JVM垃圾收集器异同

来源:互联网 发布:现货白银指标公式源码 编辑:程序博客网 时间:2024/05/18 01:06

可以从不同的的角度去划分垃圾回收算法:

按照基本回收策略分

引用计数(Reference Counting):

比较古老的回收算法。原理是此对象有一个引用,即增加一个计数,删除一个引用则减少一个计数。垃圾回收时,只用收集计数为0的对象。此算法最致命的是无法处理循环引用的问题。

 

标记-清除(Mark-Sweep):

 

 

此算法执行分两阶段。第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。此算法需要暂停整个应用,同时,会产生内存碎片。

 

复制(Copying):

 

 

此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。次算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不会出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。

 

标记-整理(Mark-Compact):

 

 

此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。

按分区对待的方式分

增量收集(Incremental Collecting):实时垃圾回收算法,即:在应用进行的同时进行垃圾回收。不知道什么原因JDK5.0中的收集器没有使用这种算法的。

 

分代收集(Generational Collecting):基于对对象生命周期分析后得出的垃圾回收算法。把对象分为年青代、年老代、持久代,对不同生命周期的对象使用不同的算法(上述方式中的一个)进行回收。现在的垃圾回收器(从J2SE1.2开始)都是使用此算法的。

 

按系统线程分

串行收集:串行收集使用单线程处理所有垃圾回收工作,因为无需多线程交互,实现容易,而且效率比较高。但是,其局限性也比较明显,即无法使用多处理器的优势,所以此收集适合单处理器机器。当然,此收集器也可以用在小数据量(100M左右)情况下的多处理器机器上。

 

并行收集:并行收集使用多线程处理垃圾回收工作,因而速度快,效率高。而且理论上CPU数目越多,越能体现出并行收集器的优势。

 

并发收集:相对于串行收集和并行收集而言,前面两个在进行垃圾回收工作时,需要暂停整个运行环境,而只有垃圾回收程序在运行,因此,系统在垃圾回收时会有明显的暂停,而且暂停时间会因为堆越大而越长。



JVM 垃圾收集器有3类,这里主要介绍我们常用的 并行和并发收集器:

The Throughput Collector (也叫并行收集器)

串行收集器在GC时会停止其他所有工作线程(stop-the-world),CPU利用率是最高的,所以适用于要求高吞吐量(throughput)的应用,但停顿时间(pause time)会比较长,所以对web应用来说就不适合,因为这意味着用户等待时间会加长。而并行收集器可以理解是多线程串行收集,在串行收集基础上采用多线程方式进行GC,很好的弥补了串行收集的不足,可以大幅缩短停顿时间(如下图表示的停顿时长高度,并发比并行要短),因此对于空间不大的区域(如young generation),采用并行收集器停顿时间很短,回收效率高,适合高频率执行。

 

The Concurrent Low Pause Collector(也叫并发收集器)

并发收集器GC时GC线程和应用线程大部分时间是并发执行,只是在初始标记(initial mark)和二次标记(remark)时需要stop-the-world,这可以大大缩短停顿时间(pause time),所以适用于响应时间优先的应用,减少用户等待时间。由于GC是和应用线程并发执行,只有在多CPU场景下才能发挥其价值,在执行过程中还会产生新的垃圾floating garbage,如果等空间满了再开始GC,那这些新产生的垃圾就没地方放了,这时就会启动一次串行GC,等待时间将会很长,所以要在空间还未满时就要启动GC。mark和sweep操作会引起很多碎片,所以间隔一段时间需要整理整个空间,否则遇到大对象,没有连续空间也会启动一次串行GC。采用此收集器(如tenured generation),收集频率不能大,否则会影响到cpu的利用率,进而影响吞吐量。

 


1 0
原创粉丝点击