遗传算法---实数编码方式

来源:互联网 发布:配方提示软件 编辑:程序博客网 时间:2024/05/16 05:49

问题:求f(x)=x+10*sin(5x)+7*cos(4x)最大值, 0<=x<=9

新建输入文件gadata.txt,内容为:
0, 9
表示变量x的下界和上界。
新建日志文件galog.txt,用于记录计算过程及输出结果。

// GA.cpp : Defines the entry point for the console application.  //  /*  这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,  Sita S.Raghavan (University of North Carolina at Charlotte)修正。  代码保证尽可能少,实际上也不必查错。  对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。 注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。  该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 Gaussian变异替换均匀变异,可能得到更好的效果。  代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。 读者可以从ftp.uncc.edu, 目录 coe/evol中的文件prog.c中获得。 要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。  输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。 如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。  */    #include <stdio.h>  #include <stdlib.h>  #include <math.h> /* Change any of these parameters to match your needs */  //请根据你的需要来修改以下参数   #define POPSIZE 50 /* population size 种群大小*/   #define MAXGENS 1000 /* max. number of generations 最大基因个数*/ const int NVARS = 1; /* no. of problem variables 问题变量的个数*/  #define PXOVER 0.8 /* probability of crossover 杂交概率*/  #define PMUTATION 0.15 /* probability of mutation 变异概率*/  #define TRUE 1 #define FALSE 0    #define PI 3.1415926int generation; /* current generation no. 当前基因个数*/  int cur_best; /* best individual 最优个体*/  FILE *galog; /* an output file 输出文件指针*/     struct genotype /* genotype (GT), a member of the population 种群的一个基因的结构体类型*/  {       double gene[NVARS]; /* a string of variables 变量*/      double fitness; /* GT's fitness 基因的适应度*/        double upper[NVARS]; /* GT's variables upper bound 基因变量的上界*/       double lower[NVARS]; /* GT's variables lower bound 基因变量的下界*/       double rfitness; /* relative fitness 比较适应度*/       double cfitness; /* cumulative fitness 积累适应度*/   };    struct genotype population[POPSIZE+1]; /* population 种群*/   struct genotype newpopulation[POPSIZE+1]; /* new population; 新种群*/  /* replaces the old generation */  //取代旧的基因/* Declaration of procedures used by this genetic algorithm */  //以下是一些函数声明 void initialize(void);     //种群基因结构体初始化double randval(double, double);    //随机数产生函数void evaluate(void);             //评价函数,可以由用户自定义,该函数取得每个基因的适应度void keep_the_best(void);       //保存每次遗传后的最佳基因void elitist(void);  //搜寻杰出个体函数:找出最好和最坏的个体。如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体 void select(void);  //选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存void crossover(void);  //杂交函数:选择两个个体来杂交,这里用单点杂交void Xover(int,int);   //交叉 void swap(double *, double *);  //交换void mutate(void);    //变异函数:被该函数选中后会使得某一变量被一个随机的值所取代 void report(void);   //报告模拟进展情况/***************************************************************/  /* Initialization function: Initializes the values of genes *//* within the variables bounds. It also initializes (to zero) *//* all fitness values for each member of the population. It *//* reads upper and lower bounds of each variable from the */  /* input file `gadata.txt'. It randomly generates values */   /* between these bounds for each gene of each genotype in the */  /* population. The format of the input file `gadata.txt' is */  /* var1_lower_bound var1_upper bound */   /* var2_lower_bound var2_upper bound ... */   /***************************************************************/    void initialize(void)  {       FILE *infile;       int i, j;        double lbound, ubound;           if ((infile = fopen("gadata.txt","r"))==NULL)      {             fprintf(galog,"\nCannot open input file!\n");            exit(1);       }          /* initialize variables within the bounds */        //把输入文件的变量界限输入到基因结构体中     for (i = 0; i < NVARS; i++)       {            fscanf(infile, "%lf",&lbound);            fscanf(infile, "%lf",&ubound);                for (j = 0; j < POPSIZE; j++)            {                 population[j].fitness = 0;     //基因的适应度            population[j].rfitness = 0;    //比较适应度            population[j].cfitness = 0;    //积累适应度            population[j].lower[i] = lbound;     //基因变量的上界            population[j].upper[i]= ubound;      //基因变量的下界            population[j].gene[i] = randval(population[j].lower[i], population[j].upper[i]);   //变量         }       }          fclose(infile);   }    /***********************************************************/  /* Random value generator: Generates a value within bounds */   /***********************************************************/  //随机数产生函数  double randval(double low, double high)  {       double val;       val = ((double)(rand()%1000)/1000.0)*(high - low) + low;       return(val);   }     /*************************************************************/  /* Evaluation function: This takes a user defined function. */  /* Each time this is changed, the code has to be recompiled. */   /* The current function is: x[1] + 10 * sin(5 * x[1]) + 7 * cos(4 * x[1]) */   /*************************************************************/  //评价函数,可以由用户自定义,该函数取得每个基因的适应度    void evaluate(void)  {       int mem;       int i;       double x[NVARS+1];          for (mem = 0; mem < POPSIZE; mem++)  //种群中的每个成员    {            for (i = 0; i < NVARS; i++)     //问题变量            x[i+1] = population[mem].gene[i];            population[mem].fitness = x[1] + 10 * sin(5 * x[1]) + 7 * cos(4 * x[1]);        }  }  /***************************************************************/  /* Keep_the_best function: This function keeps track of the */  /* best member of the population. Note that the last entry in */  /* the array Population holds a copy of the best individual */   /***************************************************************/  //保存每次遗传后的最佳基因 void keep_the_best()  {       int mem;       int i;       cur_best = 0;        /* stores the index of the best individual */       //保存最佳个体的索引      for (mem = 0; mem < POPSIZE; mem++)       {            if (population[mem].fitness > population[POPSIZE].fitness)            {                cur_best = mem;                    population[POPSIZE].fitness = population[mem].fitness;             }       }           /* once the best member in the population is found, copy the genes */       //一旦找到种群的最佳个体,就拷贝他的基因       for (i = 0; i < NVARS; i++)             population[POPSIZE].gene[i] = population[cur_best].gene[i];   } /****************************************************************/  /* Elitist function: The best member of the previous generation */  /* is stored as the last in the array. If the best member of */   /* the current generation is worse then the best member of the */  /* previous generation, the latter one would replace the worst */  /* member of the current population */   /****************************************************************/   //搜寻杰出个体函数:找出最好和最坏的个体。  //如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体 void elitist()  {       int i;       double best, worst; /* best and worst fitness values 最好和最坏个体的适应度值*/        int best_mem, worst_mem; /* indexes of the best and worst member 最好和最坏个体的 索引*/         best = population[0].fitness;       worst = population[0].fitness;        for (i = 0; i < POPSIZE - 1; ++i)       {            if(population[i].fitness > population[i+1].fitness)            {                 if (population[i].fitness >= best)                 {                      best = population[i].fitness;                      best_mem = i;                 }                  if (population[i+1].fitness <= worst)                 {                       worst = population[i+1].fitness;                      worst_mem = i + 1;                  }             }            else             {                 if (population[i].fitness <= worst)                 {                      worst = population[i].fitness;                       worst_mem = i;                  }                  if (population[i+1].fitness >= best)                 {                       best = population[i+1].fitness;                       best_mem = i + 1;                 }              }      }        /* if best individual from the new population is better than */       /* the best individual from the previous population, then */       /* copy the best from the new population; else replace the */       /* worst individual from the current population with the */        /* best one from the previous generation */         //如果新种群中的最好个体比前一代的最好个体要强的话,那么就把新种群的最好个体拷贝出来。      //否则就用前一代的最好个体取代这次的最坏个体      if (best >= population[POPSIZE].fitness)       {            for (i = 0; i < NVARS; i++)                  population[POPSIZE].gene[i] = population[best_mem].gene[i];             population[POPSIZE].fitness = population[best_mem].fitness;        }       else        {            for (i = 0; i < NVARS; i++)                 population[worst_mem].gene[i] = population[POPSIZE].gene[i];            population[worst_mem].fitness = population[POPSIZE].fitness;        }   } /**************************************************************/  /* Selection function: Standard proportional selection for */  /* maximization problems incorporating elitist model - makes */   /* sure that the best member survives */   /**************************************************************/   //选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存 void select(void)  {       int mem, j, i;       double sum = 0;       double p;          /* find total fitness of the population */       //找出种群的适应度之和       for (mem = 0; mem < POPSIZE; mem++)       {            sum += population[mem].fitness;       }         /* calculate relative fitness */       //计算相对适应度        for (mem = 0; mem < POPSIZE; mem++)      {             population[mem].rfitness = population[mem].fitness/sum;       }       population[0].cfitness = population[0].rfitness;          /* calculate cumulative fitness */       //计算累加适应度       for (mem = 1; mem < POPSIZE; mem++)       {            population[mem].cfitness = population[mem-1].cfitness + population[mem].rfitness;        }           /* finally select survivors using cumulative fitness. */       //用累加适应度作出选择      for (i = 0; i < POPSIZE; i++)       {            p = rand()%1000/1000.0;            if (p < population[0].cfitness)                 newpopulation[i] = population[0];            else             {                 for (j = 0; j < POPSIZE;j++)                      if (p >= population[j].cfitness && p<population[j+1].cfitness)                            newpopulation[i] = population[j+1];              }        }        /* once a new population is created, copy it back */       //当一个新种群建立的时候,将其拷贝回去      for (i = 0; i < POPSIZE; i++)            population[i] = newpopulation[i];   } /***************************************************************/  /* Crossover selection: selects two parents that take part in */  /* the crossover. Implements a single point crossover */   /***************************************************************/  //杂交函数:选择两个个体来杂交,这里用单点杂交 void crossover(void)  {       int mem, one;        int first = 0; /* count of the number of members chosen */        double x;      for (mem = 0; mem < POPSIZE; ++mem)       {            x = rand()%1000/1000.0;            if (x < PXOVER)            {                 ++first;                 if (first % 2 == 0)                      Xover(one, mem);                 else                       one = mem;               }        }   }   /**************************************************************/  /* Crossover: performs crossover of the two selected parents. */  /**************************************************************/ //交叉   void Xover(int one, int two)  {       int i;       int point; /* crossover point */         /* select crossover point */       if(NVARS > 1)       {            if(NVARS == 2)                 point = 1;            else                 point = (rand() % (NVARS - 1)) + 1;                for (i = 0; i < point; i++)                 swap(&population[one].gene[i], &population[two].gene[i]);              }  }    /*************************************************************/  /* Swap: A swap procedure that helps in swapping 2 variables */   /*************************************************************/    void swap(double *x, double *y)  {       double temp;      temp = *x;       *x = *y;       *y = temp;     }    /**************************************************************/  /* Mutation: Random uniform mutation. A variable selected for */  /* mutation is replaced by a random value between lower and */  /* upper bounds of this variable */   /**************************************************************/  //变异函数:被该函数选中后会使得某一变量被一个随机的值所取代 void mutate(void)  {       int i, j;       double lbound, hbound;       double x;          for (i = 0; i < POPSIZE; i++)            for (j = 0; j < NVARS; j++)            {                 x = rand()%1000/1000.0;                 if (x < PMUTATION)                 {                      /* find the bounds on the variable to be mutated 确定*/                       lbound = population[i].lower[j];                       hbound = population[i].upper[j];                      population[i].gene[j] = randval(lbound, hbound);                   }             }   }     /***************************************************************/  /* Report function: Reports progress of the simulation. Data */  /* dumped into the output file are separated by commas */   /***************************************************************/    //报告模拟进展情况。输出文件中的数据用逗号隔开void report(void)  {       int i;       double best_val;   /* best population fitness 最佳种群适应度*/       double avg;        /* avg population fitness 平均种群适应度*/        double stddev;     /* std. deviation of population fitness 种群适应度偏差 */      double sum_square;  /* sum of square for std. calc 各个个体平方之和*/       double square_sum;  /* square of sum for std. calc 平均值的平方乘个数*/       double sum;        /* total population fitness 所有种群适应度之和*/          sum = 0.0;       sum_square = 0.0;          for (i = 0; i < POPSIZE; i++)       {            sum += population[i].fitness;             sum_square += population[i].fitness * population[i].fitness;        }       avg = sum/(double)POPSIZE;        square_sum = avg * avg * POPSIZE;        stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));       best_val = population[POPSIZE].fitness;           fprintf(galog, "\n generation=%5d, best_val=%6.3f, avg=%6.3f, stddev=%6.3f \n\n", generation,  best_val, avg, stddev);  }     /**************************************************************/  /* Main function: Each generation involves selecting the best */ /* members, performing crossover & mutation and then */  /* evaluating the resulting population, until the terminating */  /* condition is satisfied */   /**************************************************************/    void main(void)  {      int i;          if ((galog = fopen("galog.txt","w"))==NULL)       {            exit(1);       }        generation = 0;          fprintf(galog, "\n generation best average standard \n");       fprintf(galog, " number value fitness deviation \n");          initialize();       evaluate();    //评价函数,可以由用户自定义,该函数取得每个基因的适应度    keep_the_best();    //保存每次遗传后的最佳基因    while(generation<MAXGENS)       {            generation++;            select();     //选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存        crossover();  //杂交函数:选择两个个体来杂交,这里用单点杂交         mutate();     //变异函数:被该函数选中后会使得某一变量被一个随机的值所取代         report();     //报告模拟进展情况        evaluate();   //评价函数,可以由用户自定义,该函数取得每个基因的适应度        elitist();    //搜寻杰出个体函数:找出最好和最坏的个体。如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体     }        fprintf(galog,"\n\n Simulation completed\n");       fprintf(galog,"\n Best member: \n");          for (i = 0; i < NVARS; i++)       {             fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);       }        fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);       fclose(galog);         printf("Success\n");   }   /***************************************************************/ 

计算结果为:
x=7.857 f(x)=24.855

注:遗传算法用来取得近似最优解,而不是最优解

0 0
原创粉丝点击