Executor线程池解析

来源:互联网 发布:中西方音乐文化知乎 编辑:程序博客网 时间:2024/05/22 03:03

1 概述

Executor 框架是一个根据一组执行策略调用,调度,执行和控制的异步任务的框架。其位于java.util.concurrent包中。它提供了一种将”任务提交”与”任务运行”分离开来的机制。
线程池有两个作用:

1、避免thread不断创建销毁的开销;2、通过使用线程池可以限制这些任务所消耗的资源,比如最大线程数,最大的消息缓冲池等,已达到最佳的运行效果。

其包含了一系列的接口,和实现类,工具类等,实现了一套线程池机制,线程池包含一个任务队列和多个线程。首先添加任务进任务队列,然后在启动规定个数的线程执行队列中的任务,剩下的任务则在队列中排队等待。线程池有空闲线程的时候会从队列头部取一个新的任务执行。

2 Executor

Java里面线程池的顶级接口是Executor,定义了一个接口,表示可以执行Runnable方法。

public interface Executor {    void execute(Runnable command);}

3 ExecutorService

ExecutorService接口扩展了Executor接口,增加了很多线程池相关方法,即一些生命周期管理的方法。ExecutorService的生命周期有三种状态:运行,关闭,终止。ExecutorService创建时处于运行状态。当调用ExecutorService.shutdown()后,处于关闭状态,isShutdown()方法返回true。这时,不应该再想Executor中添加任务,所有已添加的任务执行完毕后,Executor处于终止状态,isTerminated()返回true。

其中shutdown和shutdownNow的区别是,前者拒绝添加新任务进来,但是会执行完当前正在执行的和队列中的线程,后者是直接结束所有正在运行的线程,删除等待队列中的线程。

public interface ExecutorService extends Executor {    void shutdown();    List<Runnable> shutdownNow();    boolean isShutdown();    boolean isTerminated();    //阻塞在这个方法,等待所有子线程执行结束后继续运行后面的代码。    boolean awaitTermination(long timeout, TimeUnit unit)        throws InterruptedException;    <T> Future<T> submit(Callable<T> task);    <T> Future<T> submit(Runnable task, T result);    Future<?> submit(Runnable task);}

ExecutoreService提供了submit()方法,传递一个Callable,或Runnable,返回Future。如果ExecutoreService后台线程池还没有完成Callable的运行,这调用返回Future对象的get()方法,会阻塞直到运行完成。

4、ThreadPoolExecutor

ExecutorService接口的默认实现类,继承了AbstractExecutorService。

4.1 构造方法如下:

private final BlockingQueue<Runnable> workQueue;              // 阻塞队列  private final ReentrantLock mainLock = new ReentrantLock();   // 互斥锁  private final HashSet<Worker> workers = new HashSet<Worker>();// 线程集合.一个Worker对应一个线程  private final Condition termination = mainLock.newCondition();// 终止条件  private int largestPoolSize;           // 线程池中线程数量曾经达到过的最大值。  private long completedTaskCount;       // 已完成任务数量  private volatile ThreadFactory threadFactory;     // ThreadFactory对象,用于创建线程。  private volatile RejectedExecutionHandler handler;// 拒绝策略的处理句柄  private volatile long keepAliveTime;   // 线程池维护的线程所允许的空闲时间,超过这个时间的线程若无任务处理,将会被销毁。  private volatile boolean allowCoreThreadTimeOut;  private volatile int corePoolSize;     // 线程池维护线程的最小数量,哪怕是空闲的。  private volatile int maximumPoolSize;  // 线程池维护的最大线程数量  public ThreadPoolExecutor(int corePoolSize,                          int maximumPoolSize,                          long keepAliveTime,                          TimeUnit unit,                          BlockingQueue<Runnable> workQueue) {    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,         Executors.defaultThreadFactory(), defaultHandler);}public ThreadPoolExecutor(int corePoolSize,                          int maximumPoolSize,                          long keepAliveTime,                          TimeUnit unit,                          BlockingQueue<Runnable> workQueue,                          ThreadFactory threadFactory) {    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,         threadFactory, defaultHandler);}public ThreadPoolExecutor(int corePoolSize,                          int maximumPoolSize,                          long keepAliveTime,                          TimeUnit unit,                          BlockingQueue<Runnable> workQueue,                          RejectedExecutionHandler handler) {    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,         Executors.defaultThreadFactory(), handler);}public ThreadPoolExecutor(int corePoolSize,                          int maximumPoolSize,                          long keepAliveTime,                          TimeUnit unit,                          BlockingQueue<Runnable> workQueue,                          ThreadFactory threadFactory,                          RejectedExecutionHandler handler) {    if (corePoolSize < 0 ||        maximumPoolSize <= 0 ||        maximumPoolSize < corePoolSize ||        keepAliveTime < 0)        throw new IllegalArgumentException();    if (workQueue == null || threadFactory == null || handler == null)        throw new NullPointerException();    this.corePoolSize = corePoolSize;    this.maximumPoolSize = maximumPoolSize;    this.workQueue = workQueue;    this.keepAliveTime = unit.toNanos(keepAliveTime);    this.threadFactory = threadFactory;    this.handler = handler;}   

4.2参数分析:

corePoolSize与maximumPoolSize 前者是最少线程数,后者是最大线程数。

若执行execute方法添加新任务:

1.若当前线程数小于corePoolSize的时候,则直接创建新线程执行;

2.若当前线程数等于corePoolSize,且workQueue未满,则请求添加到workQueue中排队等待。

3.若当前线程数等于corePoolSize小于maximumPoolSize,且workQueue已满,则创建新线程处理任务。

4.若当前线程数等于maximumPoolSize,且workQueue已满,则通过handler所指定的策略来处理新请求。具体策略,参考后面RejectedExecutionHandler

5.若将maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。

6.当线程数大于corePoolSize的时候,多余的线程会等待keepAliveTime长的时间,如果无请求可处理就自行销毁。

BlockingQueue BlockingQueue是一个接口,规定了当队列为空或者已满的时候,需要阻塞以等待生产者/消费者协同操作并唤醒线程。该缓冲队列的长度决定了能够缓冲的最大数量。

public interface BlockingQueue<E> extends Queue<E> {   boolean add(E e);   boolean offer(E e);   void put(E e) throws InterruptedException;   boolean offer(E e, long timeout, TimeUnit unit)       throws InterruptedException;   E take() throws InterruptedException;   E poll(long timeout, TimeUnit unit)       throws InterruptedException;   int remainingCapacity();   boolean remove(Object o);   public boolean contains(Object o);   int drainTo(Collection<? super E> c);   int drainTo(Collection<? super E> c, int maxElements);}

缓冲队列有三种通用策略:

1、 直接提交: 例如SynchronousQueue,此队列是将任务直接提交给线程,而不保持它们。若不存在可用于立即运行的线程,则创建一个新线程。此策略可避免在处理可能具有内部依赖性的请求集时出现锁。

2、无界队列:例如,不具有预定义容量的LinkedBlockingQueue,此此队列将导致在所有corePoolSize 线程都忙时新任务在队列中等待。maximumPoolSize失去意义,因为最大线程数就是corePoolSize。

3、有界队列:如 ArrayBlockingQueue,有助于防止资源耗尽

ThreadFactory 创建线程的工厂。

public interface ThreadFactory {     Thread newThread(Runnable r);  } 

1.默认使用Executors.defaultThreadFactory() 创建线程,设置Daemon为false,设置优先级为Thread.NORM_PRIORITY。

public static ThreadFactory defaultThreadFactory() {   return new DefaultThreadFactory();}static class DefaultThreadFactory implements ThreadFactory {   private static final AtomicInteger poolNumber = new AtomicInteger(1);   private final ThreadGroup group;   private final AtomicInteger threadNumber = new AtomicInteger(1);   private final String namePrefix;    DefaultThreadFactory() {       SecurityManager s = System.getSecurityManager();       group = (s != null) ? s.getThreadGroup() :                             Thread.currentThread().getThreadGroup();       namePrefix = "pool-" +                     poolNumber.getAndIncrement() +                    "-thread-";   }   public Thread newThread(Runnable r) {       Thread t = new Thread(group, r,                             namePrefix + threadNumber.getAndIncrement(),                             0);       if (t.isDaemon())           t.setDaemon(false);       if (t.getPriority() != Thread.NORM_PRIORITY)           t.setPriority(Thread.NORM_PRIORITY);       return t;   }}

2.通过提供不同的 ThreadFactory,可以改变线程的名称、线程组、优先级、守护进程状态等等

3.若从newThread返回null,则ThreadFactory未能创建线程,但执行程序将继续运行,不过不能执行任何任务。

RejectedExecutionHandler: 当Executor已经关闭(即执行了executorService.shutdown()方法后),并且满足corePoolSize与maximumPoolSize中第4时,新任务被拒绝的策略。

public interface RejectedExecutionHandler {   void rejectedExecution(Runnable r, ThreadPoolExecutor executor);}

目前有以下4种预定义策略:

1、ThreadPoolExecutor.AbortPolicy 处理程序遭到拒绝将抛出运行时 RejectedExecutionException,默认使用的是此策略。

public static class AbortPolicy implements RejectedExecutionHandler {     public AbortPolicy() { }     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {         throw new RejectedExecutionException("Task " + r.toString() +                                 " rejected from " + e.toString());     }}

2、ThreadPoolExecutor.CallerRunsPolicy 线程调用运行该任务的execute本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度

public static class CallerRunsPolicy implements RejectedExecutionHandler {   public CallerRunsPolicy() { }   public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {       if (!e.isShutdown()) {               r.run();       }   }}

3、ThreadPoolExecutor.DiscardPolicy 不能执行的任务将被删除;

public static class DiscardPolicy implements RejectedExecutionHandler {     public DiscardPolicy() { }     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {    }} 

4、ThreadPoolExecutor.DiscardOldestPolicy 如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)

public static class DiscardOldestPolicy implements RejectedExecutionHandler {     public DiscardOldestPolicy() { }     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {       if (!e.isShutdown()) {           e.getQueue().poll();           e.execute(r);       }   }}

4.3 execute

execute方法是添加新任务的时候调用的方法,内部执行了addWorker方法,来添加一个任务或者执行了reject方法来调用拒绝策略。

public void execute(Runnable command) {    if (command == null)        throw new NullPointerException();    //这里获取了当前线程大小状态的存储信息,在通过workerCountOf获取运行中线程数量。    int c = ctl.get();      if (workerCountOf(c) < corePoolSize) {        if (addWorker(command, true))            return;        c = ctl.get();    }    if (isRunning(c) && workQueue.offer(command)) {        int recheck = ctl.get();        if (! isRunning(recheck) && remove(command))            reject(command);        else if (workerCountOf(recheck) == 0)            addWorker(null, false);    }    else if (!addWorker(command, false))        reject(command);}

4.4 addWorker方法

经过一系列的判断后,new了一个Worker,然后添加进队列然后执行起来。

private boolean addWorker(Runnable firstTask, boolean core) {    retry:    for (;;) {        int c = ctl.get();        int rs = runStateOf(c);        // Check if queue empty only if necessary.        if (rs >= SHUTDOWN &&            ! (rs == SHUTDOWN &&               firstTask == null &&               ! workQueue.isEmpty()))            return false;        for (;;) {            int wc = workerCountOf(c);            if (wc >= CAPACITY ||                wc >= (core ? corePoolSize : maximumPoolSize))                return false;            if (compareAndIncrementWorkerCount(c))                break retry;            c = ctl.get();  // Re-read ctl            if (runStateOf(c) != rs)                continue retry;            // else CAS failed due to workerCount change; retry inner loop        }    }    boolean workerStarted = false;    boolean workerAdded = false;    Worker w = null;    try {        w = new Worker(firstTask);        final Thread t = w.thread;        if (t != null) {            final ReentrantLock mainLock = this.mainLock;            mainLock.lock();            try {                // Recheck while holding lock.                // Back out on ThreadFactory failure or if                // shut down before lock acquired.                int rs = runStateOf(ctl.get());                if (rs < SHUTDOWN ||                    (rs == SHUTDOWN && firstTask == null)) {                    if (t.isAlive()) // precheck that t is startable                        throw new IllegalThreadStateException();                    workers.add(w);                    int s = workers.size();                    if (s > largestPoolSize)                        largestPoolSize = s;                    workerAdded = true;                }            } finally {                mainLock.unlock();            }            if (workerAdded) {                t.start();                workerStarted = true;            }        }    } finally {        if (! workerStarted)            addWorkerFailed(w);    }    return workerStarted;}

4.5 worker线程

worker自己实现了Runnable,它自己维护了执行它的线程对象thead,又维护了一个Runnable对象firstTask(任务对象)

 private final class Worker extends AbstractQueuedSynchronizer implements Runnable{    private static final long serialVersionUID = 6138294804551838833L;    final Thread thread;    Runnable firstTask;    volatile long completedTasks;    Worker(Runnable firstTask) {        setState(-1); // inhibit interrupts until runWorker        this.firstTask = firstTask;        this.thread = getThreadFactory().newThread(this);    }    /** Delegates main run loop to outer runWorker. */    public void run() {        runWorker(this);    }    // Lock methods    //    // The value 0 represents the unlocked state.    // The value 1 represents the locked state.    protected boolean isHeldExclusively() {        return getState() != 0;    }    protected boolean tryAcquire(int unused) {        if (compareAndSetState(0, 1)) {            setExclusiveOwnerThread(Thread.currentThread());            return true;        }        return false;    }    protected boolean tryRelease(int unused) {        setExclusiveOwnerThread(null);        setState(0);        return true;    }    public void lock()        { acquire(1); }    public boolean tryLock()  { return tryAcquire(1); }    public void unlock()      { release(1); }    public boolean isLocked() { return isHeldExclusively(); }    void interruptIfStarted() {        Thread t;        if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {            try {                t.interrupt();            } catch (SecurityException ignore) {            }        }    }}

4.6 runWorker方法

用于执行工作线程,其中worker也是一个封装类,实现了Runnable接口。

final void runWorker(Worker w) {    Thread wt = Thread.currentThread();    Runnable task = w.firstTask;    w.firstTask = null;    w.unlock(); // allow interrupts    boolean completedAbruptly = true;    try {        while (task != null || (task = getTask()) != null) {            w.lock();            // If pool is stopping, ensure thread is interrupted;            // if not, ensure thread is not interrupted.  This            // requires a recheck in second case to deal with            // shutdownNow race while clearing interrupt            if ((runStateAtLeast(ctl.get(), STOP) ||                 (Thread.interrupted() &&                  runStateAtLeast(ctl.get(), STOP))) &&                !wt.isInterrupted())                wt.interrupt();            try {                beforeExecute(wt, task);                Throwable thrown = null;                try {                    task.run();                } catch (RuntimeException x) {                    thrown = x; throw x;                } catch (Error x) {                    thrown = x; throw x;                } catch (Throwable x) {                    thrown = x; throw new Error(x);                } finally {                    afterExecute(task, thrown);                }            } finally {                task = null;                w.completedTasks++;                w.unlock();            }        }        completedAbruptly = false;    } finally {        processWorkerExit(w, completedAbruptly);    }}

4 ScheduledExecutorService

此service接口是为了支持时间可控的任务执行而设计,其中包括:固定延迟执行,周期性执行等,和Timer/TimerTask类似。

public interface ScheduledExecutorService extends ExecutorService {    public ScheduledFuture<?> schedule(Runnable command,                                       long delay, TimeUnit unit);    public <V> ScheduledFuture<V> schedule(Callable<V> callable,                                           long delay, TimeUnit unit);    public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,                                                  long initialDelay,                                                  long period,                                                  TimeUnit unit);    public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,                                                     long initialDelay,                                                     long delay,                                                     TimeUnit unit);}

6、ScheduledThreadPoolExecutor

ScheduledExecutorService接口的默认实现类,并且继承了ThreadPoolExecutor。

7、Executors

Executor线程池的工厂方法,提供了一套创建各种线程池的机制。包括如下

  1. 固定大小线程池newFixedThreadPool,也就是无界的线程池,因为LinkedBlockingQueue是无界的

    public static ExecutorService newFixedThreadPool(int nThreads) {    return new ThreadPoolExecutor(nThreads, nThreads,                              0L, TimeUnit.MILLISECONDS,                              new LinkedBlockingQueue<Runnable>());public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {    return new ThreadPoolExecutor(nThreads, nThreads,                              0L, TimeUnit.MILLISECONDS,                              new LinkedBlockingQueue<Runnable>(),                              threadFactory);}
  2. 单线程线程池newSingleThreadExecutor

    public static ExecutorService newSingleThreadExecutor() {    return new FinalizableDelegatedExecutorService        (new ThreadPoolExecutor(1, 1,                                0L, TimeUnit.MILLISECONDS,                                new LinkedBlockingQueue<Runnable>()));}public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {    return new FinalizableDelegatedExecutorService        (new ThreadPoolExecutor(1, 1,                                0L, TimeUnit.MILLISECONDS,                                new LinkedBlockingQueue<Runnable>(),                                threadFactory));}
  3. 无界线程池,可以进行自动线程回收newCachedThreadPool
    其中用到了SynchronousQueue:每个插入操作必须等待另一个线程的对应移除操作完成。(就是缓冲区为1的生产者消费者模式)

     public static ExecutorService newCachedThreadPool() {    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,                                  60L, TimeUnit.SECONDS,                                  new SynchronousQueue<Runnable>());}public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,                                  60L, TimeUnit.SECONDS,                                  new SynchronousQueue<Runnable>(),                                  threadFactory);}
  4. newSingleThreadScheduledExecutor 创建一个单线程执行程序,它可以定期执行命令。

public static ScheduledExecutorService newSingleThreadScheduledExecutor() {    return new DelegatedScheduledExecutorService        (new ScheduledThreadPoolExecutor(1));} public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {    return new DelegatedScheduledExecutorService        (new ScheduledThreadPoolExecutor(1, threadFactory));}
  1. newScheduledThreadPool 定长线程池,支持定时的周期执行任务,相当于timer。
    与timer区别是:timer只能创建唯一的线程来执行所有timer任务。如果一个TimerTask耗时多,会影响其他TimerTask的时效准确性。Timer对异常支持不好。
    其中scheduleAtFixedRate方法可以指定执行的周期等参数
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {    return new ScheduledThreadPoolExecutor(corePoolSize);}  public static ScheduledExecutorService newScheduledThreadPool(        int corePoolSize, ThreadFactory threadFactory) {    return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);}

8、CompletionService 完成服务

public interface CompletionService<V> {    Future<V> submit(Callable<V> task);    Future<V> submit(Runnable task, V result);    Future<V> take() throws InterruptedException;    Future<V> poll();    Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException;}

其中poll方法不会等待,而是返回null,而take方法会等待。

9、ExecutorCompletionService

CompletionService方法的实现类。在构造方法中提供了一个LinkedBlockingQueue。

public ExecutorCompletionService(Executor executor) {    if (executor == null)        throw new NullPointerException();    this.executor = executor;    this.aes = (executor instanceof AbstractExecutorService) ?        (AbstractExecutorService) executor : null;    this.completionQueue = new LinkedBlockingQueue<Future<V>>();}public ExecutorCompletionService(Executor executor,                                 BlockingQueue<Future<V>> completionQueue) {    if (executor == null || completionQueue == null)        throw new NullPointerException();    this.executor = executor;    this.aes = (executor instanceof AbstractExecutorService) ?        (AbstractExecutorService) executor : null;    this.completionQueue = completionQueue;}

10、Future

public interface Future<V> {    boolean cancel(boolean mayInterruptIfRunning);// 试图取消对此任务的执行      boolean isCancelled();      // 如果在任务正常完成前将其取消,则返回 true      boolean isDone();            // 如果任务已完成,则返回 true      // 如有必要,等待计算完成,然后获取其结果    V get() throws InterruptedException, ExecutionException;        // 如有必要,最多等待为使计算完成所给定的时间之后,获取其结果(如果结果可用)。    V get(long timeout, TimeUnit unit)        throws InterruptedException, ExecutionException, TimeoutException;}

Future接口表示异步任务,是还没有完成的任务给出的未来结果。可以用来判断任务是否完成,用来中断任务,以及获取任务的执行结果。

get()方法: 等待Callable结束并获取它的执行结果,没有超时参数的get方法会一直阻塞在这里等待,直到任务结束,有timeout参数的,在等待timeout后,如果还没有成功,则返回null,且抛出TimeOutException,而不是继续执行后面的代码。cancel(boolean mayInterruptIfRunning)方法:    试图取消任务,若取消成功返回true,取消失败返回false(取消已完成的任务也会返回false)。参数mayInterruptIfRunning表示是否允许取消正在执行却没有执行完毕的任务.若任务正在执行,且参数mayInterruptIfRunning为true,则必定返回false。isCancelled()方法:表示任务是否被取消成功,若任务正常完成前被取消成功,则返回true,否则falseisDone():   比奥斯任务是否已经完成,已经完成返回true

11 FutureTask

FutureTask实现了RunnableFuture接口,RunnableFuture接口继承了Future和Runnable接口。故FutureTask既可以当做线程执行,也可以当做Future得到Callable的返回值。如果不想分支线程阻塞主线程,又想取得分支线程的执行结果,就用FutureTask

public FutureTask(Callable<V> callable) {    if (callable == null)        throw new NullPointerException();    this.callable = callable;    this.state = NEW;       // ensure visibility of callable}public FutureTask(Runnable runnable, V result) {    this.callable = Executors.callable(runnable, result);    this.state = NEW;       // ensure visibility of callable}

12、Callable

public interface Callable<V> {    V call() throws Exception;}

Callable也是一种任务,类似Runnable,区别在于:

Runnable没有返回值,无法抛出经过检查的异常;Callable有返回值而且当获取返回结果时可能会抛出异常。

Callable 的 call()方法只能通过 ExecutorService 的 submit(Callable task) 方法来执行,并且返回一个表示任务等待完成的Future,如果 Future 的返回尚未完成,则 Future.get()方法会阻塞等待,直到 Future 完成返回,也可以通过调用 isDone()方法判断 Future 是否完成了返回。但是Runnable通过 ExecutorService 的 submit(Callable task) 方法来执行,返回的Future的get方法返回的是null。

13、示例

try {    Future<String> future1 = es.submit(task1);    System.out.println("task1  " + future1.get());    System.out.println("task1 isDone " + future1.isDone());    future2 = es.submit(task2);    System.out.println("task2  " + future2.get(5, TimeUnit.SECONDS));}catch(TimeoutException e){    System.out.println("+++task2 cancel " + future2.cancel(true));    System.out.println("+++task2 isCanceled "+ future2.isCancelled());    Future<String> future3 = es.submit(task3);    try {        System.out.println("+++task3  " + future3.get());    } catch (InterruptedException | ExecutionException e1) {        e1.printStackTrace();    }}

示例源码见github

2 0
原创粉丝点击