Android安全-HASH算法

来源:互联网 发布:淘宝手机优惠券微信群 编辑:程序博客网 时间:2024/06/01 16:31
HASH,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
HASH特点:
易变性:即使原始信息发生1bit的变化,HASH算法的输出将会有不可知的巨大变化
不可逆:通过HASH结果逆向还原出原始输入信息是不可能的或者极其困难的

常用hash算法:

(1)MD4
MD4(RFC 1320)是 MIT 的Ronald L. Rivest在 1990 年设计的,MD 是 Message Digest(消息摘要) 的缩写。它适用在32位字长的处理器上用高速软件实现——它是基于 32位操作数的位操作来实现的。
(2)MD5

MD5(RFC 1321)是 Rivest 于1991年对MD4的改进版本。它对输入仍以512位分组,其输出是128bit的散列值,与 MD4 相同。MD5比MD4来得复杂,并且速度较之要慢一点,但更安全,在抗分析和抗差分方面表现更好。

public static String encryptMD5(String data) throws Exception {      MessageDigest md5 = MessageDigest.getInstance("MD5");     md5.update(data.getBytes());      return Base64.encodeToString(md5.digest(), Base64.DEFAULT);    } 

(3)SHA-1及其他

SHA1是由NIST NSA设计为同DSA一起使用的,它对长度小于264的输入,产生长度为160bit的散列值,因此抗穷举(brute-force)性更好。SHA-1 设计时基于和MD4相同原理,并且模仿了该算法。

public static String encryptSHA(String data) throws Exception {MessageDigest sha = MessageDigest.getInstance("SHA");sha.update(data.getBytes());return  Base64.encodeToString(sha.digest(),Base64.DEFAULT);}


散列函数应用


(1)错误检验
使用一个散列函数可以很直观的检测出数据在传输时发生的错误。在数据的发送方,对将要发送的数据应用散列函数,并将计算的结果同原始数据一同发送。在数据的接收方,同样的散列函数被再一次应用到接收到的数据上,如果两次散列函数计算出来的结果不一致,那么就说明数据在传输的过程中某些地方有错误了。
(2)文件校验
我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。
MD5 Hash算法的"数字指纹"特性,使它成为目前应用最广泛的一种文件完整性校验和(Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。
(3)数字签名
Hash 算法也是现代密码体系中的一个重要组成部分。由于非对称算法的运算速度较慢,所以在数字签名协议中,单向散列函数扮演了一个重要的角色。对 Hash 值,又称"数字摘要"进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。

HMAC

问题
直接尾部附带消息摘要:篡改内容的同时篡改消息摘要
对密码做HASH传输的认证:重放攻击(截获Hash,直接把Hash发送给Server)
使用HMAC解决上面的问题


HMAC是密钥相关的哈希运算消息认证码(Hash-based Message Authentication Code),HMAC运算利用哈希算法,以一个密钥和一个消息为输入,生成一个消息摘要作为输出。

HMAC的应用

/** * 初始化HMAC密钥 *  */public static String initMacKey() throws Exception {KeyGenerator keyGenerator = KeyGenerator.getInstance("HmacMD5");SecretKey secretKey = keyGenerator.generateKey();return Base64.encodeToString(secretKey.getEncoded(), Base64.DEFAULT);}/** * HMAC加密 *  */public static byte[] encryptHMAC(byte[] data, String key) throws Exception {SecretKey secretKey = new SecretKeySpec(Base64.decode(key, Base64.DEFAULT), "HmacMD5");Mac mac = Mac.getInstance(secretKey.getAlgorithm());mac.init(secretKey);return mac.doFinal(data);}




hmac主要应用在身份验证中,它的使用方法是这样的:
(1) 客户端发出登录请求(假设是浏览器的GET请求)
(2) 服务器返回一个随机值,并在会话中记录这个随机值
(3) 客户端将该随机值作为密钥,用户密码进行hmac运算,然后提交给服务器
(4) 服务器读取用户数据库中的用户密码和步骤2中发送的随机值做与客户端一样的hmac运算,然后与用户发送的结果比较,如果结果一致则验证用户合法
在这个过程中,可能遭到安全攻击的是服务器发送的随机值和用户发送的hmac结果,而对于截获了这两个值的黑客而言这两个值是没有意义的,绝无获取用户密码的可能性,随机值的引入使hmac只在当前会话中有效,大大增强了安全性和实用性。大多数的语言都实现了hmac算法,比如php的mhash、python的hmac.py、java的MessageDigest类,在web验证中使用hmac也是可行的,用js进行md5运算的速度也是比较快的。


HMAC的一个典型应用是用在“质疑/应答”(Challenge/Response)身份认证中。
认证流程


(1) 先由客户端向服务器发出一个验证请求。
(2) 服务器接到此请求后生成一个随机数并通过网络传输给客户端(此为质疑)。
(3) 客户端将收到的随机数提供给ePass,由ePass使用该随机数与存储在ePass中的密钥进行HMAC-MD5运算并得到一个结果作为认证证据传给服务器(此为响应)。
(4) 与此同时,服务器也使用该随机数与存储在服务器数据库中的该客户密钥进行HMAC-MD5运算,如果服务器的运算结果与客户端传回的响应结果相同,则认为客户端是一个合法用户
安全性浅析


由上面的介绍,我们可以看出,HMAC算法更象是一种加密算法,它引入了密钥,其安全性已经不完全依赖于所使用的HASH算法,安全性主要有以下几点保证:

(1) 使用的密钥是双方事先约定的,第三方不可能知道。由3.2介绍的应用流程可以看出,作为非法截获信息的第三方,能够得到的信息只有作为“挑战”的随机数和作为“响应”的HMAC结果,无法根据这两个数据推算出密钥。由于不知道密钥,所以无法仿造出一致的响应。


1 0
原创粉丝点击