Source Code of Java - Long

来源:互联网 发布:粤语网络女歌手排行榜 编辑:程序博客网 时间:2024/05/16 12:06
/* * %W% %E% * * Copyright (c) 2006, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */package java.lang;/** * The <code>Long</code> class wraps a value of the primitive type * <code>long</code> in an object. An object of type <code>Long</code> * contains a single field whose type is <code>long</code>. * * <p>  * * In addition, this class provides several methods for converting a * <code>long</code> to a <code>String</code> and a * <code>String</code> to a <code>long</code>, as well as other * constants and methods useful when dealing with a <code>long</code>. * * <p>Implementation note: The implementations of the "bit twiddling" * methods (such as {@link #highestOneBit(long) highestOneBit} and * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are * based on material from Henry S. Warren, Jr.'s <i>Hacker's * Delight</i>, (Addison Wesley, 2002). * * @author  Lee Boynton * @author  Arthur van Hoff * @author  Josh Bloch * @version %I%, %G% * @since   JDK1.0 */public final class Long extends Number implements Comparable<Long> {    /**     * A constant holding the minimum value a <code>long</code> can     * have, -2<sup>63</sup>.     */    public static final long MIN_VALUE = 0x8000000000000000L;    /**     * A constant holding the maximum value a <code>long</code> can     * have, 2<sup>63</sup>-1.     */    public static final long MAX_VALUE = 0x7fffffffffffffffL;    /**     * The <code>Class</code> instance representing the primitive type     * <code>long</code>.     *     * @since   JDK1.1     */    public static final Class<Long> TYPE = (Class<Long>) Class.getPrimitiveClass("long");    /**     * Returns a string representation of the first argument in the     * radix specified by the second argument.     * <p>     * If the radix is smaller than <code>Character.MIN_RADIX</code>     * or larger than <code>Character.MAX_RADIX</code>, then the radix     * <code>10</code> is used instead.     * <p>     * If the first argument is negative, the first element of the     * result is the ASCII minus sign <code>'-'</code>     * (<code>'\u002d'</code>). If the first argument is not     * negative, no sign character appears in the result.     * <p>     * The remaining characters of the result represent the magnitude     * of the first argument. If the magnitude is zero, it is     * represented by a single zero character <code>'0'</code>     * (<code>'\u0030'</code>); otherwise, the first character of     * the representation of the magnitude will not be the zero     * character.  The following ASCII characters are used as digits:     * <blockquote><pre>     *   0123456789abcdefghijklmnopqrstuvwxyz     * </pre></blockquote>     * These are <code>'\u0030'</code> through     * <code>'\u0039'</code> and <code>'\u0061'</code> through     * <code>'\u007a'</code>. If <code>radix</code> is     * <var>N</var>, then the first <var>N</var> of these characters     * are used as radix-<var>N</var> digits in the order shown. Thus,     * the digits for hexadecimal (radix 16) are     * <code>0123456789abcdef</code>. If uppercase letters are     * desired, the {@link java.lang.String#toUpperCase()} method may     * be called on the result:     * <blockquote><pre>     * Long.toString(n, 16).toUpperCase()     * </pre></blockquote>     *      * @param   i       a <code>long</code>to be converted to a string.     * @param   radix   the radix to use in the string representation.     * @return  a string representation of the argument in the specified radix.     * @see     java.lang.Character#MAX_RADIX     * @see     java.lang.Character#MIN_RADIX     */    public static String toString(long i, int radix) {        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)        radix = 10;        if (radix == 10)            return toString(i);        char[] buf = new char[65];        int charPos = 64;        boolean negative = (i < 0);        if (!negative) {            i = -i;        }        while (i <= -radix) {            buf[charPos--] = Integer.digits[(int)(-(i % radix))];            i = i / radix;        }        buf[charPos] = Integer.digits[(int)(-i)];        if (negative) {             buf[--charPos] = '-';        }        return new String(buf, charPos, (65 - charPos));    }    /**     * Returns a string representation of the <code>long</code>     * argument as an unsigned integer in base&nbsp;16.     * <p>     * The unsigned <code>long</code> value is the argument plus     * 2<sup>64</sup> if the argument is negative; otherwise, it is     * equal to the argument.  This value is converted to a string of     * ASCII digits in hexadecimal (base&nbsp;16) with no extra     * leading <code>0</code>s.  If the unsigned magnitude is zero, it     * is represented by a single zero character <code>'0'</code>     * (<code>'\u0030'</code>); otherwise, the first character of     * the representation of the unsigned magnitude will not be the     * zero character. The following characters are used as     * hexadecimal digits:     * <blockquote><pre>     * 0123456789abcdef     * </pre></blockquote>     * These are the characters <code>'\u0030'</code> through     * <code>'\u0039'</code> and  <code>'\u0061'</code> through     * <code>'\u0066'</code>.  If uppercase letters are desired,     * the {@link java.lang.String#toUpperCase()} method may be called     * on the result:     * <blockquote><pre>     * Long.toHexString(n).toUpperCase()     * </pre></blockquote>     *     * @param   i   a <code>long</code> to be converted to a string.     * @return  the string representation of the unsigned <code>long</code>     *      value represented by the argument in hexadecimal     *      (base&nbsp;16).     * @since   JDK 1.0.2     */    public static String toHexString(long i) {    return toUnsignedString(i, 4);    }    /**     * Returns a string representation of the <code>long</code>     * argument as an unsigned integer in base&nbsp;8.     * <p>     * The unsigned <code>long</code> value is the argument plus     * 2<sup>64</sup> if the argument is negative; otherwise, it is     * equal to the argument.  This value is converted to a string of     * ASCII digits in octal (base&nbsp;8) with no extra leading     * <code>0</code>s.     * <p>     * If the unsigned magnitude is zero, it is represented by a     * single zero character <code>'0'</code>     * (<code>'\u0030'</code>); otherwise, the first character of     * the representation of the unsigned magnitude will not be the     * zero character. The following characters are used as octal     * digits:     * <blockquote><pre>     * 01234567     * </pre></blockquote>     * These are the characters <code>'\u0030'</code> through      * <code>'\u0037'</code>.      *     * @param   i   a <code>long</code> to be converted to a string.     * @return  the string representation of the unsigned <code>long</code>      *      value represented by the argument in octal (base&nbsp;8).     * @since   JDK 1.0.2     */    public static String toOctalString(long i) {    return toUnsignedString(i, 3);    }    /**     * Returns a string representation of the <code>long</code>     * argument as an unsigned integer in base&nbsp;2.     * <p>     * The unsigned <code>long</code> value is the argument plus     * 2<sup>64</sup> if the argument is negative; otherwise, it is     * equal to the argument.  This value is converted to a string of     * ASCII digits in binary (base&nbsp;2) with no extra leading     * <code>0</code>s.  If the unsigned magnitude is zero, it is     * represented by a single zero character <code>'0'</code>     * (<code>'\u0030'</code>); otherwise, the first character of     * the representation of the unsigned magnitude will not be the     * zero character. The characters <code>'0'</code>     * (<code>'\u0030'</code>) and <code>'1'</code>     * (<code>'\u0031'</code>) are used as binary digits.     *     * @param   i   a <code>long</code> to be converted to a string.     * @return  the string representation of the unsigned <code>long</code>      *          value represented by the argument in binary (base&nbsp;2).     * @since   JDK 1.0.2     */    public static String toBinaryString(long i) {    return toUnsignedString(i, 1);    }    /**     * Convert the integer to an unsigned number.     */    private static String toUnsignedString(long i, int shift) {    char[] buf = new char[64];    int charPos = 64;    int radix = 1 << shift;    long mask = radix - 1;    do {        buf[--charPos] = Integer.digits[(int)(i & mask)];        i >>>= shift;    } while (i != 0);    return new String(buf, charPos, (64 - charPos));    }    /**     * Returns a <code>String</code> object representing the specified     * <code>long</code>.  The argument is converted to signed decimal     * representation and returned as a string, exactly as if the     * argument and the radix 10 were given as arguments to the {@link     * #toString(long, int)} method.     *     * @param   i   a <code>long</code> to be converted.     * @return  a string representation of the argument in base&nbsp;10.     */    public static String toString(long i) {        if (i == Long.MIN_VALUE)            return "-9223372036854775808";        int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);        char[] buf = new char[size];        getChars(i, size, buf);        return new String(0, size, buf);    }    /**     * Places characters representing the integer i into the     * character array buf. The characters are placed into     * the buffer backwards starting with the least significant     * digit at the specified index (exclusive), and working     * backwards from there.     *     * Will fail if i == Long.MIN_VALUE     */    static void getChars(long i, int index, char[] buf) {        long q;        int r;        int charPos = index;        char sign = 0;        if (i < 0) {            sign = '-';            i = -i;        }        // Get 2 digits/iteration using longs until quotient fits into an int        while (i > Integer.MAX_VALUE) {             q = i / 100;            // really: r = i - (q * 100);            r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));            i = q;            buf[--charPos] = Integer.DigitOnes[r];            buf[--charPos] = Integer.DigitTens[r];        }        // Get 2 digits/iteration using ints        int q2;        int i2 = (int)i;        while (i2 >= 65536) {            q2 = i2 / 100;            // really: r = i2 - (q * 100);            r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));            i2 = q2;            buf[--charPos] = Integer.DigitOnes[r];            buf[--charPos] = Integer.DigitTens[r];        }        // Fall thru to fast mode for smaller numbers        // assert(i2 <= 65536, i2);        for (;;) {            q2 = (i2 * 52429) >>> (16+3);            r = i2 - ((q2 << 3) + (q2 << 1));  // r = i2-(q2*10) ...            buf[--charPos] = Integer.digits[r];            i2 = q2;            if (i2 == 0) break;        }        if (sign != 0) {            buf[--charPos] = sign;        }    }    // Requires positive x    static int stringSize(long x) {        long p = 10;        for (int i=1; i<19; i++) {            if (x < p)                return i;            p = 10*p;        }        return 19;    }    private static final long   MULTMIN_RADIX_TEN =  Long.MIN_VALUE / 10;    private static final long N_MULTMAX_RADIX_TEN = -Long.MAX_VALUE / 10;    /**     * Parses the string argument as a signed <code>long</code> in the     * radix specified by the second argument. The characters in the     * string must all be digits of the specified radix (as determined     * by whether {@link java.lang.Character#digit(char, int)} returns     * a nonnegative value), except that the first character may be an     * ASCII minus sign <code>'-'</code> (<code>'\u002D'</code>) to     * indicate a negative value. The resulting <code>long</code>     * value is returned.     * <p>     * Note that neither the character <code>L</code>     * (<code>'\u004C'</code>) nor <code>l</code>     * (<code>'\u006C'</code>) is permitted to appear at the end     * of the string as a type indicator, as would be permitted in     * Java programming language source code - except that either     * <code>L</code> or <code>l</code> may appear as a digit for a     * radix greater than 22.     * <p>     * An exception of type <code>NumberFormatException</code> is     * thrown if any of the following situations occurs:     * <ul>     * <li>The first argument is <code>null</code> or is a string of     * length zero.     * <li>The <code>radix</code> is either smaller than {@link     * java.lang.Character#MIN_RADIX} or larger than {@link     * java.lang.Character#MAX_RADIX}.     * <li>Any character of the string is not a digit of the specified     * radix, except that the first character may be a minus sign     * <code>'-'</code> (<code>'\u002d'</code>) provided that the     * string is longer than length 1.     * <li>The value represented by the string is not a value of type     *      <code>long</code>.      * </ul><p>     * Examples:     * <blockquote><pre>     * parseLong("0", 10) returns 0L     * parseLong("473", 10) returns 473L     * parseLong("-0", 10) returns 0L     * parseLong("-FF", 16) returns -255L     * parseLong("1100110", 2) returns 102L     * parseLong("99", 8) throws a NumberFormatException     * parseLong("Hazelnut", 10) throws a NumberFormatException     * parseLong("Hazelnut", 36) returns 1356099454469L     * </pre></blockquote>     *      * @param      s       the <code>String</code> containing the     *                     <code>long</code> representation to be parsed.     * @param      radix   the radix to be used while parsing <code>s</code>.     * @return     the <code>long</code> represented by the string argument in     *             the specified radix.     * @exception  NumberFormatException  if the string does not contain a     *               parsable <code>long</code>.     */    public static long parseLong(String s, int radix)              throws NumberFormatException    {        if (s == null) {            throw new NumberFormatException("null");        }    if (radix < Character.MIN_RADIX) {        throw new NumberFormatException("radix " + radix +                        " less than Character.MIN_RADIX");    }    if (radix > Character.MAX_RADIX) {        throw new NumberFormatException("radix " + radix +                        " greater than Character.MAX_RADIX");    }    long result = 0;    boolean negative = false;    int i = 0, max = s.length();    long limit;    long multmin;    int digit;    if (max > 0) {        if (s.charAt(0) == '-') {        negative = true;        limit = Long.MIN_VALUE;        i++;        } else {        limit = -Long.MAX_VALUE;        }            if (radix == 10) {                multmin = negative ? MULTMIN_RADIX_TEN : N_MULTMAX_RADIX_TEN;            } else {                multmin = limit / radix;            }            if (i < max) {                digit = Character.digit(s.charAt(i++),radix);        if (digit < 0) {            throw NumberFormatException.forInputString(s);        } else {            result = -digit;        }        }        while (i < max) {        // Accumulating negatively avoids surprises near MAX_VALUE        digit = Character.digit(s.charAt(i++),radix);        if (digit < 0) {            throw NumberFormatException.forInputString(s);        }        if (result < multmin) {            throw NumberFormatException.forInputString(s);        }        result *= radix;        if (result < limit + digit) {            throw NumberFormatException.forInputString(s);        }        result -= digit;        }    } else {        throw NumberFormatException.forInputString(s);    }    if (negative) {        if (i > 1) {        return result;        } else {    /* Only got "-" */        throw NumberFormatException.forInputString(s);        }    } else {        return -result;    }    }    /**     * Parses the string argument as a signed decimal     * <code>long</code>.  The characters in the string must all be     * decimal digits, except that the first character may be an ASCII     * minus sign <code>'-'</code> (<code>\u002D'</code>) to     * indicate a negative value. The resulting <code>long</code>     * value is returned, exactly as if the argument and the radix     * <code>10</code> were given as arguments to the {@link     * #parseLong(java.lang.String, int)} method.     * <p>     * Note that neither the character <code>L</code>     * (<code>'\u004C'</code>) nor <code>l</code>     * (<code>'\u006C'</code>) is permitted to appear at the end     * of the string as a type indicator, as would be permitted in     * Java programming language source code.     *     * @param      s   a <code>String</code> containing the <code>long</code>     *             representation to be parsed     * @return     the <code>long</code> represented by the argument in      *         decimal.     * @exception  NumberFormatException  if the string does not contain a     *               parsable <code>long</code>.     */    public static long parseLong(String s) throws NumberFormatException {    return parseLong(s, 10);    }    /**     * Returns a <code>Long</code> object holding the value     * extracted from the specified <code>String</code> when parsed     * with the radix given by the second argument.  The first     * argument is interpreted as representing a signed     * <code>long</code> in the radix specified by the second     * argument, exactly as if the arguments were given to the {@link     * #parseLong(java.lang.String, int)} method. The result is a     * <code>Long</code> object that represents the <code>long</code>     * value specified by the string.     * <p>     * In other words, this method returns a <code>Long</code> object equal      * to the value of:     *     * <blockquote><code>     * new Long(Long.parseLong(s, radix))     * </code></blockquote>     *     * @param      s       the string to be parsed     * @param      radix   the radix to be used in interpreting <code>s</code>     * @return     a <code>Long</code> object holding the value     *             represented by the string argument in the specified     *             radix.     * @exception  NumberFormatException  If the <code>String</code> does not     *             contain a parsable <code>long</code>.     */    public static Long valueOf(String s, int radix) throws NumberFormatException {    return Long.valueOf(parseLong(s, radix));    }    /**     * Returns a <code>Long</code> object holding the value     * of the specified <code>String</code>. The argument is     * interpreted as representing a signed decimal <code>long</code>,     * exactly as if the argument were given to the {@link     * #parseLong(java.lang.String)} method. The result is a     * <code>Long</code> object that represents the integer value     * specified by the string.     * <p>     * In other words, this method returns a <code>Long</code> object     * equal to the value of:     *     * <blockquote><pre>     * new Long(Long.parseLong(s))     * </pre></blockquote>     *     * @param      s   the string to be parsed.     * @return     a <code>Long</code> object holding the value     *             represented by the string argument.     * @exception  NumberFormatException  If the string cannot be parsed     *              as a <code>long</code>.     */    public static Long valueOf(String s) throws NumberFormatException    {    return Long.valueOf(parseLong(s, 10));    }    private static class LongCache {    private LongCache(){}    static final Long cache[] = new Long[-(-128) + 127 + 1];    static {        for(int i = 0; i < cache.length; i++)        cache[i] = new Long(i - 128);    }    }    /**     * Returns a <tt>Long</tt> instance representing the specified     * <tt>long</tt> value.     * If a new <tt>Long</tt> instance is not required, this method     * should generally be used in preference to the constructor     * {@link #Long(long)}, as this method is likely to yield     * significantly better space and time performance by caching     * frequently requested values.     *     * @param  l a long value.     * @return a <tt>Long</tt> instance representing <tt>l</tt>.     * @since  1.5     */    public static Long valueOf(long l) {    final int offset = 128;    if (l >= -128 && l <= 127) { // will cache        return LongCache.cache[(int)l + offset];    }        return new Long(l);    }    /**     * Decodes a <code>String</code> into a <code>Long</code>.     * Accepts decimal, hexadecimal, and octal numbers given by the     * following grammar:     *     * <blockquote>     * <dl>     * <dt><i>DecodableString:</i>     * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>     * <dd><i>Sign<sub>opt</sub></i> <code>0x</code> <i>HexDigits</i>     * <dd><i>Sign<sub>opt</sub></i> <code>0X</code> <i>HexDigits</i>     * <dd><i>Sign<sub>opt</sub></i> <code>#</code> <i>HexDigits</i>     * <dd><i>Sign<sub>opt</sub></i> <code>0</code> <i>OctalDigits</i>     * <p>     * <dt><i>Sign:</i>     * <dd><code>-</code>     * </dl>     * </blockquote>     *     * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>     * are defined in <a href="http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#48282">§3.10.1</a>      * of the <a href="http://java.sun.com/docs/books/jls/html/">Java      * Language Specification</a>.     * <p>     * The sequence of characters following an (optional) negative     * sign and/or radix specifier ("<code>0x</code>",     * "<code>0X</code>", "<code>#</code>", or     * leading zero) is parsed as by the <code>Long.parseLong</code>     * method with the indicated radix (10, 16, or 8).  This sequence     * of characters must represent a positive value or a {@link     * NumberFormatException} will be thrown.  The result is negated     * if first character of the specified <code>String</code> is the     * minus sign.  No whitespace characters are permitted in the     * <code>String</code>.     *     * @param     nm the <code>String</code> to decode.     * @return    a <code>Long</code> object holding the <code>long</code>     *        value represented by <code>nm</code>     * @exception NumberFormatException  if the <code>String</code> does not     *            contain a parsable <code>long</code>.     * @see java.lang.Long#parseLong(String, int)     * @since 1.2     */    public static Long decode(String nm) throws NumberFormatException {        int radix = 10;        int index = 0;        boolean negative = false;        Long result;        // Handle minus sign, if present        if (nm.startsWith("-")) {            negative = true;            index++;        }        // Handle radix specifier, if present    if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {        index += 2;            radix = 16;    }    else if (nm.startsWith("#", index)) {        index ++;            radix = 16;    }    else if (nm.startsWith("0", index) && nm.length() > 1 + index) {        index ++;            radix = 8;    }        if (nm.startsWith("-", index))            throw new NumberFormatException("Negative sign in wrong position");        try {            result = Long.valueOf(nm.substring(index), radix);            result = negative ? Long.valueOf(-result.longValue()) : result;        } catch (NumberFormatException e) {            // If number is Long.MIN_VALUE, we'll end up here. The next line            // handles this case, and causes any genuine format error to be            // rethrown.            String constant = negative ? "-" + nm.substring(index)                                       : nm.substring(index);            result = Long.valueOf(constant, radix);        }        return result;    }    /**     * The value of the <code>Long</code>.     *     * @serial     */    private final long value;    /**     * Constructs a newly allocated <code>Long</code> object that     * represents the specified <code>long</code> argument.     *     * @param   value   the value to be represented by the      *          <code>Long</code> object.     */    public Long(long value) {    this.value = value;    }    /**     * Constructs a newly allocated <code>Long</code> object that     * represents the <code>long</code> value indicated by the     * <code>String</code> parameter. The string is converted to a     * <code>long</code> value in exactly the manner used by the     * <code>parseLong</code> method for radix 10.     *     * @param      s   the <code>String</code> to be converted to a      *         <code>Long</code>.     * @exception  NumberFormatException  if the <code>String</code> does not     *               contain a parsable <code>long</code>.     * @see        java.lang.Long#parseLong(java.lang.String, int)     */    public Long(String s) throws NumberFormatException {    this.value = parseLong(s, 10);    }    /**     * Returns the value of this <code>Long</code> as a     * <code>byte</code>.     */    public byte byteValue() {    return (byte)value;    }    /**     * Returns the value of this <code>Long</code> as a     * <code>short</code>.     */    public short shortValue() {    return (short)value;    }    /**     * Returns the value of this <code>Long</code> as an     * <code>int</code>.     */    public int intValue() {    return (int)value;    }    /**     * Returns the value of this <code>Long</code> as a     * <code>long</code> value.     */    public long longValue() {    return (long)value;    }    /**     * Returns the value of this <code>Long</code> as a     * <code>float</code>.     */    public float floatValue() {    return (float)value;    }    /**     * Returns the value of this <code>Long</code> as a     * <code>double</code>.     */    public double doubleValue() {    return (double)value;    }    /**     * Returns a <code>String</code> object representing this     * <code>Long</code>'s value.  The value is converted to signed     * decimal representation and returned as a string, exactly as if     * the <code>long</code> value were given as an argument to the     * {@link java.lang.Long#toString(long)} method.     *     * @return  a string representation of the value of this object in     *      base&nbsp;10.     */    public String toString() {    return String.valueOf(value);    }    /**     * Returns a hash code for this <code>Long</code>. The result is     * the exclusive OR of the two halves of the primitive     * <code>long</code> value held by this <code>Long</code>     * object. That is, the hashcode is the value of the expression:     * <blockquote><pre>     * (int)(this.longValue()^(this.longValue()>>>32))     * </pre></blockquote>     *     * @return  a hash code value for this object.     */    public int hashCode() {    return (int)(value ^ (value >>> 32));    }    /**     * Compares this object to the specified object.  The result is     * <code>true</code> if and only if the argument is not     * <code>null</code> and is a <code>Long</code> object that     * contains the same <code>long</code> value as this object.     *     * @param   obj   the object to compare with.     * @return  <code>true</code> if the objects are the same;     *          <code>false</code> otherwise.     */    public boolean equals(Object obj) {    if (obj instanceof Long) {        return value == ((Long)obj).longValue();    }    return false;    }    /**     * Determines the <code>long</code> value of the system property     * with the specified name.     * <p>     * The first argument is treated as the name of a system property.     * System properties are accessible through the {@link     * java.lang.System#getProperty(java.lang.String)} method. The     * string value of this property is then interpreted as a     * <code>long</code> value and a <code>Long</code> object     * representing this value is returned.  Details of possible     * numeric formats can be found with the definition of     * <code>getProperty</code>.     * <p>     * If there is no property with the specified name, if the     * specified name is empty or <code>null</code>, or if the     * property does not have the correct numeric format, then     * <code>null</code> is returned.     * <p>     * In other words, this method returns a <code>Long</code> object equal to      * the value of:     * <blockquote><code>     * getLong(nm, null)     * </code></blockquote>     *     * @param   nm   property name.     * @return  the <code>Long</code> value of the property.     * @see     java.lang.System#getProperty(java.lang.String)     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)     */    public static Long getLong(String nm) {    return getLong(nm, null);    }    /**     * Determines the <code>long</code> value of the system property     * with the specified name.     * <p>     * The first argument is treated as the name of a system property.     * System properties are accessible through the {@link     * java.lang.System#getProperty(java.lang.String)} method. The     * string value of this property is then interpreted as a     * <code>long</code> value and a <code>Long</code> object     * representing this value is returned.  Details of possible     * numeric formats can be found with the definition of     * <code>getProperty</code>.     * <p>     * The second argument is the default value. A <code>Long</code> object     * that represents the value of the second argument is returned if there     * is no property of the specified name, if the property does not have     * the correct numeric format, or if the specified name is empty or null.     * <p>     * In other words, this method returns a <code>Long</code> object equal      * to the value of:     * <blockquote><code>     * getLong(nm, new Long(val))     * </code></blockquote>     * but in practice it may be implemented in a manner such as:      * <blockquote><pre>     * Long result = getLong(nm, null);     * return (result == null) ? new Long(val) : result;     * </pre></blockquote>     * to avoid the unnecessary allocation of a <code>Long</code> object when      * the default value is not needed.      *     * @param   nm    property name.     * @param   val   default value.     * @return  the <code>Long</code> value of the property.     * @see     java.lang.System#getProperty(java.lang.String)     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)     */    public static Long getLong(String nm, long val) {        Long result = Long.getLong(nm, null);        return (result == null) ? Long.valueOf(val) : result;    }    /**     * Returns the <code>long</code> value of the system property with     * the specified name.  The first argument is treated as the name     * of a system property.  System properties are accessible through     * the {@link java.lang.System#getProperty(java.lang.String)}     * method. The string value of this property is then interpreted     * as a <code>long</code> value, as per the     * <code>Long.decode</code> method, and a <code>Long</code> object     * representing this value is returned.     * <p><ul>     * <li>If the property value begins with the two ASCII characters     * <code>0x</code> or the ASCII character <code>#</code>, not followed by      * a minus sign, then the rest of it is parsed as a hexadecimal integer     * exactly as for the method {@link #valueOf(java.lang.String, int)}      * with radix 16.      * <li>If the property value begins with the ASCII character     * <code>0</code> followed by another character, it is parsed as     * an octal integer exactly as by the method {@link     * #valueOf(java.lang.String, int)} with radix 8.     * <li>Otherwise the property value is parsed as a decimal     * integer exactly as by the method      * {@link #valueOf(java.lang.String, int)} with radix 10.     * </ul>     * <p>     * Note that, in every case, neither <code>L</code>     * (<code>'\u004C'</code>) nor <code>l</code>     * (<code>'\u006C'</code>) is permitted to appear at the end     * of the property value as a type indicator, as would be     * permitted in Java programming language source code.     * <p>     * The second argument is the default value. The default value is     * returned if there is no property of the specified name, if the     * property does not have the correct numeric format, or if the     * specified name is empty or <code>null</code>.     *     * @param   nm   property name.     * @param   val   default value.     * @return  the <code>Long</code> value of the property.     * @see     java.lang.System#getProperty(java.lang.String)     * @see java.lang.System#getProperty(java.lang.String, java.lang.String)     * @see java.lang.Long#decode     */    public static Long getLong(String nm, Long val) {        String v = null;        try {            v = System.getProperty(nm);        } catch (IllegalArgumentException e) {        } catch (NullPointerException e) {        }    if (v != null) {        try {        return Long.decode(v);        } catch (NumberFormatException e) {        }    }    return val;    }    /**     * Compares two <code>Long</code> objects numerically.     *     * @param   anotherLong   the <code>Long</code> to be compared.     * @return  the value <code>0</code> if this <code>Long</code> is     *      equal to the argument <code>Long</code>; a value less than     *      <code>0</code> if this <code>Long</code> is numerically less     *      than the argument <code>Long</code>; and a value greater      *      than <code>0</code> if this <code>Long</code> is numerically     *       greater than the argument <code>Long</code> (signed     *       comparison).     * @since   1.2     */    public int compareTo(Long anotherLong) {    long thisVal = this.value;    long anotherVal = anotherLong.value;    return (thisVal<anotherVal ? -1 : (thisVal==anotherVal ? 0 : 1));    }    // Bit Twiddling    /**     * The number of bits used to represent a <tt>long</tt> value in two's     * complement binary form.     *     * @since 1.5     */    public static final int SIZE = 64;    /**     * Returns a <tt>long</tt> value with at most a single one-bit, in the     * position of the highest-order ("leftmost") one-bit in the specified     * <tt>long</tt> value.  Returns zero if the specified value has no     * one-bits in its two's complement binary representation, that is, if it     * is equal to zero.     *     * @return a <tt>long</tt> value with a single one-bit, in the position     *     of the highest-order one-bit in the specified value, or zero if     *     the specified value is itself equal to zero.     * @since 1.5     */    public static long highestOneBit(long i) {        // HD, Figure 3-1        i |= (i >>  1);        i |= (i >>  2);        i |= (i >>  4);        i |= (i >>  8);        i |= (i >> 16);        i |= (i >> 32);        return i - (i >>> 1);    }    /**     * Returns a <tt>long</tt> value with at most a single one-bit, in the     * position of the lowest-order ("rightmost") one-bit in the specified     * <tt>long</tt> value.  Returns zero if the specified value has no     * one-bits in its two's complement binary representation, that is, if it     * is equal to zero.     *     * @return a <tt>long</tt> value with a single one-bit, in the position     *     of the lowest-order one-bit in the specified value, or zero if     *     the specified value is itself equal to zero.     * @since 1.5     */    public static long lowestOneBit(long i) {        // HD, Section 2-1        return i & -i;    }    /**     * Returns the number of zero bits preceding the highest-order     * ("leftmost") one-bit in the two's complement binary representation     * of the specified <tt>long</tt> value.  Returns 64 if the     * specified value has no one-bits in its two's complement representation,     * in other words if it is equal to zero.     *     * <p>Note that this method is closely related to the logarithm base 2.     * For all positive <tt>long</tt> values x:     * <ul>     * <li>floor(log<sub>2</sub>(x)) = <tt>63 - numberOfLeadingZeros(x)</tt>     * <li>ceil(log<sub>2</sub>(x)) = <tt>64 - numberOfLeadingZeros(x - 1)</tt>     * </ul>     *     * @return the number of zero bits preceding the highest-order     *     ("leftmost") one-bit in the two's complement binary representation     *     of the specified <tt>long</tt> value, or 64 if the value     *     is equal to zero.     * @since 1.5     */    public static int numberOfLeadingZeros(long i) {        // HD, Figure 5-6         if (i == 0)            return 64;        int n = 1;    int x = (int)(i >>> 32);        if (x == 0) { n += 32; x = (int)i; }        if (x >>> 16 == 0) { n += 16; x <<= 16; }        if (x >>> 24 == 0) { n +=  8; x <<=  8; }        if (x >>> 28 == 0) { n +=  4; x <<=  4; }        if (x >>> 30 == 0) { n +=  2; x <<=  2; }        n -= x >>> 31;        return n;    }    /**     * Returns the number of zero bits following the lowest-order ("rightmost")     * one-bit in the two's complement binary representation of the specified     * <tt>long</tt> value.  Returns 64 if the specified value has no     * one-bits in its two's complement representation, in other words if it is     * equal to zero.     *     * @return the number of zero bits following the lowest-order ("rightmost")     *     one-bit in the two's complement binary representation of the     *     specified <tt>long</tt> value, or 64 if the value is equal     *     to zero.     * @since 1.5     */    public static int numberOfTrailingZeros(long i) {        // HD, Figure 5-14    int x, y;    if (i == 0) return 64;    int n = 63;    y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);    y = x <<16; if (y != 0) { n = n -16; x = y; }    y = x << 8; if (y != 0) { n = n - 8; x = y; }    y = x << 4; if (y != 0) { n = n - 4; x = y; }    y = x << 2; if (y != 0) { n = n - 2; x = y; }    return n - ((x << 1) >>> 31);    }    /**     * Returns the number of one-bits in the two's complement binary     * representation of the specified <tt>long</tt> value.  This function is     * sometimes referred to as the <i>population count</i>.     *     * @return the number of one-bits in the two's complement binary     *     representation of the specified <tt>long</tt> value.     * @since 1.5     */     public static int bitCount(long i) {        // HD, Figure 5-14    i = i - ((i >>> 1) & 0x5555555555555555L);    i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);    i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;    i = i + (i >>> 8);    i = i + (i >>> 16);    i = i + (i >>> 32);    return (int)i & 0x7f;     }    /**     * Returns the value obtained by rotating the two's complement binary     * representation of the specified <tt>long</tt> value left by the     * specified number of bits.  (Bits shifted out of the left hand, or     * high-order, side reenter on the right, or low-order.)     *     * <p>Note that left rotation with a negative distance is equivalent to     * right rotation: <tt>rotateLeft(val, -distance) == rotateRight(val,     * distance)</tt>.  Note also that rotation by any multiple of 64 is a     * no-op, so all but the last six bits of the rotation distance can be     * ignored, even if the distance is negative: <tt>rotateLeft(val,     * distance) == rotateLeft(val, distance & 0x3F)</tt>.     *     * @return the value obtained by rotating the two's complement binary     *     representation of the specified <tt>long</tt> value left by the     *     specified number of bits.     * @since 1.5     */    public static long rotateLeft(long i, int distance) {        return (i << distance) | (i >>> -distance);    }    /**     * Returns the value obtained by rotating the two's complement binary     * representation of the specified <tt>long</tt> value right by the     * specified number of bits.  (Bits shifted out of the right hand, or     * low-order, side reenter on the left, or high-order.)     *     * <p>Note that right rotation with a negative distance is equivalent to     * left rotation: <tt>rotateRight(val, -distance) == rotateLeft(val,     * distance)</tt>.  Note also that rotation by any multiple of 64 is a     * no-op, so all but the last six bits of the rotation distance can be     * ignored, even if the distance is negative: <tt>rotateRight(val,     * distance) == rotateRight(val, distance & 0x3F)</tt>.     *     * @return the value obtained by rotating the two's complement binary     *     representation of the specified <tt>long</tt> value right by the     *     specified number of bits.     * @since 1.5     */    public static long rotateRight(long i, int distance) {        return (i >>> distance) | (i << -distance);    }    /**     * Returns the value obtained by reversing the order of the bits in the     * two's complement binary representation of the specified <tt>long</tt>     * value.     *     * @return the value obtained by reversing order of the bits in the     *     specified <tt>long</tt> value.     * @since 1.5     */    public static long reverse(long i) {        // HD, Figure 7-1    i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;    i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;    i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;    i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;    i = (i << 48) | ((i & 0xffff0000L) << 16) |        ((i >>> 16) & 0xffff0000L) | (i >>> 48);    return i;    }    /**     * Returns the signum function of the specified <tt>long</tt> value.  (The     * return value is -1 if the specified value is negative; 0 if the     * specified value is zero; and 1 if the specified value is positive.)     *     * @return the signum function of the specified <tt>long</tt> value.     * @since 1.5     */    public static int signum(long i) {        // HD, Section 2-7        return (int) ((i >> 63) | (-i >>> 63));    }    /**     * Returns the value obtained by reversing the order of the bytes in the     * two's complement representation of the specified <tt>long</tt> value.     *     * @return the value obtained by reversing the bytes in the specified     *     <tt>long</tt> value.     * @since 1.5     */    public static long reverseBytes(long i) {        i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;        return (i << 48) | ((i & 0xffff0000L) << 16) |            ((i >>> 16) & 0xffff0000L) | (i >>> 48);    }    /** use serialVersionUID from JDK 1.0.2 for interoperability */    private static final long serialVersionUID = 4290774380558885855L;}

来源:http://blog.csdn.net/f562867448/article/details/8690916

0 0
原创粉丝点击