c#rsa 非对称加密

来源:互联网 发布:java 获取网页源代码 编辑:程序博客网 时间:2024/06/09 19:46
using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace RSATest{    public class BigInteger    {        // maximum length of the BigInteger in uint (4 bytes)        // change this to suit the required level of precision.        private const int maxLength = 70;        // primes smaller than 2000 to test the generated prime number        public static readonly int[] primesBelow2000 = {        2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,        101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193,1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297,1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499,1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597,1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699,1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889,1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999 };        private uint[] data = null;             // stores bytes from the Big Integer        public int dataLength;                 // number of actual chars used        //***********************************************************************        // Constructor (Default value for BigInteger is 0        //***********************************************************************        public BigInteger()        {            data = new uint[maxLength];            dataLength = 1;        }        //***********************************************************************        // Constructor (Default value provided by long)        //***********************************************************************        public BigInteger(long value)        {            data = new uint[maxLength];            long tempVal = value;            // copy bytes from long to BigInteger without any assumption of            // the length of the long datatype            dataLength = 0;            while (value != 0 && dataLength < maxLength)            {                data[dataLength] = (uint)(value & 0xFFFFFFFF);                value >>= 32;                dataLength++;            }            if (tempVal > 0)         // overflow check for +ve value            {                if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0)                    throw (new ArithmeticException("Positive overflow in constructor."));            }            else if (tempVal < 0)    // underflow check for -ve value            {                if (value != -1 || (data[dataLength - 1] & 0x80000000) == 0)                    throw (new ArithmeticException("Negative underflow in constructor."));            }            if (dataLength == 0)                dataLength = 1;        }        //***********************************************************************        // Constructor (Default value provided by ulong)        //***********************************************************************        public BigInteger(ulong value)        {            data = new uint[maxLength];            // copy bytes from ulong to BigInteger without any assumption of            // the length of the ulong datatype            dataLength = 0;            while (value != 0 && dataLength < maxLength)            {                data[dataLength] = (uint)(value & 0xFFFFFFFF);                value >>= 32;                dataLength++;            }            if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0)                throw (new ArithmeticException("Positive overflow in constructor."));            if (dataLength == 0)                dataLength = 1;        }        //***********************************************************************        // Constructor (Default value provided by BigInteger)        //***********************************************************************        public BigInteger(BigInteger bi)        {            data = new uint[maxLength];            dataLength = bi.dataLength;            for (int i = 0; i < dataLength; i++)                data[i] = bi.data[i];        }        //***********************************************************************        // Constructor (Default value provided by a string of digits of the        //              specified base)        //        // Example (base 10)        // -----------------        // To initialize "a" with the default value of 1234 in base 10        //      BigInteger a = new BigInteger("1234", 10)        //        // To initialize "a" with the default value of -1234        //      BigInteger a = new BigInteger("-1234", 10)        //        // Example (base 16)        // -----------------        // To initialize "a" with the default value of 0x1D4F in base 16        //      BigInteger a = new BigInteger("1D4F", 16)        //        // To initialize "a" with the default value of -0x1D4F        //      BigInteger a = new BigInteger("-1D4F", 16)        //        // Note that string values are specified in the <sign><magnitude>        // format.        //        //***********************************************************************        public BigInteger(string value, int radix)        {            BigInteger multiplier = new BigInteger(1);            BigInteger result = new BigInteger();            value = (value.ToUpper()).Trim();            int limit = 0;            if (value[0] == '-')                limit = 1;            for (int i = value.Length - 1; i >= limit; i--)            {                int posVal = (int)value[i];                if (posVal >= '0' && posVal <= '9')                    posVal -= '0';                else if (posVal >= 'A' && posVal <= 'Z')                    posVal = (posVal - 'A') + 10;                else                    posVal = 9999999;       // arbitrary large                if (posVal >= radix)                    throw (new ArithmeticException("Invalid string in constructor."));                else                {                    if (value[0] == '-')                        posVal = -posVal;                    result = result + (multiplier * posVal);                    if ((i - 1) >= limit)                        multiplier = multiplier * radix;                }            }            if (value[0] == '-')     // negative values            {                if ((result.data[maxLength - 1] & 0x80000000) == 0)                    throw (new ArithmeticException("Negative underflow in constructor."));            }            else    // positive values            {                if ((result.data[maxLength - 1] & 0x80000000) != 0)                    throw (new ArithmeticException("Positive overflow in constructor."));            }            data = new uint[maxLength];            for (int i = 0; i < result.dataLength; i++)                data[i] = result.data[i];            dataLength = result.dataLength;        }        //***********************************************************************        // Constructor (Default value provided by an array of bytes)        //        // The lowest index of the input byte array (i.e [0]) should contain the        // most significant byte of the number, and the highest index should        // contain the least significant byte.        //        // E.g.        // To initialize "a" with the default value of 0x1D4F in base 16        //      byte[] temp = { 0x1D, 0x4F };        //      BigInteger a = new BigInteger(temp)        //        // Note that this method of initialization does not allow the        // sign to be specified.        //        //***********************************************************************        public BigInteger(byte[] inData)        {            dataLength = inData.Length >> 2;            int leftOver = inData.Length & 0x3;            if (leftOver != 0)         // length not multiples of 4                dataLength++;            if (dataLength > maxLength)                throw (new ArithmeticException("Byte overflow in constructor."));            data = new uint[maxLength];            for (int i = inData.Length - 1, j = 0; i >= 3; i -= 4, j++)            {                data[j] = (uint)((inData[i - 3] << 24) + (inData[i - 2] << 16) +                                 (inData[i - 1] << 8) + inData[i]);            }            if (leftOver == 1)                data[dataLength - 1] = (uint)inData[0];            else if (leftOver == 2)                data[dataLength - 1] = (uint)((inData[0] << 8) + inData[1]);            else if (leftOver == 3)                data[dataLength - 1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]);            while (dataLength > 1 && data[dataLength - 1] == 0)                dataLength--;            //Console.WriteLine("Len = " + dataLength);        }        //***********************************************************************        // Constructor (Default value provided by an array of bytes of the        // specified length.)        //***********************************************************************        public BigInteger(byte[] inData, int inLen)        {            dataLength = inLen >> 2;            int leftOver = inLen & 0x3;            if (leftOver != 0)         // length not multiples of 4                dataLength++;            if (dataLength > maxLength || inLen > inData.Length)                throw (new ArithmeticException("Byte overflow in constructor."));            data = new uint[maxLength];            for (int i = inLen - 1, j = 0; i >= 3; i -= 4, j++)            {                data[j] = (uint)((inData[i - 3] << 24) + (inData[i - 2] << 16) +                                 (inData[i - 1] << 8) + inData[i]);            }            if (leftOver == 1)                data[dataLength - 1] = (uint)inData[0];            else if (leftOver == 2)                data[dataLength - 1] = (uint)((inData[0] << 8) + inData[1]);            else if (leftOver == 3)                data[dataLength - 1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]);            if (dataLength == 0)                dataLength = 1;            while (dataLength > 1 && data[dataLength - 1] == 0)                dataLength--;            //Console.WriteLine("Len = " + dataLength);        }        //***********************************************************************        // Constructor (Default value provided by an array of unsigned integers)        //*********************************************************************        public BigInteger(uint[] inData)        {            dataLength = inData.Length;            if (dataLength > maxLength)                throw (new ArithmeticException("Byte overflow in constructor."));            data = new uint[maxLength];            for (int i = dataLength - 1, j = 0; i >= 0; i--, j++)                data[j] = inData[i];            while (dataLength > 1 && data[dataLength - 1] == 0)                dataLength--;            //Console.WriteLine("Len = " + dataLength);        }        //***********************************************************************        // Overloading of the typecast operator.        // For BigInteger bi = 10;        //***********************************************************************        public static implicit operator BigInteger(long value)        {            return (new BigInteger(value));        }        public static implicit operator BigInteger(ulong value)        {            return (new BigInteger(value));        }        public static implicit operator BigInteger(int value)        {            return (new BigInteger((long)value));        }        public static implicit operator BigInteger(uint value)        {            return (new BigInteger((ulong)value));        }        //***********************************************************************        // Overloading of addition operator        //***********************************************************************        public static BigInteger operator +(BigInteger bi1, BigInteger bi2)        {            BigInteger result = new BigInteger();            result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;            long carry = 0;            for (int i = 0; i < result.dataLength; i++)            {                long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry;                carry = sum >> 32;                result.data[i] = (uint)(sum & 0xFFFFFFFF);            }            if (carry != 0 && result.dataLength < maxLength)            {                result.data[result.dataLength] = (uint)(carry);                result.dataLength++;            }            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)                result.dataLength--;            // overflow check            int lastPos = maxLength - 1;            if ((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) &&               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))            {                throw (new ArithmeticException());            }            return result;        }        //***********************************************************************        // Overloading of the unary ++ operator        //***********************************************************************        public static BigInteger operator ++(BigInteger bi1)        {            BigInteger result = new BigInteger(bi1);            long val, carry = 1;            int index = 0;            while (carry != 0 && index < maxLength)            {                val = (long)(result.data[index]);                val++;                result.data[index] = (uint)(val & 0xFFFFFFFF);                carry = val >> 32;                index++;            }            if (index > result.dataLength)                result.dataLength = index;            else            {                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)                    result.dataLength--;            }            // overflow check            int lastPos = maxLength - 1;            // overflow if initial value was +ve but ++ caused a sign            // change to negative.            if ((bi1.data[lastPos] & 0x80000000) == 0 &&               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))            {                throw (new ArithmeticException("Overflow in ++."));            }            return result;        }        //***********************************************************************        // Overloading of subtraction operator        //***********************************************************************        public static BigInteger operator -(BigInteger bi1, BigInteger bi2)        {            BigInteger result = new BigInteger();            result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;            long carryIn = 0;            for (int i = 0; i < result.dataLength; i++)            {                long diff;                diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn;                result.data[i] = (uint)(diff & 0xFFFFFFFF);                if (diff < 0)                    carryIn = 1;                else                    carryIn = 0;            }            // roll over to negative            if (carryIn != 0)            {                for (int i = result.dataLength; i < maxLength; i++)                    result.data[i] = 0xFFFFFFFF;                result.dataLength = maxLength;            }            // fixed in v1.03 to give correct datalength for a - (-b)            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)                result.dataLength--;            // overflow check            int lastPos = maxLength - 1;            if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) &&               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))            {                throw (new ArithmeticException());            }            return result;        }        //***********************************************************************        // Overloading of the unary -- operator        //***********************************************************************        public static BigInteger operator --(BigInteger bi1)        {            BigInteger result = new BigInteger(bi1);            long val;            bool carryIn = true;            int index = 0;            while (carryIn && index < maxLength)            {                val = (long)(result.data[index]);                val--;                result.data[index] = (uint)(val & 0xFFFFFFFF);                if (val >= 0)                    carryIn = false;                index++;            }            if (index > result.dataLength)                result.dataLength = index;            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)                result.dataLength--;            // overflow check            int lastPos = maxLength - 1;            // overflow if initial value was -ve but -- caused a sign            // change to positive.            if ((bi1.data[lastPos] & 0x80000000) != 0 &&               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))            {                throw (new ArithmeticException("Underflow in --."));            }            return result;        }        //***********************************************************************        // Overloading of multiplication operator        //***********************************************************************        public static BigInteger operator *(BigInteger bi1, BigInteger bi2)        {            int lastPos = maxLength - 1;            bool bi1Neg = false, bi2Neg = false;            // take the absolute value of the inputs            try            {                if ((bi1.data[lastPos] & 0x80000000) != 0)     // bi1 negative                {                    bi1Neg = true; bi1 = -bi1;                }                if ((bi2.data[lastPos] & 0x80000000) != 0)     // bi2 negative                {                    bi2Neg = true; bi2 = -bi2;                }            }            catch (Exception) { }            BigInteger result = new BigInteger();            // multiply the absolute values            try            {                for (int i = 0; i < bi1.dataLength; i++)                {                    if (bi1.data[i] == 0) continue;                    ulong mcarry = 0;                    for (int j = 0, k = i; j < bi2.dataLength; j++, k++)                    {                        // k = i + j                        ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) +                                     (ulong)result.data[k] + mcarry;                        result.data[k] = (uint)(val & 0xFFFFFFFF);                        mcarry = (val >> 32);                    }                    if (mcarry != 0)                        result.data[i + bi2.dataLength] = (uint)mcarry;                }            }            catch (Exception)            {                throw (new ArithmeticException("Multiplication overflow."));            }            result.dataLength = bi1.dataLength + bi2.dataLength;            if (result.dataLength > maxLength)                result.dataLength = maxLength;            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)                result.dataLength--;            // overflow check (result is -ve)            if ((result.data[lastPos] & 0x80000000) != 0)            {                if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000)    // different sign                {                    // handle the special case where multiplication produces                    // a max negative number in 2's complement.                    if (result.dataLength == 1)                        return result;                    else                    {                        bool isMaxNeg = true;                        for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++)                        {                            if (result.data[i] != 0)                                isMaxNeg = false;                        }                        if (isMaxNeg)                            return result;                    }                }                throw (new ArithmeticException("Multiplication overflow."));            }            // if input has different signs, then result is -ve            if (bi1Neg != bi2Neg)                return -result;            return result;        }        //***********************************************************************        // Overloading of unary << operators        //***********************************************************************        public static BigInteger operator <<(BigInteger bi1, int shiftVal)        {            BigInteger result = new BigInteger(bi1);            result.dataLength = shiftLeft(result.data, shiftVal);            return result;        }        // least significant bits at lower part of buffer        private static int shiftLeft(uint[] buffer, int shiftVal)        {            int shiftAmount = 32;            int bufLen = buffer.Length;            while (bufLen > 1 && buffer[bufLen - 1] == 0)                bufLen--;            for (int count = shiftVal; count > 0; )            {                if (count < shiftAmount)                    shiftAmount = count;                //Console.WriteLine("shiftAmount = {0}", shiftAmount);                ulong carry = 0;                for (int i = 0; i < bufLen; i++)                {                    ulong val = ((ulong)buffer[i]) << shiftAmount;                    val |= carry;                    buffer[i] = (uint)(val & 0xFFFFFFFF);                    carry = val >> 32;                }                if (carry != 0)                {                    if (bufLen + 1 <= buffer.Length)                    {                        buffer[bufLen] = (uint)carry;                        bufLen++;                    }                }                count -= shiftAmount;            }            return bufLen;        }        //***********************************************************************        // Overloading of unary >> operators        //***********************************************************************        public static BigInteger operator >>(BigInteger bi1, int shiftVal)        {            BigInteger result = new BigInteger(bi1);            result.dataLength = shiftRight(result.data, shiftVal);            if ((bi1.data[maxLength - 1] & 0x80000000) != 0) // negative            {                for (int i = maxLength - 1; i >= result.dataLength; i--)                    result.data[i] = 0xFFFFFFFF;                uint mask = 0x80000000;                for (int i = 0; i < 32; i++)                {                    if ((result.data[result.dataLength - 1] & mask) != 0)                        break;                    result.data[result.dataLength - 1] |= mask;                    mask >>= 1;                }                result.dataLength = maxLength;            }            return result;        }        private static int shiftRight(uint[] buffer, int shiftVal)        {            int shiftAmount = 32;            int invShift = 0;            int bufLen = buffer.Length;            while (bufLen > 1 && buffer[bufLen - 1] == 0)                bufLen--;            //Console.WriteLine("bufLen = " + bufLen + " buffer.Length = " + buffer.Length);            for (int count = shiftVal; count > 0; )            {                if (count < shiftAmount)                {                    shiftAmount = count;                    invShift = 32 - shiftAmount;                }                //Console.WriteLine("shiftAmount = {0}", shiftAmount);                ulong carry = 0;                for (int i = bufLen - 1; i >= 0; i--)                {                    ulong val = ((ulong)buffer[i]) >> shiftAmount;                    val |= carry;                    carry = ((ulong)buffer[i]) << invShift;                    buffer[i] = (uint)(val);                }                count -= shiftAmount;            }            while (bufLen > 1 && buffer[bufLen - 1] == 0)                bufLen--;            return bufLen;        }        //***********************************************************************        // Overloading of the NOT operator (1's complement)        //***********************************************************************        public static BigInteger operator ~(BigInteger bi1)        {            BigInteger result = new BigInteger(bi1);            for (int i = 0; i < maxLength; i++)                result.data[i] = (uint)(~(bi1.data[i]));            result.dataLength = maxLength;            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)                result.dataLength--;            return result;        }        //***********************************************************************        // Overloading of the NEGATE operator (2's complement)        //***********************************************************************        public static BigInteger operator -(BigInteger bi1)        {            // handle neg of zero separately since it'll cause an overflow            // if we proceed.            if (bi1.dataLength == 1 && bi1.data[0] == 0)                return (new BigInteger());            BigInteger result = new BigInteger(bi1);            // 1's complement            for (int i = 0; i < maxLength; i++)                result.data[i] = (uint)(~(bi1.data[i]));            // add one to result of 1's complement            long val, carry = 1;            int index = 0;            while (carry != 0 && index < maxLength)            {                val = (long)(result.data[index]);                val++;                result.data[index] = (uint)(val & 0xFFFFFFFF);                carry = val >> 32;                index++;            }            if ((bi1.data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000))                throw (new ArithmeticException("Overflow in negation.\n"));            result.dataLength = maxLength;            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)                result.dataLength--;            return result;        }        //***********************************************************************        // Overloading of equality operator        //***********************************************************************        public static bool operator ==(BigInteger bi1, BigInteger bi2)        {            return bi1.Equals(bi2);        }        public static bool operator !=(BigInteger bi1, BigInteger bi2)        {            return !(bi1.Equals(bi2));        }        public override bool Equals(object o)        {            BigInteger bi = (BigInteger)o;            if (this.dataLength != bi.dataLength)                return false;            for (int i = 0; i < this.dataLength; i++)            {                if (this.data[i] != bi.data[i])                    return false;            }            return true;        }        public override int GetHashCode()        {            return this.ToString().GetHashCode();        }        //***********************************************************************        // Overloading of inequality operator        //***********************************************************************        public static bool operator >(BigInteger bi1, BigInteger bi2)        {            int pos = maxLength - 1;            // bi1 is negative, bi2 is positive            if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0)                return false;                // bi1 is positive, bi2 is negative            else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0)                return true;            // same sign            int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;            for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ;            if (pos >= 0)            {                if (bi1.data[pos] > bi2.data[pos])                    return true;                return false;            }            return false;        }        public static bool operator <(BigInteger bi1, BigInteger bi2)        {            int pos = maxLength - 1;            // bi1 is negative, bi2 is positive            if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0)                return true;                // bi1 is positive, bi2 is negative            else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0)                return false;            // same sign            int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;            for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ;            if (pos >= 0)            {                if (bi1.data[pos] < bi2.data[pos])                    return true;                return false;            }            return false;        }        public static bool operator >=(BigInteger bi1, BigInteger bi2)        {            return (bi1 == bi2 || bi1 > bi2);        }        public static bool operator <=(BigInteger bi1, BigInteger bi2)        {            return (bi1 == bi2 || bi1 < bi2);        }        //***********************************************************************        // Private function that supports the division of two numbers with        // a divisor that has more than 1 digit.        //        // Algorithm taken from [1]        //***********************************************************************        private static void multiByteDivide(BigInteger bi1, BigInteger bi2,                                            BigInteger outQuotient, BigInteger outRemainder)        {            uint[] result = new uint[maxLength];            int remainderLen = bi1.dataLength + 1;            uint[] remainder = new uint[remainderLen];            uint mask = 0x80000000;            uint val = bi2.data[bi2.dataLength - 1];            int shift = 0, resultPos = 0;            while (mask != 0 && (val & mask) == 0)            {                shift++; mask >>= 1;            }            //Console.WriteLine("shift = {0}", shift);            //Console.WriteLine("Before bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);            for (int i = 0; i < bi1.dataLength; i++)                remainder[i] = bi1.data[i];            shiftLeft(remainder, shift);            bi2 = bi2 << shift;            /*            Console.WriteLine("bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);            Console.WriteLine("dividend = " + bi1 + "\ndivisor = " + bi2);            for(int q = remainderLen - 1; q >= 0; q--)                    Console.Write("{0:x2}", remainder[q]);            Console.WriteLine();            */            int j = remainderLen - bi2.dataLength;            int pos = remainderLen - 1;            ulong firstDivisorByte = bi2.data[bi2.dataLength - 1];            ulong secondDivisorByte = bi2.data[bi2.dataLength - 2];            int divisorLen = bi2.dataLength + 1;            uint[] dividendPart = new uint[divisorLen];            while (j > 0)            {                ulong dividend = ((ulong)remainder[pos] << 32) + (ulong)remainder[pos - 1];                //Console.WriteLine("dividend = {0}", dividend);                ulong q_hat = dividend / firstDivisorByte;                ulong r_hat = dividend % firstDivisorByte;                //Console.WriteLine("q_hat = {0:X}, r_hat = {1:X}", q_hat, r_hat);                bool done = false;                while (!done)                {                    done = true;                    if (q_hat == 0x100000000 ||                       (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2]))                    {                        q_hat--;                        r_hat += firstDivisorByte;                        if (r_hat < 0x100000000)                            done = false;                    }                }                for (int h = 0; h < divisorLen; h++)                    dividendPart[h] = remainder[pos - h];                BigInteger kk = new BigInteger(dividendPart);                BigInteger ss = bi2 * (long)q_hat;                //Console.WriteLine("ss before = " + ss);                while (ss > kk)                {                    q_hat--;                    ss -= bi2;                    //Console.WriteLine(ss);                }                BigInteger yy = kk - ss;                //Console.WriteLine("ss = " + ss);                //Console.WriteLine("kk = " + kk);                //Console.WriteLine("yy = " + yy);                for (int h = 0; h < divisorLen; h++)                    remainder[pos - h] = yy.data[bi2.dataLength - h];                /*                Console.WriteLine("dividend = ");                for(int q = remainderLen - 1; q >= 0; q--)                        Console.Write("{0:x2}", remainder[q]);                Console.WriteLine("\n************ q_hat = {0:X}\n", q_hat);                */                result[resultPos++] = (uint)q_hat;                pos--;                j--;            }            outQuotient.dataLength = resultPos;            int y = 0;            for (int x = outQuotient.dataLength - 1; x >= 0; x--, y++)                outQuotient.data[y] = result[x];            for (; y < maxLength; y++)                outQuotient.data[y] = 0;            while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0)                outQuotient.dataLength--;            if (outQuotient.dataLength == 0)                outQuotient.dataLength = 1;            outRemainder.dataLength = shiftRight(remainder, shift);            for (y = 0; y < outRemainder.dataLength; y++)                outRemainder.data[y] = remainder[y];            for (; y < maxLength; y++)                outRemainder.data[y] = 0;        }        //***********************************************************************        // Private function that supports the division of two numbers with        // a divisor that has only 1 digit.        //***********************************************************************        private static void singleByteDivide(BigInteger bi1, BigInteger bi2,                                             BigInteger outQuotient, BigInteger outRemainder)        {            uint[] result = new uint[maxLength];            int resultPos = 0;            // copy dividend to reminder            for (int i = 0; i < maxLength; i++)                outRemainder.data[i] = bi1.data[i];            outRemainder.dataLength = bi1.dataLength;            while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0)                outRemainder.dataLength--;            ulong divisor = (ulong)bi2.data[0];            int pos = outRemainder.dataLength - 1;            ulong dividend = (ulong)outRemainder.data[pos];            //Console.WriteLine("divisor = " + divisor + " dividend = " + dividend);            //Console.WriteLine("divisor = " + bi2 + "\ndividend = " + bi1);            if (dividend >= divisor)            {                ulong quotient = dividend / divisor;                result[resultPos++] = (uint)quotient;                outRemainder.data[pos] = (uint)(dividend % divisor);            }            pos--;            while (pos >= 0)            {                //Console.WriteLine(pos);                dividend = ((ulong)outRemainder.data[pos + 1] << 32) + (ulong)outRemainder.data[pos];                ulong quotient = dividend / divisor;                result[resultPos++] = (uint)quotient;                outRemainder.data[pos + 1] = 0;                outRemainder.data[pos--] = (uint)(dividend % divisor);                //Console.WriteLine(">>>> " + bi1);            }            outQuotient.dataLength = resultPos;            int j = 0;            for (int i = outQuotient.dataLength - 1; i >= 0; i--, j++)                outQuotient.data[j] = result[i];            for (; j < maxLength; j++)                outQuotient.data[j] = 0;            while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0)                outQuotient.dataLength--;            if (outQuotient.dataLength == 0)                outQuotient.dataLength = 1;            while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0)                outRemainder.dataLength--;        }        //***********************************************************************        // Overloading of division operator        //***********************************************************************        public static BigInteger operator /(BigInteger bi1, BigInteger bi2)        {            BigInteger quotient = new BigInteger();            BigInteger remainder = new BigInteger();            int lastPos = maxLength - 1;            bool divisorNeg = false, dividendNeg = false;            if ((bi1.data[lastPos] & 0x80000000) != 0)     // bi1 negative            {                bi1 = -bi1;                dividendNeg = true;            }            if ((bi2.data[lastPos] & 0x80000000) != 0)     // bi2 negative            {                bi2 = -bi2;                divisorNeg = true;            }            if (bi1 < bi2)            {                return quotient;            }            else            {                if (bi2.dataLength == 1)                    singleByteDivide(bi1, bi2, quotient, remainder);                else                    multiByteDivide(bi1, bi2, quotient, remainder);                if (dividendNeg != divisorNeg)                    return -quotient;                return quotient;            }        }        //***********************************************************************        // Overloading of modulus operator        //***********************************************************************        public static BigInteger operator %(BigInteger bi1, BigInteger bi2)        {            BigInteger quotient = new BigInteger();            BigInteger remainder = new BigInteger(bi1);            int lastPos = maxLength - 1;            bool dividendNeg = false;            if ((bi1.data[lastPos] & 0x80000000) != 0)     // bi1 negative            {                bi1 = -bi1;                dividendNeg = true;            }            if ((bi2.data[lastPos] & 0x80000000) != 0)     // bi2 negative                bi2 = -bi2;            if (bi1 < bi2)            {                return remainder;            }            else            {                if (bi2.dataLength == 1)                    singleByteDivide(bi1, bi2, quotient, remainder);                else                    multiByteDivide(bi1, bi2, quotient, remainder);                if (dividendNeg)                    return -remainder;                return remainder;            }        }        //***********************************************************************        // Overloading of bitwise AND operator        //***********************************************************************        public static BigInteger operator &(BigInteger bi1, BigInteger bi2)        {            BigInteger result = new BigInteger();            int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;            for (int i = 0; i < len; i++)            {                uint sum = (uint)(bi1.data[i] & bi2.data[i]);                result.data[i] = sum;            }            result.dataLength = maxLength;            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)                result.dataLength--;            return result;        }        //***********************************************************************        // Overloading of bitwise OR operator        //***********************************************************************        public static BigInteger operator |(BigInteger bi1, BigInteger bi2)        {            BigInteger result = new BigInteger();            int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;            for (int i = 0; i < len; i++)            {                uint sum = (uint)(bi1.data[i] | bi2.data[i]);                result.data[i] = sum;            }            result.dataLength = maxLength;            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)                result.dataLength--;            return result;        }        //***********************************************************************        // Overloading of bitwise XOR operator        //***********************************************************************        public static BigInteger operator ^(BigInteger bi1, BigInteger bi2)        {            BigInteger result = new BigInteger();            int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;            for (int i = 0; i < len; i++)            {                uint sum = (uint)(bi1.data[i] ^ bi2.data[i]);                result.data[i] = sum;            }            result.dataLength = maxLength;            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)                result.dataLength--;            return result;        }        //***********************************************************************        // Returns max(this, bi)        //***********************************************************************        public BigInteger max(BigInteger bi)        {            if (this > bi)                return (new BigInteger(this));            else                return (new BigInteger(bi));        }        //***********************************************************************        // Returns min(this, bi)        //***********************************************************************        public BigInteger min(BigInteger bi)        {            if (this < bi)                return (new BigInteger(this));            else                return (new BigInteger(bi));        }        //***********************************************************************        // Returns the absolute value        //***********************************************************************        public BigInteger abs()        {            if ((this.data[maxLength - 1] & 0x80000000) != 0)                return (-this);            else                return (new BigInteger(this));        }        //***********************************************************************        // Returns a string representing the BigInteger in base 10.        //***********************************************************************        public override string ToString()        {            return ToString(10);        }        //***********************************************************************        // Returns a string representing the BigInteger in sign-and-magnitude        // format in the specified radix.        //        // Example        // -------        // If the value of BigInteger is -255 in base 10, then        // ToString(16) returns "-FF"        //        //***********************************************************************        public string ToString(int radix)        {            if (radix < 2 || radix > 36)                throw (new ArgumentException("Radix must be >= 2 and <= 36"));            string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";            string result = "";            BigInteger a = this;            bool negative = false;            if ((a.data[maxLength - 1] & 0x80000000) != 0)            {                negative = true;                try                {                    a = -a;                }                catch (Exception) { }            }            BigInteger quotient = new BigInteger();            BigInteger remainder = new BigInteger();            BigInteger biRadix = new BigInteger(radix);            if (a.dataLength == 1 && a.data[0] == 0)                result = "0";            else            {                while (a.dataLength > 1 || (a.dataLength == 1 && a.data[0] != 0))                {                    singleByteDivide(a, biRadix, quotient, remainder);                    if (remainder.data[0] < 10)                        result = remainder.data[0] + result;                    else                        result = charSet[(int)remainder.data[0] - 10] + result;                    a = quotient;                }                if (negative)                    result = "-" + result;            }            return result;        }        //***********************************************************************        // Returns a hex string showing the contains of the BigInteger        //        // Examples        // -------        // 1) If the value of BigInteger is 255 in base 10, then        //    ToHexString() returns "FF"        //        // 2) If the value of BigInteger is -255 in base 10, then        //    ToHexString() returns ".....FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF01",        //    which is the 2's complement representation of -255.        //        //***********************************************************************        public string ToHexString()        {            string result = data[dataLength - 1].ToString("X");            for (int i = dataLength - 2; i >= 0; i--)            {                result += data[i].ToString("X8");            }            return result;        }        //***********************************************************************        // Modulo Exponentiation        //***********************************************************************        public BigInteger modPow(BigInteger exp, BigInteger n)        {            if ((exp.data[maxLength - 1] & 0x80000000) != 0)                throw (new ArithmeticException("Positive exponents only."));            BigInteger resultNum = 1;            BigInteger tempNum;            bool thisNegative = false;            if ((this.data[maxLength - 1] & 0x80000000) != 0)   // negative this            {                tempNum = -this % n;                thisNegative = true;            }            else                tempNum = this % n;  // ensures (tempNum * tempNum) < b^(2k)            if ((n.data[maxLength - 1] & 0x80000000) != 0)   // negative n                n = -n;            // calculate constant = b^(2k) / m            BigInteger constant = new BigInteger();            int i = n.dataLength << 1;            constant.data[i] = 0x00000001;            constant.dataLength = i + 1;            constant = constant / n;            int totalBits = exp.bitCount();            int count = 0;            // perform squaring and multiply exponentiation            for (int pos = 0; pos < exp.dataLength; pos++)            {                uint mask = 0x01;                //Console.WriteLine("pos = " + pos);                for (int index = 0; index < 32; index++)                {                    if ((exp.data[pos] & mask) != 0)                        resultNum = BarrettReduction(resultNum * tempNum, n, constant);                    mask <<= 1;                    tempNum = BarrettReduction(tempNum * tempNum, n, constant);                    if (tempNum.dataLength == 1 && tempNum.data[0] == 1)                    {                        if (thisNegative && (exp.data[0] & 0x1) != 0)    //odd exp                            return -resultNum;                        return resultNum;                    }                    count++;                    if (count == totalBits)                        break;                }            }            if (thisNegative && (exp.data[0] & 0x1) != 0)    //odd exp                return -resultNum;            return resultNum;        }        //***********************************************************************        // Fast calculation of modular reduction using Barrett's reduction.        // Requires x < b^(2k), where b is the base.  In this case, base is        // 2^32 (uint).        //        // Reference [4]        //***********************************************************************        private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant)        {            int k = n.dataLength,                kPlusOne = k + 1,                kMinusOne = k - 1;            BigInteger q1 = new BigInteger();            // q1 = x / b^(k-1)            for (int i = kMinusOne, j = 0; i < x.dataLength; i++, j++)                q1.data[j] = x.data[i];            q1.dataLength = x.dataLength - kMinusOne;            if (q1.dataLength <= 0)                q1.dataLength = 1;            BigInteger q2 = q1 * constant;            BigInteger q3 = new BigInteger();            // q3 = q2 / b^(k+1)            for (int i = kPlusOne, j = 0; i < q2.dataLength; i++, j++)                q3.data[j] = q2.data[i];            q3.dataLength = q2.dataLength - kPlusOne;            if (q3.dataLength <= 0)                q3.dataLength = 1;            // r1 = x mod b^(k+1)            // i.e. keep the lowest (k+1) words            BigInteger r1 = new BigInteger();            int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength;            for (int i = 0; i < lengthToCopy; i++)                r1.data[i] = x.data[i];            r1.dataLength = lengthToCopy;            // r2 = (q3 * n) mod b^(k+1)            // partial multiplication of q3 and n            BigInteger r2 = new BigInteger();            for (int i = 0; i < q3.dataLength; i++)            {                if (q3.data[i] == 0) continue;                ulong mcarry = 0;                int t = i;                for (int j = 0; j < n.dataLength && t < kPlusOne; j++, t++)                {                    // t = i + j                    ulong val = ((ulong)q3.data[i] * (ulong)n.data[j]) +                                 (ulong)r2.data[t] + mcarry;                    r2.data[t] = (uint)(val & 0xFFFFFFFF);                    mcarry = (val >> 32);                }                if (t < kPlusOne)                    r2.data[t] = (uint)mcarry;            }            r2.dataLength = kPlusOne;            while (r2.dataLength > 1 && r2.data[r2.dataLength - 1] == 0)                r2.dataLength--;            r1 -= r2;            if ((r1.data[maxLength - 1] & 0x80000000) != 0)        // negative            {                BigInteger val = new BigInteger();                val.data[kPlusOne] = 0x00000001;                val.dataLength = kPlusOne + 1;                r1 += val;            }            while (r1 >= n)                r1 -= n;            return r1;        }        //***********************************************************************        // Returns gcd(this, bi)        //***********************************************************************        public BigInteger gcd(BigInteger bi)        {            BigInteger x;            BigInteger y;            if ((data[maxLength - 1] & 0x80000000) != 0)     // negative                x = -this;            else                x = this;            if ((bi.data[maxLength - 1] & 0x80000000) != 0)     // negative                y = -bi;            else                y = bi;            BigInteger g = y;            while (x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0))            {                g = x;                x = y % x;                y = g;            }            return g;        }        //***********************************************************************        // Populates "this" with the specified amount of random bits        //***********************************************************************        public void genRandomBits(int bits, Random rand)        {            int dwords = bits >> 5;            int remBits = bits & 0x1F;            if (remBits != 0)                dwords++;            if (dwords > maxLength)                throw (new ArithmeticException("Number of required bits > maxLength."));            for (int i = 0; i < dwords; i++)                data[i] = (uint)(rand.NextDouble() * 0x100000000);            for (int i = dwords; i < maxLength; i++)                data[i] = 0;            if (remBits != 0)            {                uint mask = (uint)(0x01 << (remBits - 1));                data[dwords - 1] |= mask;                mask = (uint)(0xFFFFFFFF >> (32 - remBits));                data[dwords - 1] &= mask;            }            else                data[dwords - 1] |= 0x80000000;            dataLength = dwords;            if (dataLength == 0)                dataLength = 1;        }        //***********************************************************************        // Returns the position of the most significant bit in the BigInteger.        //        // Eg.  The result is 0, if the value of BigInteger is 0...0000 0000        //      The result is 1, if the value of BigInteger is 0...0000 0001        //      The result is 2, if the value of BigInteger is 0...0000 0010        //      The result is 2, if the value of BigInteger is 0...0000 0011        //        //***********************************************************************        public int bitCount()        {            while (dataLength > 1 && data[dataLength - 1] == 0)                dataLength--;            uint value = data[dataLength - 1];            uint mask = 0x80000000;            int bits = 32;            while (bits > 0 && (value & mask) == 0)            {                bits--;                mask >>= 1;            }            bits += ((dataLength - 1) << 5);            return bits;        }        //***********************************************************************        // Probabilistic prime test based on Fermat's little theorem        //        // for any a < p (p does not divide a) if        //      a^(p-1) mod p != 1 then p is not prime.        //        // Otherwise, p is probably prime (pseudoprime to the chosen base).        //        // Returns        // -------        // True if "this" is a pseudoprime to randomly chosen        // bases.  The number of chosen bases is given by the "confidence"        // parameter.        //        // False if "this" is definitely NOT prime.        //        // Note - this method is fast but fails for Carmichael numbers except        // when the randomly chosen base is a factor of the number.        //        //***********************************************************************        public bool FermatLittleTest(int confidence)        {            BigInteger thisVal;            if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative                thisVal = -this;            else                thisVal = this;            if (thisVal.dataLength == 1)            {                // test small numbers                if (thisVal.data[0] == 0 || thisVal.data[0] == 1)                    return false;                else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)                    return true;            }            if ((thisVal.data[0] & 0x1) == 0)     // even numbers                return false;            int bits = thisVal.bitCount();            BigInteger a = new BigInteger();            BigInteger p_sub1 = thisVal - (new BigInteger(1));            Random rand = new Random();            for (int round = 0; round < confidence; round++)            {                bool done = false;                while (!done)// generate a < n                {                    int testBits = 0;                    // make sure "a" has at least 2 bits                    while (testBits < 2)                        testBits = (int)(rand.NextDouble() * bits);                    a.genRandomBits(testBits, rand);                    int byteLen = a.dataLength;                    // make sure "a" is not 0                    if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))                        done = true;                }                // check whether a factor exists (fix for version 1.03)                BigInteger gcdTest = a.gcd(thisVal);                if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)                    return false;                // calculate a^(p-1) mod p                BigInteger expResult = a.modPow(p_sub1, thisVal);                int resultLen = expResult.dataLength;                // is NOT prime is a^(p-1) mod p != 1                if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))                {                    //Console.WriteLine("a = " + a.ToString());                    return false;                }            }            return true;        }        //***********************************************************************        // Probabilistic prime test based on Rabin-Miller's        //        // for any p > 0 with p - 1 = 2^s * t        //        // p is probably prime (strong pseudoprime) if for any a < p,        // 1) a^t mod p = 1 or        // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1        //        // Otherwise, p is composite.        //        // Returns        // -------        // True if "this" is a strong pseudoprime to randomly chosen        // bases.  The number of chosen bases is given by the "confidence"        // parameter.        //        // False if "this" is definitely NOT prime.        //        //***********************************************************************        public bool RabinMillerTest(int confidence)        {            BigInteger thisVal;            if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative                thisVal = -this;            else                thisVal = this;            if (thisVal.dataLength == 1)            {                // test small numbers                if (thisVal.data[0] == 0 || thisVal.data[0] == 1)                    return false;                else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)                    return true;            }            if ((thisVal.data[0] & 0x1) == 0)     // even numbers                return false;            // calculate values of s and t            BigInteger p_sub1 = thisVal - (new BigInteger(1));            int s = 0;            for (int index = 0; index < p_sub1.dataLength; index++)            {                uint mask = 0x01;                for (int i = 0; i < 32; i++)                {                    if ((p_sub1.data[index] & mask) != 0)                    {                        index = p_sub1.dataLength;      // to break the outer loop                        break;                    }                    mask <<= 1;                    s++;                }            }            BigInteger t = p_sub1 >> s;            int bits = thisVal.bitCount();            BigInteger a = new BigInteger();            Random rand = new Random();            for (int round = 0; round < confidence; round++)            {                bool done = false;                while (!done)// generate a < n                {                    int testBits = 0;                    // make sure "a" has at least 2 bits                    while (testBits < 2)                        testBits = (int)(rand.NextDouble() * bits);                    a.genRandomBits(testBits, rand);                    int byteLen = a.dataLength;                    // make sure "a" is not 0                    if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))                        done = true;                }                // check whether a factor exists (fix for version 1.03)                BigInteger gcdTest = a.gcd(thisVal);                if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)                    return false;                BigInteger b = a.modPow(t, thisVal);                /*                Console.WriteLine("a = " + a.ToString(10));                Console.WriteLine("b = " + b.ToString(10));                Console.WriteLine("t = " + t.ToString(10));                Console.WriteLine("s = " + s);                */                bool result = false;                if (b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1                    result = true;                for (int j = 0; result == false && j < s; j++)                {                    if (b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1                    {                        result = true;                        break;                    }                    b = (b * b) % thisVal;                }                if (result == false)                    return false;            }            return true;        }        //***********************************************************************        // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)        //        // p is probably prime if for any a < p (a is not multiple of p),        // a^((p-1)/2) mod p = J(a, p)        //        // where J is the Jacobi symbol.        //        // Otherwise, p is composite.        //        // Returns        // -------        // True if "this" is a Euler pseudoprime to randomly chosen        // bases.  The number of chosen bases is given by the "confidence"        // parameter.        //        // False if "this" is definitely NOT prime.        //        //***********************************************************************        public bool SolovayStrassenTest(int confidence)        {            BigInteger thisVal;            if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative                thisVal = -this;            else                thisVal = this;            if (thisVal.dataLength == 1)            {                // test small numbers                if (thisVal.data[0] == 0 || thisVal.data[0] == 1)                    return false;                else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)                    return true;            }            if ((thisVal.data[0] & 0x1) == 0)     // even numbers                return false;            int bits = thisVal.bitCount();            BigInteger a = new BigInteger();            BigInteger p_sub1 = thisVal - 1;            BigInteger p_sub1_shift = p_sub1 >> 1;            Random rand = new Random();            for (int round = 0; round < confidence; round++)            {                bool done = false;                while (!done)// generate a < n                {                    int testBits = 0;                    // make sure "a" has at least 2 bits                    while (testBits < 2)                        testBits = (int)(rand.NextDouble() * bits);                    a.genRandomBits(testBits, rand);                    int byteLen = a.dataLength;                    // make sure "a" is not 0                    if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))                        done = true;                }                // check whether a factor exists (fix for version 1.03)                BigInteger gcdTest = a.gcd(thisVal);                if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)                    return false;                // calculate a^((p-1)/2) mod p                BigInteger expResult = a.modPow(p_sub1_shift, thisVal);                if (expResult == p_sub1)                    expResult = -1;                // calculate Jacobi symbol                BigInteger jacob = Jacobi(a, thisVal);                //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));                //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));                // if they are different then it is not prime                if (expResult != jacob)                    return false;            }            return true;        }        //***********************************************************************        // Implementation of the Lucas Strong Pseudo Prime test.        //        // Let n be an odd number with gcd(n,D) = 1, and n - J(D, n) = 2^s * d        // with d odd and s >= 0.        //        // If Ud mod n = 0 or V2^r*d mod n = 0 for some 0 <= r < s, then n        // is a strong Lucas pseudoprime with parameters (P, Q).  We select        // P and Q based on Selfridge.        //        // Returns True if number is a strong Lucus pseudo prime.        // Otherwise, returns False indicating that number is composite.        //***********************************************************************        public bool LucasStrongTest()        {            BigInteger thisVal;            if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative                thisVal = -this;            else                thisVal = this;            if (thisVal.dataLength == 1)            {                // test small numbers                if (thisVal.data[0] == 0 || thisVal.data[0] == 1)                    return false;                else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)                    return true;            }            if ((thisVal.data[0] & 0x1) == 0)     // even numbers                return false;            return LucasStrongTestHelper(thisVal);        }        private bool LucasStrongTestHelper(BigInteger thisVal)        {            // Do the test (selects D based on Selfridge)            // Let D be the first element of the sequence            // 5, -7, 9, -11, 13, ... for which J(D,n) = -1            // Let P = 1, Q = (1-D) / 4            long D = 5, sign = -1, dCount = 0;            bool done = false;            while (!done)            {                int Jresult = BigInteger.Jacobi(D, thisVal);                if (Jresult == -1)                    done = true;    // J(D, this) = 1                else                {                    if (Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found                        return false;                    if (dCount == 20)                    {                        // check for square                        BigInteger root = thisVal.sqrt();                        if (root * root == thisVal)                            return false;                    }                    //Console.WriteLine(D);                    D = (Math.Abs(D) + 2) * sign;                    sign = -sign;                }                dCount++;            }            long Q = (1 - D) >> 2;            /*            Console.WriteLine("D = " + D);            Console.WriteLine("Q = " + Q);            Console.WriteLine("(n,D) = " + thisVal.gcd(D));            Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));            Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));            */            BigInteger p_add1 = thisVal + 1;            int s = 0;            for (int index = 0; index < p_add1.dataLength; index++)            {                uint mask = 0x01;                for (int i = 0; i < 32; i++)                {                    if ((p_add1.data[index] & mask) != 0)                    {                        index = p_add1.dataLength;      // to break the outer loop                        break;                    }                    mask <<= 1;                    s++;                }            }            BigInteger t = p_add1 >> s;            // calculate constant = b^(2k) / m            // for Barrett Reduction            BigInteger constant = new BigInteger();            int nLen = thisVal.dataLength << 1;            constant.data[nLen] = 0x00000001;            constant.dataLength = nLen + 1;            constant = constant / thisVal;            BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);            bool isPrime = false;            if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||               (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))            {                // u(t) = 0 or V(t) = 0                isPrime = true;            }            for (int i = 1; i < s; i++)            {                if (!isPrime)                {                    // doubling of index                    lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);                    lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;                    //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;                    if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))                        isPrime = true;                }                lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k            }            if (isPrime)     // additional checks for composite numbers            {                // If n is prime and gcd(n, Q) == 1, then                // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n                BigInteger g = thisVal.gcd(Q);                if (g.dataLength == 1 && g.data[0] == 1)         // gcd(this, Q) == 1                {                    if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)                        lucas[2] += thisVal;                    BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;                    if ((temp.data[maxLength - 1] & 0x80000000) != 0)                        temp += thisVal;                    if (lucas[2] != temp)                        isPrime = false;                }            }            return isPrime;        }        //***********************************************************************        // Determines whether a number is probably prime, using the Rabin-Miller's        // test.  Before applying the test, the number is tested for divisibility        // by primes < 2000        //        // Returns true if number is probably prime.        //***********************************************************************        public bool isProbablePrime(int confidence)        {            BigInteger thisVal;            if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative                thisVal = -this;            else                thisVal = this;            // test for divisibility by primes < 2000            for (int p = 0; p < primesBelow2000.Length; p++)            {                BigInteger divisor = primesBelow2000[p];                if (divisor >= thisVal)                    break;                BigInteger resultNum = thisVal % divisor;                if (resultNum.IntValue() == 0)                {                    /*    Console.WriteLine("Not prime!  Divisible by {0}\n",                                      primesBelow2000[p]);                    */                    return false;                }            }            if (thisVal.RabinMillerTest(confidence))                return true;            else            {                //Console.WriteLine("Not prime!  Failed primality test\n");                return false;            }        }        //***********************************************************************        // Determines whether this BigInteger is probably prime using a        // combination of base 2 strong pseudoprime test and Lucas strong        // pseudoprime test.        //        // The sequence of the primality test is as follows,        //        // 1) Trial divisions are carried out using prime numbers below 2000.        //    if any of the primes divides this BigInteger, then it is not prime.        //        // 2) Perform base 2 strong pseudoprime test.  If this BigInteger is a        //    base 2 strong pseudoprime, proceed on to the next step.        //        // 3) Perform strong Lucas pseudoprime test.        //        // Returns True if this BigInteger is both a base 2 strong pseudoprime        // and a strong Lucas pseudoprime.        //        // For a detailed discussion of this primality test, see [6].        //        //***********************************************************************        public bool isProbablePrime()        {            BigInteger thisVal;            if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative                thisVal = -this;            else                thisVal = this;            if (thisVal.dataLength == 1)            {                // test small numbers                if (thisVal.data[0] == 0 || thisVal.data[0] == 1)                    return false;                else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)                    return true;            }            if ((thisVal.data[0] & 0x1) == 0)     // even numbers                return false;            // test for divisibility by primes < 2000            for (int p = 0; p < primesBelow2000.Length; p++)            {                BigInteger divisor = primesBelow2000[p];                if (divisor >= thisVal)                    break;                BigInteger resultNum = thisVal % divisor;                if (resultNum.IntValue() == 0)                {                    //Console.WriteLine("Not prime!  Divisible by {0}\n",                    //                  primesBelow2000[p]);                    return false;                }            }            // Perform BASE 2 Rabin-Miller Test            // calculate values of s and t            BigInteger p_sub1 = thisVal - (new BigInteger(1));            int s = 0;            for (int index = 0; index < p_sub1.dataLength; index++)            {                uint mask = 0x01;                for (int i = 0; i < 32; i++)                {                    if ((p_sub1.data[index] & mask) != 0)                    {                        index = p_sub1.dataLength;      // to break the outer loop                        break;                    }                    mask <<= 1;                    s++;                }            }            BigInteger t = p_sub1 >> s;            int bits = thisVal.bitCount();            BigInteger a = 2;            // b = a^t mod p            BigInteger b = a.modPow(t, thisVal);            bool result = false;            if (b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1                result = true;            for (int j = 0; result == false && j < s; j++)            {                if (b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1                {                    result = true;                    break;                }                b = (b * b) % thisVal;            }            // if number is strong pseudoprime to base 2, then do a strong lucas test            if (result)                result = LucasStrongTestHelper(thisVal);            return result;        }        //***********************************************************************        // Returns the lowest 4 bytes of the BigInteger as an int.        //***********************************************************************        public int IntValue()        {            return (int)data[0];        }        //***********************************************************************        // Returns the lowest 8 bytes of the BigInteger as a long.        //***********************************************************************        public long LongValue()        {            long val = 0;            val = (long)data[0];            try            {       // exception if maxLength = 1                val |= (long)data[1] << 32;            }            catch (Exception)            {                if ((data[0] & 0x80000000) != 0) // negative                    val = (int)data[0];            }            return val;        }        //***********************************************************************        // Computes the Jacobi Symbol for a and b.        // Algorithm adapted from [3] and [4] with some optimizations        //***********************************************************************        public static int Jacobi(BigInteger a, BigInteger b)        {            // Jacobi defined only for odd integers            if ((b.data[0] & 0x1) == 0)                throw (new ArgumentException("Jacobi defined only for odd integers."));            if (a >= b) a %= b;            if (a.dataLength == 1 && a.data[0] == 0) return 0;  // a == 0            if (a.dataLength == 1 && a.data[0] == 1) return 1;  // a == 1            if (a < 0)            {                if ((((b - 1).data[0]) & 0x2) == 0)       //if( (((b-1) >> 1).data[0] & 0x1) == 0)                    return Jacobi(-a, b);                else                    return -Jacobi(-a, b);            }            int e = 0;            for (int index = 0; index < a.dataLength; index++)            {                uint mask = 0x01;                for (int i = 0; i < 32; i++)                {                    if ((a.data[index] & mask) != 0)                    {                        index = a.dataLength;      // to break the outer loop                        break;                    }                    mask <<= 1;                    e++;                }            }            BigInteger a1 = a >> e;            int s = 1;            if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5))                s = -1;            if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3)                s = -s;            if (a1.dataLength == 1 && a1.data[0] == 1)                return s;            else                return (s * Jacobi(b % a1, a1));        }        //***********************************************************************        // Generates a positive BigInteger that is probably prime.        //***********************************************************************        public static BigInteger genPseudoPrime(int bits, int confidence, Random rand)        {            BigInteger result = new BigInteger();            bool done = false;            while (!done)            {                result.genRandomBits(bits, rand);                result.data[0] |= 0x01;// make it odd                // prime test                done = result.isProbablePrime(confidence);            }            return result;        }        //***********************************************************************        // Generates a random number with the specified number of bits such        // that gcd(number, this) = 1        //***********************************************************************        public BigInteger genCoPrime(int bits, Random rand)        {            bool done = false;            BigInteger result = new BigInteger();            while (!done)            {                result.genRandomBits(bits, rand);                //Console.WriteLine(result.ToString(16));                // gcd test                BigInteger g = result.gcd(this);                if (g.dataLength == 1 && g.data[0] == 1)                    done = true;            }            return result;        }        //***********************************************************************        // Returns the modulo inverse of this.  Throws ArithmeticException if        // the inverse does not exist.  (i.e. gcd(this, modulus) != 1)        //***********************************************************************        public BigInteger modInverse(BigInteger modulus)        {            BigInteger[] p = { 0, 1 };            BigInteger[] q = new BigInteger[2];    // quotients            BigInteger[] r = { 0, 0 };             // remainders            int step = 0;            BigInteger a = modulus;            BigInteger b = this;            while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0))            {                BigInteger quotient = new BigInteger();                BigInteger remainder = new BigInteger();                if (step > 1)                {                    BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;                    p[0] = p[1];                    p[1] = pval;                }                if (b.dataLength == 1)                    singleByteDivide(a, b, quotient, remainder);                else                    multiByteDivide(a, b, quotient, remainder);                /*                Console.WriteLine(quotient.dataLength);                Console.WriteLine("{0} = {1}({2}) + {3}  p = {4}", a.ToString(10),                                  b.ToString(10), quotient.ToString(10), remainder.ToString(10),                                  p[1].ToString(10));                */                q[0] = q[1];                r[0] = r[1];                q[1] = quotient; r[1] = remainder;                a = b;                b = remainder;                step++;            }            if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))                throw (new ArithmeticException("No inverse!"));            BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);            if ((result.data[maxLength - 1] & 0x80000000) != 0)                result += modulus;  // get the least positive modulus            return result;        }        //***********************************************************************        // Returns the value of the BigInteger as a byte array.  The lowest        // index contains the MSB.        //***********************************************************************        public byte[] getBytes()        {            int numBits = bitCount();            int numBytes = numBits >> 3;            if ((numBits & 0x7) != 0)                numBytes++;            byte[] result = new byte[numBytes];            //Console.WriteLine(result.Length);            int pos = 0;            uint tempVal, val = data[dataLength - 1];            if ((tempVal = (val >> 24 & 0xFF)) != 0)                result[pos++] = (byte)tempVal;            if ((tempVal = (val >> 16 & 0xFF)) != 0)                result[pos++] = (byte)tempVal;            if ((tempVal = (val >> 8 & 0xFF)) != 0)                result[pos++] = (byte)tempVal;            if ((tempVal = (val & 0xFF)) != 0)                result[pos++] = (byte)tempVal;            for (int i = dataLength - 2; i >= 0; i--, pos += 4)            {                val = data[i];                result[pos + 3] = (byte)(val & 0xFF);                val >>= 8;                result[pos + 2] = (byte)(val & 0xFF);                val >>= 8;                result[pos + 1] = (byte)(val & 0xFF);                val >>= 8;                result[pos] = (byte)(val & 0xFF);            }            return result;        }        //***********************************************************************        // Sets the value of the specified bit to 1        // The Least Significant Bit position is 0.        //***********************************************************************        public void setBit(uint bitNum)        {            uint bytePos = bitNum >> 5;             // divide by 32            byte bitPos = (byte)(bitNum & 0x1F);    // get the lowest 5 bits            uint mask = (uint)1 << bitPos;            this.data[bytePos] |= mask;            if (bytePos >= this.dataLength)                this.dataLength = (int)bytePos + 1;        }        //***********************************************************************        // Sets the value of the specified bit to 0        // The Least Significant Bit position is 0.        //***********************************************************************        public void unsetBit(uint bitNum)        {            uint bytePos = bitNum >> 5;            if (bytePos < this.dataLength)            {                byte bitPos = (byte)(bitNum & 0x1F);                uint mask = (uint)1 << bitPos;                uint mask2 = 0xFFFFFFFF ^ mask;                this.data[bytePos] &= mask2;                if (this.dataLength > 1 && this.data[this.dataLength - 1] == 0)                    this.dataLength--;            }        }        //***********************************************************************        // Returns a value that is equivalent to the integer square root        // of the BigInteger.        //        // The integer square root of "this" is defined as the largest integer n        // such that (n * n) <= this        //        //***********************************************************************        public BigInteger sqrt()        {            uint numBits = (uint)this.bitCount();            if ((numBits & 0x1) != 0)        // odd number of bits                numBits = (numBits >> 1) + 1;            else                numBits = (numBits >> 1);            uint bytePos = numBits >> 5;            byte bitPos = (byte)(numBits & 0x1F);            uint mask;            BigInteger result = new BigInteger();            if (bitPos == 0)                mask = 0x80000000;            else            {                mask = (uint)1 << bitPos;                bytePos++;            }            result.dataLength = (int)bytePos;            for (int i = (int)bytePos - 1; i >= 0; i--)            {                while (mask != 0)                {                    // guess                    result.data[i] ^= mask;                    // undo the guess if its square is larger than this                    if ((result * result) > this)                        result.data[i] ^= mask;                    mask >>= 1;                }                mask = 0x80000000;            }            return result;        }        //***********************************************************************        // Returns the k_th number in the Lucas Sequence reduced modulo n.        //        // Uses index doubling to speed up the process.  For example, to calculate V(k),        // we maintain two numbers in the sequence V(n) and V(n+1).        //        // To obtain V(2n), we use the identity        //      V(2n) = (V(n) * V(n)) - (2 * Q^n)        // To obtain V(2n+1), we first write it as        //      V(2n+1) = V((n+1) + n)        // and use the identity        //      V(m+n) = V(m) * V(n) - Q * V(m-n)        // Hence,        //      V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)        //                   = V(n+1) * V(n) - Q^n * V(1)        //                   = V(n+1) * V(n) - Q^n * P        //        // We use k in its binary expansion and perform index doubling for each        // bit position.  For each bit position that is set, we perform an        // index doubling followed by an index addition.  This means that for V(n),        // we need to update it to V(2n+1).  For V(n+1), we need to update it to        // V((2n+1)+1) = V(2*(n+1))        //        // This function returns        // [0] = U(k)        // [1] = V(k)        // [2] = Q^n        //        // Where U(0) = 0 % n, U(1) = 1 % n        //       V(0) = 2 % n, V(1) = P % n        //***********************************************************************        public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q,                                                 BigInteger k, BigInteger n)        {            if (k.dataLength == 1 && k.data[0] == 0)            {                BigInteger[] result = new BigInteger[3];                result[0] = 0; result[1] = 2 % n; result[2] = 1 % n;                return result;            }            // calculate constant = b^(2k) / m            // for Barrett Reduction            BigInteger constant = new BigInteger();            int nLen = n.dataLength << 1;            constant.data[nLen] = 0x00000001;            constant.dataLength = nLen + 1;            constant = constant / n;            // calculate values of s and t            int s = 0;            for (int index = 0; index < k.dataLength; index++)            {                uint mask = 0x01;                for (int i = 0; i < 32; i++)                {                    if ((k.data[index] & mask) != 0)                    {                        index = k.dataLength;      // to break the outer loop                        break;                    }                    mask <<= 1;                    s++;                }            }            BigInteger t = k >> s;            //Console.WriteLine("s = " + s + " t = " + t);            return LucasSequenceHelper(P, Q, t, n, constant, s);        }        //***********************************************************************        // Performs the calculation of the kth term in the Lucas Sequence.        // For details of the algorithm, see reference [9].        //        // k must be odd.  i.e LSB == 1        //***********************************************************************        private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,                                                        BigInteger k, BigInteger n,                                                        BigInteger constant, int s)        {            BigInteger[] result = new BigInteger[3];            if ((k.data[0] & 0x00000001) == 0)                throw (new ArgumentException("Argument k must be odd."));            int numbits = k.bitCount();            uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);            // v = v0, v1 = v1, u1 = u1, Q_k = Q^0            BigInteger v = 2 % n, Q_k = 1 % n,                       v1 = P % n, u1 = Q_k;            bool flag = true;            for (int i = k.dataLength - 1; i >= 0; i--)     // iterate on the binary expansion of k            {                //Console.WriteLine("round");                while (mask != 0)                {                    if (i == 0 && mask == 0x00000001)        // last bit                        break;                    if ((k.data[i] & mask) != 0)             // bit is set                    {                        // index doubling with addition                        u1 = (u1 * v1) % n;                        v = ((v * v1) - (P * Q_k)) % n;                        v1 = n.BarrettReduction(v1 * v1, n, constant);                        v1 = (v1 - ((Q_k * Q) << 1)) % n;                        if (flag)                            flag = false;                        else                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);                        Q_k = (Q_k * Q) % n;                    }                    else                    {                        // index doubling                        u1 = ((u1 * v) - Q_k) % n;                        v1 = ((v * v1) - (P * Q_k)) % n;                        v = n.BarrettReduction(v * v, n, constant);                        v = (v - (Q_k << 1)) % n;                        if (flag)                        {                            Q_k = Q % n;                            flag = false;                        }                        else                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);                    }                    mask >>= 1;                }                mask = 0x80000000;            }            // at this point u1 = u(n+1) and v = v(n)            // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)            u1 = ((u1 * v) - Q_k) % n;            v = ((v * v1) - (P * Q_k)) % n;            if (flag)                flag = false;            else                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);            Q_k = (Q_k * Q) % n;            for (int i = 0; i < s; i++)            {                // index doubling                u1 = (u1 * v) % n;                v = ((v * v) - (Q_k << 1)) % n;                if (flag)                {                    Q_k = Q % n;                    flag = false;                }                else                    Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);            }            result[0] = u1;            result[1] = v;            result[2] = Q_k;            return result;        }        //***********************************************************************        // Tests the correct implementation of the /, %, * and + operators        //***********************************************************************        public static void MulDivTest(int rounds)        {            Random rand = new Random();            byte[] val = new byte[64];            byte[] val2 = new byte[64];            for (int count = 0; count < rounds; count++)            {                // generate 2 numbers of random length                int t1 = 0;                while (t1 == 0)                    t1 = (int)(rand.NextDouble() * 65);                int t2 = 0;                while (t2 == 0)                    t2 = (int)(rand.NextDouble() * 65);                bool done = false;                while (!done)                {                    for (int i = 0; i < 64; i++)                    {                        if (i < t1)                            val[i] = (byte)(rand.NextDouble() * 256);                        else                            val[i] = 0;                        if (val[i] != 0)                            done = true;                    }                }                done = false;                while (!done)                {                    for (int i = 0; i < 64; i++)                    {                        if (i < t2)                            val2[i] = (byte)(rand.NextDouble() * 256);                        else                            val2[i] = 0;                        if (val2[i] != 0)                            done = true;                    }                }                while (val[0] == 0)                    val[0] = (byte)(rand.NextDouble() * 256);                while (val2[0] == 0)                    val2[0] = (byte)(rand.NextDouble() * 256);                Console.WriteLine(count);                BigInteger bn1 = new BigInteger(val, t1);                BigInteger bn2 = new BigInteger(val2, t2);                // Determine the quotient and remainder by dividing                // the first number by the second.                BigInteger bn3 = bn1 / bn2;                BigInteger bn4 = bn1 % bn2;                // Recalculate the number                BigInteger bn5 = (bn3 * bn2) + bn4;                // Make sure they're the same                if (bn5 != bn1)                {                    Console.WriteLine("Error at " + count);                    Console.WriteLine(bn1 + "\n");                    Console.WriteLine(bn2 + "\n");                    Console.WriteLine(bn3 + "\n");                    Console.WriteLine(bn4 + "\n");                    Console.WriteLine(bn5 + "\n");                    return;                }            }        }        //***********************************************************************        // Tests the correct implementation of the modulo exponential function        // using RSA encryption and decryption (using pre-computed encryption and        // decryption keys).        //***********************************************************************        public static void RSATest(int rounds)        {            Random rand = new Random(1);            byte[] val = new byte[64];            // private and public key            BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16);            BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16);            BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16);            Console.WriteLine("e =\n" + bi_e.ToString(10));            Console.WriteLine("\nd =\n" + bi_d.ToString(10));            Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");            for (int count = 0; count < rounds; count++)            {                // generate data of random length                int t1 = 0;                while (t1 == 0)                    t1 = (int)(rand.NextDouble() * 65);                bool done = false;                while (!done)                {                    for (int i = 0; i < 64; i++)                    {                        if (i < t1)                            val[i] = (byte)(rand.NextDouble() * 256);                        else                            val[i] = 0;                        if (val[i] != 0)                            done = true;                    }                }                while (val[0] == 0)                    val[0] = (byte)(rand.NextDouble() * 256);                Console.Write("Round = " + count);                // encrypt and decrypt data                BigInteger bi_data = new BigInteger(val, t1);                BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);                BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);                // compare                if (bi_decrypted != bi_data)                {                    Console.WriteLine("\nError at round " + count);                    Console.WriteLine(bi_data + "\n");                    return;                }                Console.WriteLine(" <PASSED>.");            }        }        //***********************************************************************        // Tests the correct implementation of the modulo exponential and        // inverse modulo functions using RSA encryption and decryption.  The two        // pseudoprimes p and q are fixed, but the two RSA keys are generated        // for each round of testing.        //***********************************************************************        public static void RSATest2(int rounds)        {            Random rand = new Random();            byte[] val = new byte[64];            byte[] pseudoPrime1 = {                        (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,                        (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,                        (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,                        (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,                        (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,                        (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,                        (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,                        (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,                        (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,                        (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,                        (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,                };            byte[] pseudoPrime2 = {                        (byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,                        (byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,                        (byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,                        (byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,                        (byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,                        (byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,                        (byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,                        (byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,                        (byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,                        (byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,                        (byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,                };            BigInteger bi_p = new BigInteger(pseudoPrime1);            BigInteger bi_q = new BigInteger(pseudoPrime2);            BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);            BigInteger bi_n = bi_p * bi_q;            for (int count = 0; count < rounds; count++)            {                // generate private and public key                BigInteger bi_e = bi_pq.genCoPrime(512, rand);                BigInteger bi_d = bi_e.modInverse(bi_pq);                Console.WriteLine("\ne =\n" + bi_e.ToString(10));                Console.WriteLine("\nd =\n" + bi_d.ToString(10));                Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");                // generate data of random length                int t1 = 0;                while (t1 == 0)                    t1 = (int)(rand.NextDouble() * 65);                bool done = false;                while (!done)                {                    for (int i = 0; i < 64; i++)                    {                        if (i < t1)                            val[i] = (byte)(rand.NextDouble() * 256);                        else                            val[i] = 0;                        if (val[i] != 0)                            done = true;                    }                }                while (val[0] == 0)                    val[0] = (byte)(rand.NextDouble() * 256);                Console.Write("Round = " + count);                // encrypt and decrypt data                BigInteger bi_data = new BigInteger(val, t1);                BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);                BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);                // compare                if (bi_decrypted != bi_data)                {                    Console.WriteLine("\nError at round " + count);                    Console.WriteLine(bi_data + "\n");                    return;                }                Console.WriteLine(" <PASSED>.");            }        }        //***********************************************************************        // Tests the correct implementation of sqrt() method.        //***********************************************************************        public static void SqrtTest(int rounds)        {            Random rand = new Random();            for (int count = 0; count < rounds; count++)            {                // generate data of random length                int t1 = 0;                while (t1 == 0)                    t1 = (int)(rand.NextDouble() * 1024);                Console.Write("Round = " + count);                BigInteger a = new BigInteger();                a.genRandomBits(t1, rand);                BigInteger b = a.sqrt();                BigInteger c = (b + 1) * (b + 1);                // check that b is the largest integer such that b*b <= a                if (c <= a)                {                    Console.WriteLine("\nError at round " + count);                    Console.WriteLine(a + "\n");                    return;                }                Console.WriteLine(" <PASSED>.");            }        }         }}


using System;using System.Collections.Generic;using System.Linq;using System.Security.Cryptography;using System.Text;namespace RSATest{    /// <summary>    /// 非对称RSA加密类 可以参考    /// http://www.cnblogs.com/hhh/archive/2011/06/03/2070692.html    /// http://blog.csdn.net/zhilunchen/article/details/2943158    /// 若是私匙加密 则需公钥解密    /// 反正公钥加密 私匙来解密    /// 需要BigInteger类来辅助    /// </summary>    public static class RSAHelper    {        /// <summary>        /// RSA的容器 可以解密的源字符串长度为 DWKEYSIZE/8-11         /// </summary>        public const int DWKEYSIZE = 1024;        /// <summary>        /// RSA加密的密匙结构  公钥和私匙        /// </summary>        public struct RSAKey        {            public string PublicKey { get; set; }            public string PrivateKey { get; set; }        }        #region 得到RSA的解谜的密匙对        /// <summary>        /// 得到RSA的解谜的密匙对        /// </summary>        /// <returns></returns>        public static RSAKey GetRASKey()        {            RSACryptoServiceProvider.UseMachineKeyStore = true;            //声明一个指定大小的RSA容器            RSACryptoServiceProvider rsaProvider = new RSACryptoServiceProvider(DWKEYSIZE);            //取得RSA容易里的各种参数            RSAParameters p = rsaProvider.ExportParameters(true);            return new RSAKey()            {                PublicKey = ComponentKey(p.Exponent,p.Modulus),                PrivateKey = ComponentKey(p.D,p.Modulus)            };        }        #endregion        #region 检查明文的有效性 DWKEYSIZE/8-11 长度之内为有效 中英文都算一个字符        /// <summary>        /// 检查明文的有效性 DWKEYSIZE/8-11 长度之内为有效 中英文都算一个字符        /// </summary>        /// <param name="source"></param>        /// <returns></returns>        public static bool CheckSourceValidate(string source)        {            return (DWKEYSIZE / 8 - 11) >= source.Length;        }        #endregion        #region 组合解析密匙        /// <summary>        /// 组合成密匙字符串        /// </summary>        /// <param name="b1"></param>        /// <param name="b2"></param>        /// <returns></returns>        private static string ComponentKey(byte[] b1, byte[] b2)        {            List<byte> list = new List<byte>();            //在前端加上第一个数组的长度值 这样今后可以根据这个值分别取出来两个数组            list.Add((byte)b1.Length);            list.AddRange(b1);            list.AddRange(b2);            byte[] b = list.ToArray<byte>();            return Convert.ToBase64String(b);        }        /// <summary>        /// 解析密匙        /// </summary>        /// <param name="key">密匙</param>        /// <param name="b1">RSA的相应参数1</param>        /// <param name="b2">RSA的相应参数2</param>        private static void ResolveKey(string key, out byte[] b1, out byte[] b2)        {            //从base64字符串 解析成原来的字节数组            byte[] b = Convert.FromBase64String(key);            //初始化参数的数组长度            b1=new byte[b[0]];            b2=new byte[b.Length-b[0]-1];            //将相应位置是值放进相应的数组            for (int n = 1, i = 0, j = 0; n < b.Length; n++)            {                if (n <= b[0])                {                    b1[i++] = b[n];                }                else {                    b2[j++] = b[n];                }            }        }        #endregion        #region 字符串加密解密 公开方法        /// <summary>        /// 字符串加密        /// </summary>        /// <param name="source">源字符串 明文</param>        /// <param name="key">密匙</param>        /// <returns>加密遇到错误将会返回原字符串</returns>        public static string EncryptString(string source,string key)        {            string encryptString = string.Empty;            byte[] d;            byte[] n;            try            {                if (!CheckSourceValidate(source))                {                    throw new Exception("source string too long");                }                //解析这个密钥                ResolveKey(key, out d, out n);                BigInteger biN = new BigInteger(n);                BigInteger biD = new BigInteger(d);                encryptString= EncryptString(source, biD, biN);            }            catch            {                encryptString = source;            }            return encryptString;        }        /// <summary>        /// 字符串解密        /// </summary>        /// <param name="encryptString">密文</param>        /// <param name="key">密钥</param>        /// <returns>遇到解密失败将会返回原字符串</returns>        public static string DecryptString(string encryptString, string key)        {            string source = string.Empty;            byte[] e;            byte[] n;            try            {                //解析这个密钥                ResolveKey(key, out e, out n);                BigInteger biE = new BigInteger(e);                BigInteger biN = new BigInteger(n);                source = DecryptString(encryptString, biE, biN);            }            catch {                source = encryptString;            }            return source;        }        #endregion        #region 字符串加密解密 私有  实现加解密的实现方法        /// <summary>        /// 用指定的密匙加密         /// </summary>        /// <param name="source">明文</param>        /// <param name="d">可以是RSACryptoServiceProvider生成的D</param>        /// <param name="n">可以是RSACryptoServiceProvider生成的Modulus</param>        /// <returns>返回密文</returns>        private static string EncryptString(string source, BigInteger d, BigInteger n)        {            int len = source.Length;            int len1 = 0;            int blockLen = 0;            if ((len % 128) == 0)                len1 = len / 128;            else                len1 = len / 128 + 1;            string block = "";            StringBuilder result = new StringBuilder();            for (int i = 0; i < len1; i++)            {                if (len >= 128)                    blockLen = 128;                else                    blockLen = len;                block = source.Substring(i * 128, blockLen);                byte[] oText = System.Text.Encoding.Default.GetBytes(block);                BigInteger biText = new BigInteger(oText);                BigInteger biEnText = biText.modPow(d, n);                string temp = biEnText.ToHexString();                result.Append(temp).Append("@");                len -= blockLen;            }            return result.ToString().TrimEnd('@');        }        /// <summary>        /// 用指定的密匙加密         /// </summary>        /// <param name="source">密文</param>        /// <param name="e">可以是RSACryptoServiceProvider生成的Exponent</param>        /// <param name="n">可以是RSACryptoServiceProvider生成的Modulus</param>        /// <returns>返回明文</returns>        private static string DecryptString(string encryptString, BigInteger e, BigInteger n)        {            StringBuilder result = new StringBuilder();            string[] strarr1 = encryptString.Split(new char[] { '@' }, StringSplitOptions.RemoveEmptyEntries);            for (int i = 0; i < strarr1.Length; i++)            {                string block = strarr1[i];                BigInteger biText = new BigInteger(block, 16);                BigInteger biEnText = biText.modPow(e, n);                string temp = System.Text.Encoding.Default.GetString(biEnText.getBytes());                result.Append(temp);            }            return result.ToString();        }        #endregion    }}

测试程序:

using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace RSATest{    class Program    {        static void Main(string[] args)        {            string str = "{\"sc\":\"his51\",\"no\":\"1\",\"na\":\"管理员\"}{\"sc\":\"@his51\",\"no\":\"1\",\"na\":\"管理员\"}{\"sc\":\"his51\",\"no\":\"1\",\"na\":\"管员\"}{\"sc\":\"his522";            RSAHelper.RSAKey keyPair = RSAHelper.GetRASKey();            Console.WriteLine("加密前:"+str+"\r\n");            Console.WriteLine("公钥:" + keyPair.PublicKey + "\r\n");            Console.WriteLine("私钥:" + keyPair.PrivateKey + "\r\n");            string en = RSAHelper.EncryptString(str, keyPair.PrivateKey);            Console.WriteLine("加密后:"+en + "\r\n");            Console.WriteLine("解密:"+RSAHelper.DecryptString(en, keyPair.PublicKey) + "\r\n");            Console.ReadLine();        }    }}


0 0