深度学习之二---深度学习基础概念篇

来源:互联网 发布:python 提取文件名 编辑:程序博客网 时间:2024/05/18 00:53

深度学习之二---深度学习基础概念篇

在了解人工神经网络的基础上,本文描述了关于深度学习的基础概念。

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。

基础概念

深度

从一个输入中产生一个输出所涉及的计算可以通过一个流向图(flow graph)来表示:流向图是一种能够表示计算的图,在这种图中每一个节点表示一个基本的计算并且一个计算

的值(计算的结果被应用到这个节点的孩子节点的值)。考虑这样一个计算集合,它可以被允许在每一个节点和可能的图结构中,并定义了一个函数族。输入节点没有孩子,输出节点没有父亲。


这种流向图的一个特别属性是深度(depth):从一个输入到一个输出的最长路径的长度。

传统的前馈神经网络能够被看做拥有等于层数的深度(比如对于输出层为隐层数加1)SVMs有深度2(一个对应于核输出或者特征空间,另一个对应于所产生输出的线性混合) 

解决问题

需要使用深度学习解决的问题有以下的特征:

深度不足会出现问题。

人脑具有一个深度结构。

认知过程逐层进行,逐步抽象。

深度不足会出现问题

在许多情形中深度2就足够表示任何一个带有给定目标精度的函数。但是其代价是:图中所需要的节点数(比如计算和参数数量)可能变的非常大。理论结果证实那些事实上所需要的节点数随着输入的大小指数增长的函数族是存在的。

我们可以将深度架构看做一种因子分解。大部分随机选择的函数不能被有效地表示,无论是用深的或者浅的架构。但是许多能够有效地被深度架构表示的却不能被用浅的架构高效表示。一个紧的和深度的表示的存在意味着在潜在的可被表示的函数中存在某种结构。如果不存在任何结构,那将不可能很好地泛化。

大脑有一个深度架构

例如,视觉皮质得到了很好的研究,并显示出一系列的区域,在每一个这种区域中包含一个输入的表示和从一个到另一个的信号流(这里忽略了在一些层次并行路径上的关联,因此更复杂)。这个特征层次的每一层表示在一个不同的抽象层上的输入,并在层次的更上层有着更多的抽象特征,他们根据低层特征定义。

需要注意的是大脑中的表示是在中间紧密分布并且纯局部:他们是稀疏的:1%的神经元是同时活动的。给定大量的神经元,仍然有一个非常高效地(指数级高效)表示。

1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和TorstenWiesel,以及 Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”:可视皮层是分级的:


        我们看看他们做了什么。1958 年,DavidHubel 和Torsten Wiesel 在 JohnHopkins University,研究瞳孔区域与大脑皮层神经元的对应关系。他们在猫的后脑头骨上,开了一个3 毫米的小洞,向洞里插入电极,测量神经元的活跃程度。

      然后,他们在小猫的眼前,展现各种形状、各种亮度的物体。并且,在展现每一件物体时,还改变物体放置的位置和角度。他们期望通过这个办法,让小猫瞳孔感受不同类型、不同强弱的刺激。

       之所以做这个试验,目的是去证明一个猜测。位于后脑皮层的不同视觉神经元,与瞳孔所受刺激之间,存在某种对应关系。一旦瞳孔受到某一种刺激,后脑皮层的某一部分神经元就会活跃。经历了很多天反复的枯燥的试验,同时牺牲了若干只可怜的小猫,David Hubel 和Torsten Wiesel 发现了一种被称为“方向选择性细胞(Orientation Selective Cell)”的神经元细胞。当瞳孔发现了眼前的物体的边缘,而且这个边缘指向某个方向时,这种神经元细胞就会活跃。

       这个发现激发了人们对于神经系统的进一步思考。神经-中枢-大脑的工作过程,或许是一个不断迭代、不断抽象的过程。

       这里的关键词有两个,一个是抽象,一个是迭代。从原始信号,做低级抽象,逐渐向高级抽象迭代。人类的逻辑思维,经常使用高度抽象的概念。

        例如,从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。


     这个生理学的发现,促成了计算机人工智能,在四十年后的突破性发展。

      总的来说,人的视觉系统的信息处理是分级的。从低级的V1区提取边缘特征,再到V2区的形状或者目标的部分等,再到更高层,整个目标、目标的行为等。也就是说高层的特征是低层特征的组合,从低层到高层的特征表示越来越抽象,越来越能表现语义或者意图。而抽象层面越高,存在的可能猜测就越少,就越利于分类。例如,单词集合和句子的对应是多对一的,句子和语义的对应又是多对一的,语义和意图的对应还是多对一的,这是个层级体系。

      敏感的人注意到关键词了:分层。

认知过程逐层进行,逐步抽象

人类层次化地组织思想和概念;

人类首先学习简单的概念,然后用他们去表示更抽象的;

工程师将任务分解成多个抽象层次去处理;

学习/发现这些概念(知识工程由于没有反省而失败?)是很美好的。对语言可表达的概念的反省也建议我们一个稀疏的表示:仅所有可能单词/概念中的一个小的部分是可被应用到一个特别的输入(一个视觉场景)

核心思想

把学习结构看作一个网络,则深度学习的核心思路如下:

无监督学习用于每一层网络的pre-train

每次用无监督学习只训练一层,将其训练结果作为其高一层的输入;

用自顶而下的监督算法去调整所有层

相关算法简介

a). AutoEncoder

最简单的一种方法是利用人工神经网络的特点,人工神经网络(ANN)本身就是具有层次结构的系统,如果给定一个神经网络,我们假设其输出与输入是相同的,然后训练调整其参数,得到每一层中的权重,自然地,我们就得到了输入I的几种不同表示(每一层代表一种表示),这些表示就是特征,在研究中可以发现,如果在原有的特征中加入这些自动学习得到的特征可以大大提高精确度,甚至在分类问题中比目前最好的分类算法效果还要好!这种方法称为AutoEncoder。当然,我们还可以继续加上一些约束条件得到新的Deep Learning方法,如如果在AutoEncoder的基础上加上L1Regularity限制(L1主要是约束每一层中的节点中大部分都要为0,只有少数不为0,这就是Sparse名字的来源),我们就可以得到SparseAutoEncoder方法。

另外,还有一种算法叫自动栈编码,原理与这个是一样的,只不过自编码使用3层的神经网络模型,而自动栈是多层神经网络,包含多隐层,自动栈是使用自编码的算法“逐层贪婪学习”的。

贪婪法是一个不追求最优解,只希望得到较为满意的解的方法。 
因为它省去了为找最优解而穷尽所需的时间,所以贪婪法一般可以快速 
得到满意的解。贪婪法在求解过程的每一步都选取一个局部最优的策略, 
把问题规模缩小,最后把每一步的结果合并起来形成一个全局解。 

/*贪婪法的基本步骤: 
(1)从某个初始解出发 
(2)采用迭代的过程,当可以向目标前进一步时,就根据局部最优策略,得到 
一部分解,缩小问题规模。 
(3)将所有解综合起来 
*/  
//实例 用贪婪法解硬币找零问题  
/*假设有一种货币,它的面值为1分,2分,5分和1角的硬币,最少需要多少个硬币来 
找出k分钱的零钱。按照贪婪法的思想,需要不断使用面值最大的硬币,如要找零的值 
小于最大的硬币值,则尝试第二大的硬币,依次类推。*/  

b). Sparse Coding

 如果我们把输出必须和输入相等的限制放松,同时利用线性代数中基的概念,即O = a1*Φ1 + a2*Φ2+….+ an*Φn, Φi是基,ai是系数,我们可以得到这样一个优化问题:
Min |I – O|,其中I表示输入,O表示输出。
       通过求解这个最优化式子,我们可以求得系数ai和基Φi,这些系数和基就是输入的另外一种近似表达。

       因此,它们可以用来表达输入I,这个过程也是自动学习得到的。如果我们在上述式子上加上L1的Regularity限制,得到:
Min |I – O| + u*(|a1| + |a2| + … + |an |)
        这种方法被称为Sparse Coding。通俗的说,就是将一个信号表示为一组基的线性组合,而且要求只需要较少的几个基就可以将信号表示出来。“稀疏性”定义为:只有很少的几个非零元素或只有很少的几个远大于零的元素。要求系数 ai 是稀疏的意思就是说:对于一组输入向量,我们只想有尽可能少的几个系数远大于零。选择使用具有稀疏性的分量来表示我们的输入数据是有原因的,因为绝大多数的感官数据,比如自然图像,可以被表示成少量基本元素的叠加,在图像中这些基本元素可以是面或者线。同时,比如与初级视觉皮层的类比过程也因此得到了提升(人脑有大量的神经元,但对于某些图像或者边缘只有很少的神经元兴奋,其他都处于抑制状态)。

c) Restrict Boltzmann Machine (RBM)

假设有一个二部图,每一层的节点之间没有链接,一层是可视层,即输入数据层(v),一层是隐藏层(h),如果假设所有的节点都是二值变量节点(只能取0或者1值),同时假设全概率分布p(v, h)满足Boltzmann分布,我们称这个模型是RestrictBoltzmann Machine (RBM)。下面我们来看看为什么它是Deep Learning方法。首先,这个模型因为是二部图,所以在已知v的情况下,所有的隐藏节点之间是条件独立的,即p(h|v)=p(h1|v).....p(hn|v)。同理,在已知隐藏层h的情况下,所有的可视节点都是条件独立的,同时又由于所有的vh满足Boltzmann分布,因此,当输入v的时候,通过p(h|v)可以得到隐藏层h,而得到隐藏层h之后,通过p(v|h)又能得到可视层,通过调整参数,我们就是要使得从隐藏层得到的可视层v1与原来的可视层v如果一样,那么得到的隐藏层就是可视层另外一种表达,因此隐藏层可以作为可视层输入数据的特征,所以它就是一种Deep Learning方法。

如果,我们把隐藏层的层数增加,我们可以得到Deep Boltzmann Machine (DBM);如果我们在靠近可视层的部分使用贝叶斯信念网络(即有向图模型,当然这里依然限制层中节点之间没有链接),而在最远离可视层的部分使用RestrictBoltzmann Machine,我们可以得到Deep Belief NetDBN

当然,还有其它的一些Deep Learning方法。总之,Deep Learning能够自动地学习出数据的另外一种表示方法,这种表示可以作为特征加入原有问题的特征集合中,从而可以提高学习方法的效果,是业界的研究热点。

转折点

2006年前,尝试训练深度架构都失败了:训练一个深度有监督前馈神经网络趋向于产生坏的结果(同时在训练和测试误差中),然后将其变浅为1(1或者2个隐层)

2006年的3篇论文改变了这种状况,由Hinton的革命性的在深度信念网(Deep Belief Networks, DBNs)上的工作所引领:

Hinton, G. E.,Osindero, S. and Teh, Y.,A fast learning algorithm for deep belief nets.NeuralComputation 18:1527-1554, 2006

Yoshua Bengio,Pascal Lamblin, Dan Popovici and Hugo Larochelle,Greedy LayerWise Training ofDeep Networks, in J. Platt et al. (Eds), Advances in Neural InformationProcessing Systems 19 (NIPS 2006), pp. 153-160, MIT Press, 2007

Marc’AurelioRanzato, Christopher Poultney, Sumit Chopra and Yann LeCun Efficient Learningof Sparse Representations with an Energy-Based Model, in J. Platt et al. (Eds),Advances in Neural Information Processing Systems (NIPS 2006), MIT Press, 2007

在这三篇论文中以下主要原理被发现:

表示的无监督学习被用于()训练每一层;

在一个时间里的一个层次的无监督训练,接着之前训练的层次。在每一层学习到的表示作为下一层的输入;

用有监督训练来调整所有层(加上一个或者更多的用于产生预测的附加层)

DBNs在每一层中利用用于表示的无监督学习RBMsBengio et alpaper探讨和对比了RBMsauto-encoders(通过一个表示的瓶颈内在层预测输入的神经网络)Ranzato et alpaper在一个convolutional架构的上下文中使用稀疏auto-encoders(类似于稀疏编码)Auto-encodersconvolutional架构将在以后的课程中讲解。

2006年以来,大量的关于深度学习的论文被发表。

成功应用

1、计算机视觉

ImageNetClassification with Deep Convolutional Neural Networks, AlexKrizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012.

LearningHierarchical Features for Scene Labeling, Clement Farabet, Camille Couprie,Laurent Najman and Yann LeCun, IEEE Transactions on Pattern Analysis andMachine Intelligence, 2013.

LearningConvolutional Feature Hierarchies for Visual Recognition, KorayKavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, MichaëlMathieu and Yann LeCun, Advances in Neural Information Processing Systems (NIPS2010), 23, 2010.

2、语音识别

微软研究人员通过与hintion合作,首先将RBMDBN引入到语音识别声学模型训练中,并且在大词汇量语音识别系统中获得巨大成功,使得语音识别的错误率相对减低30%。但是,DNN还没有有效的并行快速算法,很多研究机构都是在利用大规模数据语料通过GPU平台提高DNN声学模型的训练效率。

在国际上,IBMgoogle等公司都快速进行了DNN语音识别的研究,并且速度飞快。

国内方面,阿里巴巴,科大讯飞、百度、中科院自动化所等公司或研究单位,也在进行深度学习在语音识别上的研究。

3、自然语言处理等其他领域

很多机构在开展研究,2013TomasMikolov,Kai Chen,Greg Corrado,Jeffrey Dean发表论文EfficientEstimation of Word Representations in Vector Space建立word2vector模型,与传统的词袋模型(bag of words)相比,word2vector能够更好地表达语法信息。深度学习在自然语言处理等领域主要应用于机器翻译以及语义挖掘等方面。

图像搜索:模拟大脑结构的分层结构和行为,有边缘,下面是边缘交叉,然后通过排列组合自上而下对图象进行识别。

文本搜索:通过深度学习语义模型的引入,优化搜索结果的智能排序,最后是精准推送和广告服务,即估计和优化点击率和转化率,这已经让百度广告收入实现2%的提升。

运单电话号码手写识别:不用传统先切割图像再进行模式匹配的方式,利用OCR最新的序列学习,直接识别整个电话号码,而不是分割线,可以用到书写交错的情况。

智能语音:包括语音识别、语音合成和自然语言理解三个方面。

电子商务:应用场景包括商品分类、拍照购、商品风格预测、图像搜素、OCR和标签识别等。

流量识别:用到了栈式自编码(SAE),由多个自编码网络组成,采用逐层贪婪训练和fine-tuning。将采集的流式数据转化为初始数据是一维的形式,范围在0-255,引入深度学习,画出协议图像,通过协议图像识别出数据所述的协议,试验环境下平均识别率是97.9%


 

0 0
原创粉丝点击