. 然后我们读取了1KB的数据
5. 调用epoll_wait(2)……

Edge Triggered 工作模式:
如果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用 epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷
i 基于非阻塞文件句柄
ii 只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。

Level Triggered 工作模式
相反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在 epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有 EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。
详细解释ET, LT:
LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表.
ET(edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认。
值得注意的事,每种模型并没有绝对的好坏之分,各种模型均有他的价值,要依据不同的工作场景选择不同的模型
在许多测试中我们会看到如果没有大量的idle -connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当我们遇到大量的idle- connection(例如WAN环境中存在大量的慢速连接),就会发现epoll的效率大大高于select/poll。

另外,当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后,
读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取:

while(rs){  buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0);  if(buflen < 0)  {    // 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读    // 在这里就当作是该次事件已处理处.    if(errno == EAGAIN)     break;    else     return;   }   else if(buflen == 0)   {     // 这里表示对端的socket已正常关闭.   }   if(buflen == sizeof(buf)     rs = 1;   // 需要再次读取   else     rs = 0;}

还有,假如发送端流量大于接收端的流量(意思是epoll所在的程序读比转发的socket要快),由于是非阻塞的socket,那么send()函数虽然返回,但实际缓冲区的数据并未真正发给接收端,这样不断的读和发,当缓冲区满后会产生EAGAIN错误(参考man send),同时,不理会这次请求发送的数据.所以,需要封装socket_send()的函数用来处理这种情况,该函数会尽量将数据写完再返回,返回-1表示出错。在socket_send()内部,当写缓冲已满(send()返回-1,且errno为EAGAIN),那么会等待后再重试.这种方式并不很完美,在理论上可能会长时间的阻塞在socket_send()内部,但暂没有更好的办法.

ssize_t socket_send(int sockfd, const char* buffer, size_t buflen){  ssize_t tmp;  size_t total = buflen;  const char *p = buffer;  while(1)  {    tmp = send(sockfd, p, total, 0);    if(tmp < 0)    {      // 当send收到信号时,可以继续写,但这里返回-1.      if(errno == EINTR)        return -1;      // 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满,      // 在这里做延时后再重试.      if(errno == EAGAIN)      {        usleep(1000);        continue;      }      return -1;    }    if((size_t)tmp == total)      return buflen;    total -= tmp;    p += tmp;  }  return tmp;}

参考文章

0 0
原创粉丝点击