Spark LDA 主题抽取

来源:互联网 发布:淘宝女士羽绒服中长款 编辑:程序博客网 时间:2024/06/04 19:46

本文主要对使用Spark MLlib LDA进行主题抽取时遇到的工程问题做一总结,列出其中的一些小坑,或可供读者借鉴。关于LDA的具体理论等可以自行google。主题预测请参考:Spark LDA 主题预测

开发环境:spark-1.5.2,hadoop-2.6.0,spark-1.5.2要求jdk7+。语料有大概70万篇博客,十亿+词汇量,词典大概有五万左右的词。

训练语料代码

:apache/spark/examples/mllib/

// scalastyle:off printlnpackage org.apache.spark.examples.mllibimport java.text.BreakIteratorimport scala.collection.mutableimport scopt.OptionParserimport org.apache.log4j.{Level, Logger}import org.apache.spark.{SparkContext, SparkConf}import org.apache.spark.mllib.clustering.{EMLDAOptimizer, OnlineLDAOptimizer, DistributedLDAModel, LDA}import org.apache.spark.mllib.linalg.{Vector, Vectors}import org.apache.spark.rdd.RDD/** * An example Latent Dirichlet Allocation (LDA) app. Run with * {{{ * ./bin/run-example mllib.LDAExample [options] <input> * }}} * If you use it as a template to create your own app, please use `spark-submit` to submit your app. */object LDAExample {  private case class Params(      input: Seq[String] = Seq.empty,      k: Int = 20,      maxIterations: Int = 10,      docConcentration: Double = -1,      topicConcentration: Double = -1,      vocabSize: Int = 10000,      stopwordFile: String = "",      algorithm: String = "em",      checkpointDir: Option[String] = None,      checkpointInterval: Int = 10) extends AbstractParams[Params]  def main(args: Array[String]) {    val defaultParams = Params()    val parser = new OptionParser[Params]("LDAExample") {      head("LDAExample: an example LDA app for plain text data.")      opt[Int]("k")        .text(s"number of topics. default: ${defaultParams.k}")        .action((x, c) => c.copy(k = x))      opt[Int]("maxIterations")        .text(s"number of iterations of learning. default: ${defaultParams.maxIterations}")        .action((x, c) => c.copy(maxIterations = x))      opt[Double]("docConcentration")        .text(s"amount of topic smoothing to use (> 1.0) (-1=auto)." +        s"  default: ${defaultParams.docConcentration}")        .action((x, c) => c.copy(docConcentration = x))      opt[Double]("topicConcentration")        .text(s"amount of term (word) smoothing to use (> 1.0) (-1=auto)." +        s"  default: ${defaultParams.topicConcentration}")        .action((x, c) => c.copy(topicConcentration = x))      opt[Int]("vocabSize")        .text(s"number of distinct word types to use, chosen by frequency. (-1=all)" +          s"  default: ${defaultParams.vocabSize}")        .action((x, c) => c.copy(vocabSize = x))      opt[String]("stopwordFile")        .text(s"filepath for a list of stopwords. Note: This must fit on a single machine." +        s"  default: ${defaultParams.stopwordFile}")        .action((x, c) => c.copy(stopwordFile = x))      opt[String]("algorithm")        .text(s"inference algorithm to use. em and online are supported." +        s" default: ${defaultParams.algorithm}")        .action((x, c) => c.copy(algorithm = x))      opt[String]("checkpointDir")        .text(s"Directory for checkpointing intermediate results." +        s"  Checkpointing helps with recovery and eliminates temporary shuffle files on disk." +        s"  default: ${defaultParams.checkpointDir}")        .action((x, c) => c.copy(checkpointDir = Some(x)))      opt[Int]("checkpointInterval")        .text(s"Iterations between each checkpoint.  Only used if checkpointDir is set." +        s" default: ${defaultParams.checkpointInterval}")        .action((x, c) => c.copy(checkpointInterval = x))      arg[String]("<input>...")        .text("input paths (directories) to plain text corpora." +        "  Each text file line should hold 1 document.")        .unbounded()        .required()        .action((x, c) => c.copy(input = c.input :+ x))    }    parser.parse(args, defaultParams).map { params =>      run(params)    }.getOrElse {      parser.showUsageAsError      sys.exit(1)    }  }  private def run(params: Params) {    val conf = new SparkConf().setAppName(s"LDAExample with $params")    val sc = new SparkContext(conf)    Logger.getRootLogger.setLevel(Level.WARN)    // Load documents, and prepare them for LDA.    val preprocessStart = System.nanoTime()    val (corpus, vocabArray, actualNumTokens) =      preprocess(sc, params.input, params.vocabSize, params.stopwordFile)    corpus.cache()    val actualCorpusSize = corpus.count()    val actualVocabSize = vocabArray.size    val preprocessElapsed = (System.nanoTime() - preprocessStart) / 1e9    println()    println(s"Corpus summary:")    println(s"\t Training set size: $actualCorpusSize documents")    println(s"\t Vocabulary size: $actualVocabSize terms")    println(s"\t Training set size: $actualNumTokens tokens")    println(s"\t Preprocessing time: $preprocessElapsed sec")    println()    // Run LDA.    val lda = new LDA()    val optimizer = params.algorithm.toLowerCase match {      case "em" => new EMLDAOptimizer      // add (1.0 / actualCorpusSize) to MiniBatchFraction be more robust on tiny datasets.      case "online" => new OnlineLDAOptimizer().setMiniBatchFraction(0.05 + 1.0 / actualCorpusSize)      case _ => throw new IllegalArgumentException(        s"Only em, online are supported but got ${params.algorithm}.")    }    lda.setOptimizer(optimizer)      .setK(params.k)      .setMaxIterations(params.maxIterations)      .setDocConcentration(params.docConcentration)      .setTopicConcentration(params.topicConcentration)      .setCheckpointInterval(params.checkpointInterval)    if (params.checkpointDir.nonEmpty) {      sc.setCheckpointDir(params.checkpointDir.get)    }    val startTime = System.nanoTime()    val ldaModel = lda.run(corpus)    val elapsed = (System.nanoTime() - startTime) / 1e9    println(s"Finished training LDA model.  Summary:")    println(s"\t Training time: $elapsed sec")    if (ldaModel.isInstanceOf[DistributedLDAModel]) {      val distLDAModel = ldaModel.asInstanceOf[DistributedLDAModel]      val avgLogLikelihood = distLDAModel.logLikelihood / actualCorpusSize.toDouble      println(s"\t Training data average log likelihood: $avgLogLikelihood")      println()    }    // Print the topics, showing the top-weighted terms for each topic.    val topicIndices = ldaModel.describeTopics(maxTermsPerTopic = 10)    val topics = topicIndices.map { case (terms, termWeights) =>      terms.zip(termWeights).map { case (term, weight) => (vocabArray(term.toInt), weight) }    }    println(s"${params.k} topics:")    topics.zipWithIndex.foreach { case (topic, i) =>      println(s"TOPIC $i")      topic.foreach { case (term, weight) =>        println(s"$term\t$weight")      }      println()    }    sc.stop()  }  /**   * Load documents, tokenize them, create vocabulary, and prepare documents as term count vectors.   * @return (corpus, vocabulary as array, total token count in corpus)   */  private def preprocess(      sc: SparkContext,      paths: Seq[String],      vocabSize: Int,      stopwordFile: String): (RDD[(Long, Vector)], Array[String], Long) = {    // Get dataset of document texts    // One document per line in each text file. If the input consists of many small files,    // this can result in a large number of small partitions, which can degrade performance.    // In this case, consider using coalesce() to create fewer, larger partitions.    val textRDD: RDD[String] = sc.textFile(paths.mkString(","))    // Split text into words    val tokenizer = new SimpleTokenizer(sc, stopwordFile)    val tokenized: RDD[(Long, IndexedSeq[String])] = textRDD.zipWithIndex().map { case (text, id) =>      id -> tokenizer.getWords(text)    }    tokenized.cache()    // Counts words: RDD[(word, wordCount)]    val wordCounts: RDD[(String, Long)] = tokenized      .flatMap { case (_, tokens) => tokens.map(_ -> 1L) }      .reduceByKey(_ + _)    wordCounts.cache()    val fullVocabSize = wordCounts.count()    // Select vocab    //  (vocab: Map[word -> id], total tokens after selecting vocab)    val (vocab: Map[String, Int], selectedTokenCount: Long) = {      val tmpSortedWC: Array[(String, Long)] = if (vocabSize == -1 || fullVocabSize <= vocabSize) {        // Use all terms        wordCounts.collect().sortBy(-_._2)      } else {        // Sort terms to select vocab        wordCounts.sortBy(_._2, ascending = false).take(vocabSize)      }      (tmpSortedWC.map(_._1).zipWithIndex.toMap, tmpSortedWC.map(_._2).sum)    }    val documents = tokenized.map { case (id, tokens) =>      // Filter tokens by vocabulary, and create word count vector representation of document.      val wc = new mutable.HashMap[Int, Int]()      tokens.foreach { term =>        if (vocab.contains(term)) {          val termIndex = vocab(term)          wc(termIndex) = wc.getOrElse(termIndex, 0) + 1        }      }      val indices = wc.keys.toArray.sorted      val values = indices.map(i => wc(i).toDouble)      val sb = Vectors.sparse(vocab.size, indices, values)      (id, sb)    }    val vocabArray = new Array[String](vocab.size)    vocab.foreach { case (term, i) => vocabArray(i) = term }    (documents, vocabArray, selectedTokenCount)  }}/** * Simple Tokenizer. * * TODO: Formalize the interface, and make this a public class in mllib.feature */private class SimpleTokenizer(sc: SparkContext, stopwordFile: String) extends Serializable {  private val stopwords: Set[String] = if (stopwordFile.isEmpty) {    Set.empty[String]  } else {    val stopwordText = sc.textFile(stopwordFile).collect()    stopwordText.flatMap(_.stripMargin.split("\\s+")).toSet  }  // Matches sequences of Unicode letters  private val allWordRegex = "^(\\p{L}*)$".r  // Ignore words shorter than this length.  private val minWordLength = 3  def getWords(text: String): IndexedSeq[String] = {    val words = new mutable.ArrayBuffer[String]()    // Use Java BreakIterator to tokenize text into words.    val wb = BreakIterator.getWordInstance    wb.setText(text)    // current,end index start,end of each word    var current = wb.first()    var end = wb.next()    while (end != BreakIterator.DONE) {      // Convert to lowercase      val word: String = text.substring(current, end).toLowerCase      // Remove short words and strings that aren't only letters      word match {        case allWordRegex(w) if w.length >= minWordLength && !stopwords.contains(w) =>          words += w        case _ =>      }      current = end      try {        end = wb.next()      } catch {        case e: Exception =>          // Ignore remaining text in line.          // This is a known bug in BreakIterator (for some Java versions),          // which fails when it sees certain characters.          end = BreakIterator.DONE      }    }    words  }}// scalastyle:on printl

执行命令:

“` bash
spark-submit
–class “LDAExample”
–master local[*]
–driver-memory 32g
target/pack/lib/project.jar
“file:/tmp/documents”
–stopwordFile “file:/tmp/stopwords”
–k 50
–algorithm online
–maxIterations 50
–vocabSize 50000

遇到的坑

sbt pack
代码使用sbt 编译,然后提交到spark执行,所以需要打包程序所有依赖
–driver-memory
由于在master处指定了local[*] ,所以此处需要根据训练样本大小设置该参数,否则会内存溢出,如果是yarn或者mesos,则改为设置executor-memory。
–stopwordFile
可以先训练出词典,然后剔除其中不要的词,放入stopwordFile即可,词典对于最终的topic影响很大,所以尽量剔除干扰词。
–k
topic数量,越大则对内存要求越大,执行时长也相应增大
–algorithm
当前支持em和online两种,前者训练出来的是DistributedLDAModel,包含丰富的样本信息,但目前不能直接预测新文档(可以调用toLocal转换为LocalLDAModel)。后者是LocalLDAModel,可以用来预测新文档。online是后来加入的算法,性能更好。gibbs sampling 可能后续推出
–maxIterations
越大则内存和时长越大
–vocabSize
词典最大包含词数
maxResultSize
在程序中设定,存储处理结果,样本数量比较大的话,默认内存是不够的。
SparkConf().set(“spark.driver.maxResultSize”, “5g”)
–docConcentration and topicConcentration
前者为文档对主题的先验概率,后者为主体对词的先验概率,默认为-1,则系统自动赋值。见参考4
docConcentration赋值
* Optimizer-specific parameter settings:
* - EM
* - Value should be > 1.0
* - default = (50 / k) + 1, where 50/k is common in LDA libraries and +1 follows
* Asuncion et al. (2009), who recommend a +1 adjustment for EM.
* - Online
* - Value should be >= 0
* - default = (1.0 / k), following the implementation from
* [[https://github.com/Blei-Lab/onlineldavb]].
topicConcentration赋值
* Optimizer-specific parameter settings:
* - EM
* - Value should be > 1.0
* - default = 0.1 + 1, where 0.1 gives a small amount of smoothing and +1 follows
* Asuncion et al. (2009), who recommend a +1 adjustment for EM.
* - Online
* - Value should be >= 0
* - default = (1.0 / k), following the implementation from
* [[https://github.com/Blei-Lab/onlineldavb]].
文档预处理
注意训练集每行是一个源文档。SimpleTokenizer 将每行切分为词组,在此处可以通过stopwordFile来过滤词组。在训练集预处理函数preprocess中,wordCounts包含训练集中所有的词及其词频,可理解为map,并且被倒序排序,然后取vocabSize个词作为词典。将词典输出,高频词在前,可以将其中的干扰词或者不重要的词放入stopwordFile,这样反复训练几次,词典的质量就会比较高。参考1和2中训练了维基百科中500万篇文档,最后取词也就一万左右,词典质量越高,topic质量也就越高。

模型使用

训练结束,可以在模型上调用save方法保存模型,已备后续使用.

通过训练模型,可以查看不同topic在词典上的分布,以及训练样本的主题分布.

LocalLDAModel包含了topicsMatrix, 是一个vocabSize x k 矩阵.实际上给出了k个主题在词典上的分布.此处矩阵只存储了单词的索引,所以后续使用的话,需要自己保存词典,并且确保索引与该矩阵一致.在预处理训练样本的时候,每篇文档都被处理成”词索引<->词频”向量.

describeTopics(maxTermsPerTopic: Int)可以指定每个topic返回的词数量(已经按照权重降序排列),返回所有主题.

具体如何使用,用户可以参考spark 中LocalLDAModel和DistributedLDAModel的api文档。

参考:

1.https://databricks.com/blog/2015/03/25/topic-modeling-with-lda-mllib-meets-graphx.html
2.https://databricks.com/blog/2015/09/22/large-scale-topic-modeling-improvements-to-lda-on-spark.html
3.https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/LDAExample.scala
4.http://blog.csdn.net/sunbow0/article/details/47662603
5.http://spark.apache.org/docs/latest/quick-start.html

0 0
原创粉丝点击