时间空间复杂度

来源:互联网 发布:视频会议录播软件 编辑:程序博客网 时间:2024/05/22 15:07

2.9 算法时间复杂度

2.9.1 算法时间复杂度定义

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

这样用大写O( )来体现算法时间复杂度的记法,我们称之为大O记法。

一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。


显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别为O(n),O(1),O(n2)。我们分别给它们取了非官方的名称,O(1)叫常数阶、O(n)叫线性阶、O(n2)叫平方阶,当然,还有其他的一些阶,我们之后会介绍。

2.9.2 推导大O阶方法

那么如何分析一个算法的时间复杂度呢?即如何推导大O阶呢?我们给出了下面的推导方法,基本上,这也就是总结前面我们举的例子。

推导大O阶:

1.用常数1取代运行时间中的所有加法常数。

2.在修改后的运行次数函数中,只保留最高阶项。

3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。


哈,仿佛是得到了游戏攻略一样,我们好像已经得到了一个推导算法时间复杂度的万能公式。可事实上,分析一个算法的时间复杂度,没有这么简单,我们还需要多看几个例子。

2.9.3 常数阶

首先顺序结构的时间复杂度。下面这个算法,也就是刚才的第二种算法(高斯算法),为什么时间复杂度不是O(3),而是O(1)。

  1. int sum = 0,n = 100;      /*执行一次*/ 
  2. sum = (1+n)*n/2;      /*执行一次*/ 
  3. printf("%d", sum);    /*行次*/ 

这个算法的运行次数函数是f(n)=3。根据我们推导大O阶的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)。

另外,我们试想一下,如果这个算法当中的语句sum=(1+n)*n/2有10句,即:

  1. int sum = 0n = 100; /*执行1次*/ 
  2. sum = (1+n)*n/2; /*执行第1次*/ 
  3. sum = (1+n)*n/2; /*执行第2次*/ 
  4. sum = (1+n)*n/2; /*执行第3次*/ 
  5. sum = (1+n)*n/2; /*执行第4次*/   
  6. printf("%d",sum); /*执行1次*/ 

事实上无论n为多少,上面的两段代码就是3次和12次执行的差异。这种与问题的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。

注意:不管这个常数是多少,我们都记作O(1),而不能是O(3)、O(12)等其他任何数字,这是初学者常常犯的错误。


对于分支结构而言,无论是真,还是假,执行的次数都是恒定的,不会随着n的变大而发生变化,所以单纯的分支结构(不包含在循环结构中),其时间复杂度也是O(1)。

2.9.4 线性阶

线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。

下面这段代码,它的循环的时间复杂度为O(n),因为循环体中的代码须要执行n次。

  1. int i; 
  2. for(i = 0; i < n; i++) 
  3.      /*时间复杂度为O(1)的程序步骤序列*/
2.9.5 对数阶
下面的这段代码,时间复杂度又是多少呢?
  1. int count = 1
  2. while (count < n) 
  3.      countcount = count * 2;  /*时间复杂度为O(1)的程序步骤序列*/ 
由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2x=n得到x=log2n。所以这个循环的时间复杂度为O(logn)。

2.9.6 平方阶

下面例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为O(n)。

  1. int i,j; 
  2. for(i = 0; i < n; i++) 
  3.     for (j = 0; j < n; j++) 
  4.     { 
  5.         /*时间复杂度为O(1)的程序步骤序列*/ 
  6.     } 

而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。所以这段代码的时间复杂度为O(n2)。

如果外循环的循环次数改为了m,时间复杂度就变为O(m×n)。

  1. int i,j; 
  2. for(i = 0; i < m; i++) 
  3.     for (j = 0; j < n; j++) 
  4.     { 
  5.         /*时间复杂度为O(1)的程序步骤序列*/ 
  6.     }

所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。

那么下面这个循环嵌套,它的时间复杂度是多少呢?

  1. int i,j; 
  2. for(i = 0; i < n; i++) 
  3.     for (j = i; j < n; j++)/*注意int j = i而不是0*/ 
  4.     { 
  5.         /*时间复杂度为O(1)的程序步骤序列*/
  6.     }

由于当i = 0时,内循环执行了n次,当i = 1时,执行了n-1次,……当i = n-1时,内循环执行了1次。所以总的执行次数为

  

用我们推导大O阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留n2/2;第三条,去除这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n2)。

从这个例子,我们也可以得到一个经验,其实理解大O推导不算难,难的是对数列的一些相关运算,这更多的是考察你的数学知识和能力,所以想考研的朋友,要想在求算法时间复杂度这里不失分,可能需要强化你的数学,特别是数列方面的知识和解题能力。

我们继续看例子,对于方法调用的时间复杂度又如何分析。

  1. int i,j;  for(i = 0; i < n; i++)  {  
  2.     function(i);  

上面这段代码调用一个函数function。

  1. void function(int count)  {  
  2.      print(count); 
  3.  

函数体是打印这个参数。其实这很好理解,function函数的时间复杂度是O(1)。所以整体的时间复杂度为O(n)。

假如function是下面这样的:

  1. void function(int count)  
  2.      int j; 
  3.      for (j = count; j < n; j++)  
  4.     {  
  5.     /*时间复杂度为O(1)的程序步骤序列*/  
  6.     }

事实上,这和刚才举的例子是一样的,只不过把嵌套内循环放到了函数中,所以最终的时间复杂度为O(n2)。

下面这段相对复杂的语句:

  1. n++;                                              /*执行次数为1*/ 
  2. function(n);                               /*执行次数为n*/ 
  3. int i,j;  for(i = 0; i < n; i++)         /*执行次数为n2*/ 
  4. function (i); 
  5. for(i = 0; i < n; i++)                  /*执行次数为n(n + 1)/2*/ 
  6.     for (j = i;j < n; j++) 
  7.     {
  8.        /*时间复杂度为O(1)的程序步骤序列*/ 
  9.     }

它的执行次数 ,根据推导大O阶的方法,最终这段代码的时间复杂度也是O(n2)。

2.10 常见的时间复杂度

常见的时间复杂度如表2‐10‐1所示。

表2-10-1

  常用的时间复杂度所耗费的时间从小到大依次是:
 
我们前面已经谈到了O(1)常数阶、O(logn)对数阶、O(n)线性阶、O(n2)平方阶等,至于O(nlogn)我们将会在今后的课程中介绍,而像O(n3),过大的n都会使得结果变得不现实。同样指数阶O(2n)和阶乘阶O(n!)等除非是很小的n值,否则哪怕n只是100,都是噩梦般的运行时间。所以这种不切实际的算法时间复杂度,一般我们都不去讨论它。

2.11 最坏情况与平均情况

你早晨上班出门后突然想起来,手机忘记带了,这年头,钥匙、钱包、手机三大件,出门哪样也不能少呀。于是回家找。打开门一看,手机就在门口玄关的台子上,原来是出门穿鞋时忘记拿了。这当然是比较好,基本没花什么时间寻找。可如果不是放在那里,你就得进去到处找,找完客厅找卧室、找完卧室找厨房、找完厨房找卫生间,就是找不到,时间一分一秒的过去,你突然想起来,可以用家里座机打一下手机,听着手机铃声来找呀,真是笨。终于找到了,在床上枕头下面。你再去上班,迟到。见鬼,这一年的全勤奖,就因为找手机给黄了。

找东西有运气好的时候,也有怎么也找不到的情况。但在现实中,通常我们碰到的绝大多数既不是最好的也不是最坏的,所以算下来是平均情况居多。

算法的分析也是类似,我们查找一个有n个随机数字数组中的某个数字,最好的情况是第一个数字就是,那么算法的时间复杂度为O(1),但也有可能这个数字就在最后一个位置上待着,那么算法的时间复杂度就是O(n),这是最坏的一种情况了。

最坏情况运行时间是一种保证,那就是运行时间将不会再坏了。在应用中,这是一种最重要的需求,通常,除非特别指定,我们提到的运行时间都是最坏情况的运行时间。

而平均运行时间也就是从概率的角度看,这个数字在每一个位置的可能性是相同的,所以平均的查找时间为n/2次后发现这个目标元素。

平均运行时间是所有情况中最有意义的,因为它是期望的运行时间。也就是说,我们运行一段程序代码时,是希望看到平均运行时间的。可现实中,平均运行时间很难通过分析得到,一般都是通过运行一定数量的实验数据后估算出来的。


对算法的分析,一种方法是计算所有情况的平均值,这种时间复杂度的计算方法称为平均时间复杂度。另一种方法是计算最坏情况下的时间复杂度,这种方法称为最坏时间复杂度。一般在没有特殊说明的情况下,都是指最坏时间复杂度。

2.12 算法空间复杂度

我们在写代码时,完全可以用空间来换取时间,比如说,要判断某某年是不是闰年,你可能会花一点心思写了一个算法,而且由于是一个算法,也就意味着,每次给一个年份,都是要通过计算得到是否是闰年的结果。还有另一个办法就是,事先建立一个有2 050个元素的数组(年数略比现实多一点),然后把所有的年份按下标的数字对应,如果是闰年,此数组项的值就是1,如果不是值为0。这样,所谓的判断某一年是否是闰年,就变成了查找这个数组的某一项的值是多少的问题。此时,我们的运算是最小化了,但是硬盘上或者内存中需要存储这2050个0和1。

这是通过一笔空间上的开销来换取计算时间的小技巧。到底哪一个好,其实要看你用在什么地方。

算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n)= O(f(n)),其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。

一般情况下,一个程序在机器上执行时,除了需要存储程序本身的指令、常数、变量和输入数据外,还需要存储对数据操作的存储单元。若输入数据所占空间只取决于问题本身,和算法无关,这样只需要分析该算法在实现时所需的辅助单元即可。若算法执行时所需的辅助空间相对于输入数据量而言是个常数,则称此算法为原地工作,空间复杂度为O(1)。


通常,我们都使用“时间复杂度”来指运行时间的需求,使用“空间复杂度”指空间需求。当不用限定词地使用“复杂度”时,通常都是指时间复杂度。显然我们这本书重点要讲的还是算法的时间复杂度的问题。

2.13 总结回顾

不容易,终于又到了总结的时间。

我们这一章主要谈了算法的一些基本概念。谈到了数据结构与算法的关系是相互依赖不可分割的。

算法的定义:算法是解决特定问题求解步骤的描述,在计算机中为指令的有限序列,并且每条指令表示一个或多个操作。

算法的特性:有穷性、确定性、可行性、输入、输出。

算法设计的要求:正确性、可读性、健壮性、高效率和低存储量需求。

算法特性与算法设计容易混,需要对比记忆。

算法的度量方法:事后统计方法(不科学、不准确)、事前分析估算方法。

在讲解如何用事前分析估算方法之前,我们先给出了函数渐近增长的定义。

函数的渐近增长:给定两个函数f(n)和g(n),如果存在一个整数N,使得对于所有的n > N,f(n)总是比g(n)大,那么,我们说f(n)的增长渐近快于g(n)。于是我们可以得出一个结论,判断一个算法好不好,我们只通过少量的数据是不能做出准确判断的,如果我们可以对比算法的关键执行次数函数的渐近增长性,基本就可以分析出:某个算法,随着n的变大,它会越来越优于另一算法,或者越来越差于另一算法。

然后给出了算法时间复杂度的定义和推导大O阶的步骤。

推导大O阶:

用常数1取代运行时间中的所有加法常数。

在修改后的运行次数函数中,只保留最高阶项。

如果最高阶项在且不是1,则去除与这个项相乘的常数。

存得到的结果就是大O阶。

通过这个步骤,我们可以在得到算法的运行次数表达式后,很快得到它的时间复杂度,即大O阶。同时我也提醒了大家,其实推导大O阶很容易,但如何得到运行次数的表达式却是需要数学功底的。

接着我们给出了常见的时间复杂度所耗时间的大小排列:

  
最后,我们给出了关于算法最坏情况和平均情况的概念,以及空间复杂度的概念。

原文地址
0 0
原创粉丝点击