ConcurrentHashMap源码分析--Java8

来源:互联网 发布:网络攻防大赛试题 编辑:程序博客网 时间:2024/04/29 09:18

        本文首写于有道云笔记,并在小组分享会分享,先整理发布,希望和大家交流探讨。云笔记地址

概述:
1、设计首要目的:维护并发可读性(get、迭代相关);次要目的:使空间消耗比HashMap相同或更好,且支持多线程高效率的初始插入(empty table)。
2、HashTable线程安全,但采用synchronized,多线程下效率低下。线程1put时,线程2无法put或get。

实现原理:
锁分离:
        在HashMap的基础上,将数据分段存储,ConcurrentHashMap由多个Segment组成,每个Segment都有把锁。Segment下包含很多Node,也就是我们的键值对了。

如果还停留在锁分离、Segment,那已经out了。
Segment虽保留,但已经简化属性,仅仅是为了兼容旧版本。

  • CAS算法unsafe.compareAndSwapInt(this, valueOffset, expect, update);  CAS(Compare And Swap),意思是如果valueOffset位置包含的值与expect值相同,则更新valueOffset位置的值为update,并返回true,否则不更新,返回false。
  • 与Java8的HashMap有相通之处,底层依然由“数组”+链表+红黑树
  • 底层结构存放的是TreeBin对象,而不是TreeNode对象;
  • CAS作为知名无锁算法,那ConcurrentHashMap就没用锁了么?当然不是,hash值相同的链表的头结点还是会synchronized上锁。 

private static final int MAXIMUM_CAPACITY = 1 << 30; // 2的30次方=1073741824

private static final intDEFAULT_CAPACITY = 16;

static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; // MAX_VALUE=2^31-1=2147483647

private static finalint DEFAULT_CONCURRENCY_LEVEL = 16;

private static final float LOAD_FACTOR = 0.75f;

static final int TREEIFY_THRESHOLD = 8; // 链表转树阀值,大于8时

static final int UNTREEIFY_THRESHOLD = 6; //树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))。【仅在扩容tranfer时才可能树转链表】

static final int MIN_TREEIFY_CAPACITY = 64;

private static final int MIN_TRANSFER_STRIDE = 16;

private static int RESIZE_STAMP_BITS = 16;

private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; // 2^15-1,help resize的最大线程数

private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS// 32-16=16,sizeCtl中记录size大小的偏移量

static final int MOVED     = -1; // hash for forwarding nodes(forwarding nodes的hash值)、标示位

static final int TREEBIN   = -2; // hash for roots of trees(树根节点的hash值)

static final int RESERVED  = -3; // hash for transient reservations(ReservationNode的hash值)

static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash

static final int NCPU = Runtime.getRuntime().availableProcessors(); // 可用处理器数量

 /**

    * Table initialization and resizing control.  When negative, the

    * table is being initialized or resized: -1 for initialization,

    * else -(1 + the number of active resizing threads).  Otherwise,

    * when table is null, holds the initial table size to use upon

    * creation, or 0 for default. After initialization, holds the

    * next element count value upon which to resize the table.

    */

private transient volatile int sizeCtl;

sizeCtl控制标识符,不同的值表示不同的意义。

  • 负数代表正在进行初始化或扩容操作 
  • -1代表正在初始化 
  • -N 表示有N-1个线程正在进行扩容操作 
  • 正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小,类似于扩容阈值。它的值始终是当前ConcurrentHashMap容量的0.75倍,这与loadfactor是对应的。实际容量>=sizeCtl,则扩容。


部分构造函数:
public ConcurrentHashMap(int initialCapacity,                             float loadFactor, int concurrencyLevel) {  if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)            thrownew IllegalArgumentException();  if (initialCapacity < concurrencyLevel)   // Use at least as many bins            initialCapacity = concurrencyLevel;   // as estimated threads  long size = (long)(1.0 + (long)initialCapacity / loadFactor);  int cap = (size >= (long)MAXIMUM_CAPACITY) ?            MAXIMUM_CAPACITY : tableSizeFor((int)size);  this.sizeCtl = cap;}

concurrencyLevel
        concurrencyLevel,能够同时更新ConccurentHashMap且不产生锁竞争的最大线程数,在Java8之前实际上就是ConcurrentHashMap中的分段锁个数,即Segment[]的数组长度正确地估计很重要,当低估,数据结构将根据额外的竞争,从而导致线程试图写入当前锁定的段时阻塞;相反,如果高估了并发级别,你遇到过大的膨胀,由于段的不必要的数量; 这种膨胀可能会导致性能下降,由于高数缓存未命中。
        在Java8里,仅仅是为了兼容旧版本而保留。唯一的作用就是保证构造map时初始容量不小于concurrencyLevel。
源码122行:
Also, for compatibility with previous  versions of this class, constructors may optionally specify an  expected {@code concurrencyLevel} as an additional hint for  internal sizing. 
源码482行:
 Mainly: We  leave untouched but unused constructor arguments refering to  concurrencyLevel .……
        ……
1、重要属性:
1.1 Node:
static class Node<K,V> implements Map.Entry<K,V> {        final int hash;        final K key;        volatile V val; // Java8增加volatile,保证可见性        volatile Node<K,V> next;         Node(inthash, K key, V val, Node<K,V> next) {            this.hash = hash;            this.key = key;            this.val = val;            this.next = next;        }         public final K getKey()       { return key; }        public final V getValue()     { return val; }        // HashMap调用Objects.hashCode(),最终也是调用Object.hashCode();效果一样        public final int hashCode()   { returnkey.hashCode() ^ val.hashCode(); }        public final String toString(){ returnkey + "=" + val; }        public final V setValue(V value) { // 不允许修改value值,HashMap允许            throw new UnsupportedOperationException();        }        // HashMap使用if (o == this),且嵌套if;concurrent使用&&        public final boolean equals(Object o) {            Object k, v, u; Map.Entry<?,?> e;            return ((oinstanceof Map.Entry) &&                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&                    (v = e.getValue()) != null &&                    (k == key || k.equals(key)) &&                    (v == (u = val) || v.equals(u)));        }         /**         * Virtualized support for map.get(); overridden in subclasses.         */        Node<K,V> find(inth, Object k) { // 增加find方法辅助get方法            Node<K,V> e = this;            if (k != null) {                do {                    K ek;                    if (e.hash == h &&                        ((ek = e.key) == k || (ek != null && k.equals(ek))))                        returne;                } while ((e = e.next) != null);            }            returnnull;        }    }

1.2 TreeNode
// Nodes for use in TreeBins,链表>8,才可能转为TreeNode.// HashMap的TreeNode继承至LinkedHashMap.Entry;而这里继承至自己实现的Node,将带有next指针,便于treebin访问。    static final class TreeNode<K,V> extends Node<K,V> {         TreeNode<K,V> parent;  // red-black tree links        TreeNode<K,V> left;        TreeNode<K,V> right;        TreeNode<K,V> prev;    // needed to unlink next upon deletion        boolean red;         TreeNode(inthash, K key, V val, Node<K,V> next,                 TreeNode<K,V> parent) {            super(hash, key, val, next);            this.parent = parent;        }         Node<K,V> find(inth, Object k) {            return findTreeNode(h, k, null);        }         /**         * Returns the TreeNode (or null if not found) for the given key         * starting at given root.         */ // 查找hash为h,key为k的节点        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {            if (k != null) { // 比HMap增加判空                TreeNode<K,V> p = this;                do  {                    intph, dir; K pk; TreeNode<K,V> q;                    TreeNode<K,V> pl = p.left, pr = p.right;                    if ((ph = p.hash) > h)                        p = pl;                    elseif (ph < h)                        p = pr;                    elseif ((pk = p.key) == k || (pk != null && k.equals(pk)))                        returnp;                    elseif (pl == null)                        p = pr;                    elseif (pr == null)                        p = pl;                    elseif ((kc != null ||                              (kc = comparableClassFor(k)) != null) &&                             (dir = compareComparables(kc, k, pk)) != 0)                        p = (dir < 0) ? pl : pr;                    elseif ((q = pr.findTreeNode(h, k, kc)) != null)                        returnq;                    else                        p = pl;                } while (p != null);            }            return null;        }    }// 和HashMap相比,这里的TreeNode相当简洁;ConcurrentHashMap链表转树时,并不会直接转,正如注释(Nodes for use in TreeBins)所说,只是把这些节点包装成TreeNode放到TreeBin中,再由TreeBin来转化红黑树。

1.3 TreeBin

// TreeBin用于封装维护TreeNode,包含putTreeVal、lookRoot、UNlookRoot、remove、balanceInsetion、balanceDeletion等方法,这里只分析其构造函数。// 当链表转树时,用于封装TreeNode,也就是说,ConcurrentHashMap的红黑树存放的时TreeBin,而不是treeNode。TreeBin(TreeNode<K,V> b) {    super(TREEBIN, null, null, null);//hash值为常量TREEBIN=-2,表示roots of trees    this.first = b;    TreeNode<K,V> r = null;    for (TreeNode<K,V> x = b, next; x != null; x = next) {        next = (TreeNode<K,V>)x.next;        x.left = x.right = null;        if (r == null) {            x.parent = null;            x.red = false;            r = x;        }        else {            K k = x.key;            inth = x.hash;            Class<?> kc = null;            for (TreeNode<K,V> p = r;;) {                intdir, ph;                K pk = p.key;                if ((ph = p.hash) > h)                    dir = -1;                elseif (ph < h)                    dir = 1;                elseif ((kc == null &&                          (kc = comparableClassFor(k)) == null) ||                         (dir = compareComparables(kc, k, pk)) == 0)                    dir = tieBreakOrder(k, pk);                    TreeNode<K,V> xp = p;                if ((p = (dir <= 0) ? p.left : p.right) == null) {                    x.parent = xp;                    if (dir <= 0)                        xp.left = x;                    else                        xp.right = x;                    r = balanceInsertion(r, x);                    break;                }            }        }    }    this.root = r;    assert checkInvariants(root);}

1.4 treeifyBin
/*** Replaces all linked nodes in bin at given index unless table is* too small, in which case resizes instead.链表转树*/private final void treeifyBin(Node<K,V>[] tab, int index) {        Node<K,V> b; intn, sc;    if (tab != null) {        if ((n = tab.length) < MIN_TREEIFY_CAPACITY)            tryPresize(n << 1); // 容量<64,则table两倍扩容,不转树了        else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {            synchronized (b) { // 读写锁                if (tabAt(tab, index) == b) {                    TreeNode<K,V> hd = null, tl = null;                    for (Node<K,V> e = b; e != null; e = e.next) {                        TreeNode<K,V> p =                            new TreeNode<K,V>(e.hash, e.key, e.val,                                              null, null);                        if ((p.prev = tl) == null)                            hd = p;                        else                            tl.next = p;                        tl = p;                    }                    setTabAt(tab, index, new TreeBin<K,V>(hd));                }            }        }    }}

1.5 ForwardingNode
// A node inserted at head of bins during transfer operations.连接两个table// 并不是我们传统的包含key-value的节点,只是一个标志节点,并且指向nextTable,提供find方法而已。生命周期:仅存活于扩容操作且bin不为null时,一定会出现在每个bin的首位。static final class ForwardingNode<K,V> extends Node<K,V> {    final Node<K,V>[] nextTable;    ForwardingNode(Node<K,V>[] tab) {        super(MOVED, null, null, null); // 此节点hash=-1,key、value、next均为null        this.nextTable = tab;    }     Node<K,V> find(int h, Object k) {        // 查nextTable节点,outer避免深度递归        outer: for (Node<K,V>[] tab = nextTable;;) {            Node<K,V> e; intn;            if (k == null || tab == null || (n = tab.length) == 0 ||                (e = tabAt(tab, (n - 1) & h)) == null)                returnnull;            for (;;) { // CAS算法多和死循环搭配!直到查到或null                int eh; K ek;                if ((eh = e.hash) == h &&                    ((ek = e.key) == k || (ek != null && k.equals(ek))))                    returne;                if (eh < 0) {                    if (e instanceof ForwardingNode) {                        tab = ((ForwardingNode<K,V>)e).nextTable;                        continue outer;                    }                    else                        return e.find(h, k);                }                if ((e = e.next) == null)                    return null;            }        }    }}


1.6  3个原子操作(调用频率很高)

@SuppressWarnings("unchecked") // ASHIFT等均为private static finalstatic final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { // 获取索引i处Node    return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);    }    // 利用CAS算法设置i位置上的Node节点(将c和table[i]比较,相同则插入v)。    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,                                        Node<K,V> c, Node<K,V> v) {        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);    }    // 设置节点位置的值,仅在上锁区被调用    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);    }

1.7 Unsafe
//在源码的6277行到最后,有着ConcurrentHashMap中极为重要的几个属性(SIZECTL),unsafe静态块控制其修改行为。Java8中,大量运用CAS进行变量、属性的无锁修改,大大提高性能。// Unsafe mechanicsprivate static final sun.misc.Unsafe U;private static final long SIZECTL;private static final long TRANSFERINDEX;private static final long BASECOUNT;private static final long CELLSBUSY;private static final long CELLVALUE;private static final long ABASE;private static final int ASHIFT; static {    try {    U = sun.misc.Unsafe.getUnsafe();    Class<?> k = ConcurrentHashMap.class;    SIZECTL = U.objectFieldOffset (k.getDeclaredField("sizeCtl"));    TRANSFERINDEX=U.objectFieldOffset(k.getDeclaredField("transferIndex"));    BASECOUNT = U.objectFieldOffset (k.getDeclaredField("baseCount"));    CELLSBUSY = U.objectFieldOffset (k.getDeclaredField("cellsBusy"));    Class<?> ck = CounterCell.class;    CELLVALUE = U.objectFieldOffset (ck.getDeclaredField("value"));    Class<?> ak = Node[].class;    ABASE = U.arrayBaseOffset(ak);    intscale = U.arrayIndexScale(ak);    if ((scale & (scale - 1)) != 0)        thrownew Error("data type scale not a power of two");    ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);    } catch (Exception e) {    thrownew Error(e);    }}


1.8 扩容相关
   tryPresizeputAll以及treeifyBin中调用
private final void tryPresize(int size) {        // 给定的容量若>=MAXIMUM_CAPACITY的一半,直接扩容到允许的最大值,否则调用函数扩容        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :            tableSizeFor(size + (size >>> 1) + 1);        int sc;        while ((sc = sizeCtl) >= 0) { //没有正在初始化或扩容,或者说表还没有被初始化            Node<K,V>[] tab = table; int n;           if(tab == null || (n = tab.length) == 0) {                n = (sc > c) ? sc : c; // 扩容阀值取较大者         // 期间没有其他线程对表操作,则CAS将SIZECTL状态置为-1,表示正在进行初始化                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {                    try {                        if (table == tab) {                            @SuppressWarnings("unchecked")                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];                            table = nt;                            sc = n - (n >>> 2); //无符号右移2位,此即0.75*n                        }                    } finally {                        sizeCtl = sc; // 更新扩容阀值                    }                }            }// 若欲扩容值不大于原阀值,或现有容量>=最值,什么都不用做了            else if (c <= sc || n >= MAXIMUM_CAPACITY)                break;            else if (tab == table) { // table不为空,且在此期间其他线程未修改table                int rs = resizeStamp(n);                if (sc < 0) {                    Node<K,V>[] nt;//RESIZE_STAMP_SHIFT=16,MAX_RESIZERS=2^15-1                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||                        transferIndex <= 0)                        break;                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))                        transfer(tab, nt);                }                else if (U.compareAndSwapInt(this, SIZECTL, sc,                                             (rs << RESIZE_STAMP_SHIFT) + 2))                    transfer(tab, null);            }        }    }
private static final int tableSizeFor(int c){//和HashMap一样,返回>=n的最小2的自然数幂  int n = c - 1;  n |= n >>> 1;  n |= n >>> 2;  n |= n >>> 4;  n |= n >>> 8;  n |= n >>> 16;  return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;}
/*** Returns the stamp bits for resizing a table of size n.* Must be negative when shifted left by RESIZE_STAMP_SHIFT.*/static final int resizeStamp(int n) { // 返回一个标志位    return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));}// numberOfLeadingZeros返回n对应32位二进制数左侧0的个数,如9(1001)返回28// RESIZE_STAMP_BITS=16,(左侧0的个数)|(2^15)

ConcurrentHashMap无锁多线程扩容,减少扩容时的时间消耗。
transfer扩容操作单线程构建两倍容量的nextTable;允许多线程复制原table元素到nextTable。
  1. 为每个内核均分任务,并保证其不小于16;
  2. 若nextTab为null,则初始化其为原table的2倍;
  3. 死循环遍历,直到finishing。
  • 节点为空,则插入ForwardingNode;
  • 链表节点(fh>=0),分别插入nextTable的i和i+n的位置;
  • TreeBin节点(fh<0),判断是否需要untreefi,分别插入nextTable的i和i+n的位置;
  • finishing时,nextTab赋给table,更新sizeCtl为新容量的0.75倍 ,完成扩容。

以上说的都是单线程,多线程又是如何实现的呢?
       遍历到ForwardingNode节点((fh = f.hash) == MOVED),说明此节点被处理过了,直接跳过。这是控制并发扩容的核心 。由于给节点上了锁,只允许当前线程完成此节点的操作,处理完毕后,将对应值设为ForwardingNode(fwd),其他线程看到forward,直接向后遍历。如此便完成了多线程的复制工作,也解决了线程安全问题。

private transient volatile Node<K,V>[] nextTable//仅仅在扩容使用,并且此时非空

// 将table每一个bin(桶位)的Node移动或复制到nextTable// 只在addCount(long x, int check)、helpTransfer、tryPresize中调用private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {    int n = tab.length, stride;     // 每核处理的量小于16,则强制赋值16    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)        stride = MIN_TRANSFER_STRIDE; // subdivide range    if (nextTab == null) {      // initiating        try {            @SuppressWarnings("unchecked")            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1]; //两倍            nextTab = nt;        } catch (Throwable ex) {   // try to cope with OOME            sizeCtl = Integer.MAX_VALUE;            return;        }        nextTable = nextTab;        transferIndex = n;    }    int nextn = nextTab.length;    //连节点指针,标志位,fwd的hash值为-1,fwd.nextTable=nextTab。    ForwardingNode<K,V> fwd= new ForwardingNode<K,V>(nextTab);    boolean advance= true;//并发扩容的关键属性,等于true,说明此节点已经处理过    boolean finishing = false; // to ensure sweep before committing nextTab    for (int i = 0, bound = 0;;) { // 死循环        Node<K,V> f; int fh;        while (advance) { // 控制--i,遍历原hash表中的节点            int nextIndex, nextBound;            if (--i >= bound || finishing)                advance = false;            else if ((nextIndex = transferIndex) <= 0) {                i = -1;                advance = false;           }//TRANSFERINDEX 即用CAS计算得到的transferIndex            else if (U.compareAndSwapInt                     (this, TRANSFERINDEX, nextIndex,                      nextBound = (nextIndex > stride ?                                   nextIndex - stride : 0))) {                bound = nextBound;                i = nextIndex - 1;                advance = false;            }        }        if (i < 0 || i >= n || i + n >= nextn) {            int sc;            if (finishing) { // 所有节点复制完毕                nextTable = null;                table = nextTab;                sizeCtl = (n << 1) - (n >>> 1); //扩容阀值设为原来的1.5倍,即现在的0.75倍                return; // 仅有的2个跳出死循环出口之一            }//CAS更新扩容阈值,sc-1表明新加入一个线程参与扩容            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)                    return;// 仅有的2个跳出死循环出口之一                finishing = advance = true;                i = n; // recheck before commit            }        }       else if ((f = tabAt(tab, i)) == null) //该节点为空,则插入ForwardingNode            advance = casTabAt(tab, i, null, fwd);        //遍历到ForwardingNode节点,说明此节点被处理过了,直接跳过。这是控制并发扩容的核心        else if ((fh = f.hash) == MOVED) // MOVED=-1,hash for fwd            advance = true; // already processed       else {            synchronized (f) { //上锁                if (tabAt(tab, i) == f) {                    Node<K,V> ln, hn; //ln原位置节点,hn新位置节点                    if (fh >= 0) { // 链表                        int runBit = fh & n; // f.hash & n                        Node<K,V> lastRun = f; // lastRun和p两个链表,逆序??                        for (Node<K,V> p = f.next; p != null; p = p.next) {                            int b = p.hash & n; // f.next.hash & n                            if (b != runBit) {                                runBit = b;                                lastRun = p;                            }                        }                        if (runBit == 0) {                            ln = lastRun;                            hn = null;                        }                        else {                            hn = lastRun;                            ln = null;                        }                        for (Node<K,V> p = f; p != lastRun; p = p.next) {                            int ph = p.hash; K pk = p.key; V pv = p.val;                            if ((ph & n) == 0) // 和HashMap确定扩容后的节点位置一样                                ln = new Node<K,V>(ph, pk, pv, ln);                            else                                hn = new Node<K,V>(ph, pk, pv, hn); //新位置节点                        }//类似HashMap,为何i+n?参见HashMap的笔记                        setTabAt(nextTab, i, ln);//在nextTable[i]插入原节点                        setTabAt(nextTab, i + n, hn);//在nextTable[i+n]插入新节点                        //在nextTable[i]插入forwardNode节点,表示已经处理过该节点                         setTabAt(tab, i, fwd);                        //设置advance为true 返回到上面的while循环中 就可以执行--i操作                        advance = true;                    }                    else if (f instanceof TreeBin) { //树                        TreeBin<K,V> t = (TreeBin<K,V>)f;                        TreeNode<K,V> lo = null, loTail = null;                        TreeNode<K,V> hi = null, hiTail = null;                        //lc、hc=0两计数器分别++记录原、新bin中TreeNode数量                        int lc = 0, hc = 0;                        for (Node<K,V> e = t.first; e != null; e = e.next) {                            int h = e.hash;                            TreeNode<K,V> p = new TreeNode<K,V>                                (h, e.key, e.val, null, null);                            if ((h & n) == 0) {                                if ((p.prev = loTail) == null)                                    lo = p;                                else                                    loTail.next = p;                                loTail = p;                                ++lc;                            }                            else {                                if ((p.prev = hiTail) == null)                                    hi = p;                                else                                    hiTail.next = p;                                hiTail = p;                                ++hc;                            }                        }//扩容后树节点个数若<=6,将树转链表                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :                            (hc != 0) ? new TreeBin<K,V>(lo) : t;                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :                            (lc != 0) ? new TreeBin<K,V>(hi) : t;                        setTabAt(nextTab, i, ln);                        setTabAt(nextTab, i + n, hn);                        setTabAt(tab, i, fwd);                        advance = true;                    }                }            }        }    }}
// 协助扩容方法。多线程下,当前线程检测到其他线程正进行扩容操作,则协助其一起扩容;(只有这种情况会被调用)从某种程度上说,其“优先级”很高,只要检测到扩容,就会放下其他工作,先扩容。// 调用之前,nextTable一定已存在。final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {    Node<K,V>[] nextTab; intsc;    if (tab != null && (finstanceof ForwardingNode) &&        (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {        intrs = resizeStamp(tab.length); //标志位        while (nextTab == nextTable && table == tab &&               (sc = sizeCtl) < 0) {            if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||                sc == rs + MAX_RESIZERS || transferIndex <= 0)                break;            if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {                transfer(tab, nextTab);//调用扩容方法,直接进入复制阶段                break;            }        }        return nextTab;    }    return table;}

2、 put相关:

理一下put的流程:
判空:null直接抛空指针异常;
hash:计算h=key.hashcode;调用spread计算hash=(^(>>>16))& HASH_BITS;
遍历table
  • 若table为空,则初始化,仅设置相关参数;
  • @@@计算当前key存放位置,即table的下标i=(n - 1) & hash;
  • 若待存放位置为null,casTabAt无锁插入;
  • 若是forwarding nodes(检测到正在扩容),则helpTransfer(帮助其扩容);
  • else(待插入位置非空且不是forward节点,即碰撞了),将头节点上锁(保证了线程安全):区分链表节点和树节点,分别插入(遇到hash值与key值都与新节点一致的情况,只需要更新value值即可。否则依次向后遍历,直到链表尾插入这个结点);
  • 若链表长度>8,则treeifyBin转树(Note:若length<64,直接tryPresize,两倍table.length;不转树)。
addCount(1L, binCount)。
Note:
1、put操作共计两次hash操作,再利用“与&”操作计算Node的存放位置。
2、ConcurrentHashMap不允许key或value为null。
3、addCount(longx,intcheck)方法:
    ①利用CAS快速更新baseCount的值;
    ②check>=0.则检验是否需要扩容;if sizeCtl<0(正在进行初始化或扩容操作)【nexttable null等情况break;如果有线程正在扩容,则协助扩容】;else if 仅当前线程在扩容,调用协助扩容函数,注其参数nextTable为null。

public V put(K key, V value) {

        return putVal(keyvaluefalse);

}

final V <span style="background-color: rgb(255, 255, 51);">putVal</span>(K key, V value, boolean onlyIfAbsent) {    // 不允许key、value为空    if (key == null || value == null) throw new NullPointerException();    int hash = spread(key.hashCode()); //返回(h^(h>>>16))&HASH_BITS    int binCount = 0;    for (Node<K,V>[] tab = table;;) { // 死循环,直到插入成功        Node<K,V> f; int n, i, fh;        if (tab == null || (n = tab.length) == 0)            tab = initTable(); // table为空,初始化table        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {// 索引处无值            if (casTabAt(tab, i, null,                         new Node<K,V>(hash, key, value, null)))                break;  // no lock when adding to empty bin        }        else if ((fh = f.hash) == MOVED) // MOVED=-1;//hash for forwarding nodes            tab = helpTransfer(tab, f); //检测到正在扩容,则帮助其扩容        else {            V oldVal = null;            synchronized (f) { // 节点上锁(hash值相同的链表的头节点)                if (tabAt(tab, i) == f) {                    if (fh >= 0) { // 链表节点                        binCount = 1;                        for (Node<K,V> e = f;; ++binCount) {                            K ek;// hash和key相同,则修改value                            if (e.hash == hash &&                                ((ek = e.key) == key ||(ek != null && key.equals(ek)))) {                                oldVal = e.val;                                if (!onlyIfAbsent) //仅putIfAbsent()方法中onlyIfAbsent为true                                    e.val = value; //putIfAbsent()包含key则返回get,否则put并返回                                break;                            }                            Node<K,V> pred = e;                            if ((e = e.next) == null) { //已遍历到链表尾部,直接插入                                pred.next = new Node<K,V>(hash, key, value, null);                                break;                            }                        }                    }                    else if (f instanceof TreeBin) { // 树节点                        Node<K,V> p;                        binCount = 2;                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {                            oldVal = p.val;                            if (!onlyIfAbsent)                                p.val = value;                        }                    }                }            }            if (binCount != 0) {                if (binCount >= TREEIFY_THRESHOLD)//实则是>8,执行else,说明该桶位本就有Node                    treeifyBin(tab, i);//若length<64,直接tryPresize,两倍table.length;不转树                if (oldVal != null)                    return oldVal;                break;            }        }    }    addCount(1L, binCount);    return null;}

// Initializes table, using the size recorded in sizeCtl.private final Node<K,V>[] <span style="background-color: rgb(255, 255, 51);">initTable</span>() { // 仅仅设置参数,并未实质初始化    Node<K,V>[] tab; intsc;    while ((tab = table) == null || tab.length == 0) {        if ((sc = sizeCtl) < 0) // 其他线程正在初始化,此线程挂起            Thread.yield(); // lost initialization race; just spin        //CAS方法把sizectl置为-1,表示本线程正在进行初始化        elseif (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {            try {                if ((tab = table) == null || tab.length == 0) {                   intn = (sc > 0) ? sc : DEFAULT_CAPACITY;//DEFAULT_CAPACITY=16                    @SuppressWarnings("unchecked")                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];                    table = tab = nt;                    sc = n - (n >>> 2); // 扩容阀值,0.75*n                }            } finally {                sizeCtl = sc;            }            break;        }    }    return tab;}

3、 get、contains相关
public V <span style="background-color: rgb(255, 255, 51);">get</span>(Object key) {     Node<K,V>[] tab; Node<K,V> e, p; intn, eh; K ek;     inth = spread(key.hashCode());      if ((tab = table) != null && (n = tab.length) > 0 &&         (e = tabAt(tab, (n - 1) & h)) != null) {//tabAt(i),获取索引i处Node         if ((eh = e.hash) == h) {             if ((ek = e.key) == key || (ek != null && key.equals(ek)))                 returne.val;         }         elseif (eh < 0) // 树             return (p = e.find(h, key)) != null ? p.val : null;         while ((e = e.next) != null) { // 链表             if (e.hash == h &&                 ((ek = e.key) == key || (ek != null && key.equals(ek))))                 returne.val;         }     }     return null;}
public boolean containsKey(Object key) {return get(key) != null;}public boolean containsValue(Object value) {}

理一下get的流程:
①spread计算hash值;
②table不为空;
③tabAt(i)处桶位不为空;
④check first,是则返回当前Node的value;否则分别根据树、链表查询。

4、 Size相关:
        由于ConcurrentHashMap在统计size时可能正被多个线程操作,而我们又不可能让他停下来让我们计算,所以只能计量一个估计值。

计数辅助:

// Table of counter cells. When non-null, size is a power of 2

private transient volatile CounterCell[] counterCells;

@sun.misc.Contended static final class CounterCell {

    volatile long value;

    CounterCell(long x) { value = x; }

}

final long sumCount(){

    CounterCell as[] = counterCells;

    long sum = baseCount;

    if(as != null){

        for(int i = 0; i < as.length; i++){

          CounterCell a;

           if((a = as[i]) != null)

              sum += a.value;

        }

    }

    return sum;

}

private final void fullAddCount(long xboolean wasUncontended) {}

public int size() { // 旧版本方法,和推荐的mappingCount返回的值基本无区别

    longn = sumCount();

    return ((n < 0L) ? 0 :

        (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :

        (int)n);

}

// 返回Mappings中的元素个数,官方建议用来替代size。此方法返回的是一个估计值;如果sumCount时有线程插入或删除,实际数量是和mappingCount不同的。since 1.8

public long mappingCount() {

    longn = sumCount();

    return (n < 0L) ? 0L : n// ignore transient negative values

}

private transient volatile long baseCount
//ConcurrentHashMap中元素个数,基于CAS无锁更新,但返回的不一定是当前Map的真实元素个数。

5、remove、clear相关:
public void clear() { // 移除所有元素    long delta = 0L; // negative number of deletions    inti = 0;    Node<K,V>[] tab = table;    while (tab != null && i < tab.length) {       intfh;       Node<K,V> f = tabAt(tab, i);       if (f == null) // 为空,直接跳过           ++i;       else if ((fh = f.hash) == MOVED) { //检测到其他线程正对其扩容//则协助其扩容,然后重置计数器,重新挨个删除元素,避免删除了元素,其他线程又新增元素。           tab = helpTransfer(tab, f);           i = 0; // restart       }       else{           synchronized (f) { // 上锁               if (tabAt(tab, i) == f) { // 其他线程没有在此期间操作f                  Node<K,V> p = (fh >= 0 ? f :                               (finstanceof TreeBin) ?                               ((TreeBin<K,V>)f).first : null);                   while (p != null) { // 首先删除链、树的末尾元素,避免产生大量垃圾                       --delta;                       p = p.next;                   }                   setTabAt(tab, i++, null); // 利用CAS无锁置null               }           }       }    }    if (delta != 0L)       addCount(delta, -1); // 无实际意义,参数check<=1,直接return。}
public V remove(Object key) { // key为null,将在计算hashCode时报空指针异常    return replaceNode(key, null, null);}
public boolean remove(Object key, Object value) {    if (key == null)        thrownew NullPointerException();    returnvalue != null && replaceNode(key, null, value) != null;}

// remove核心方法,注意,这里的cv才是key-value中的value!final V replaceNode(Object key, V value, Object cv) {    inthash = spread(key.hashCode());    for (Node<K,V>[] tab = table;;) {        Node<K,V> f; intn, i, fh;        if (tab == null || (n = tab.length) == 0 ||            (f = tabAt(tab, i = (n - 1) & hash)) == null)            break; // 该桶位第一个元素为空,直接跳过        elseif ((fh = f.hash) == MOVED)            tab = helpTransfer(tab, f); // 先协助扩容再说        else {            V oldVal = null;            booleanvalidated = false;            synchronized (f) {                if (tabAt(tab, i) == f) {                    if (fh >= 0) {                        validated = true;                       //pred没看出来有什么用,全是别人赋值给他,他却不影响其他参数                        for (Node<K,V> e = f, pred = null;;) {                             K ek;                            if (e.hash == hash &&((ek = e.key) == key ||                                 (ek != null && key.equals(ek)))){//hash且可以相等                                V ev = e.val;                               // value为null或value和查到的值相等                                if (cv == null || cv == ev ||                                      (ev != null && cv.equals(ev))) {                                    oldVal = ev;                                    if (value != null) // replace中调用                                        e.val = value;                                    elseif (pred != null)                                        pred.next = e.next;                                    else                                        setTabAt(tab, i, e.next);                                }                                break;                            }                            pred = e;                            if ((e = e.next) == null)                                break;                        }                    }                    elseif (finstanceof TreeBin) { // 以树的方式find、remove                        validated = true;                        TreeBin<K,V> t = (TreeBin<K,V>)f;                        TreeNode<K,V> r, p;                        if ((r = t.root) != null &&                            (p = r.findTreeNode(hash, key, null)) != null) {                            V pv = p.val;                            if (cv == null || cv == pv ||                                (pv != null && cv.equals(pv))) {                                oldVal = pv;                                if (value != null)                                    p.val = value;                                elseif (t.removeTreeNode(p))                                    setTabAt(tab, i, untreeify(t.first));                            }                        }                    }                }            }            if (validated) {                if (oldVal != null) {                    if (value == null)                        addCount(-1L, -1);                    returnoldVal;                }                break;            }        }    }    return null;}
public boolean replace(K key, V oldValue, V newValue) {}

6、其他函数:

public boolean isEmpty() {

    return sumCount() <= 0L; // ignore transient negative values

}


参考资料:
http://ifeve.com/concurrenthashmap/
http://ifeve.com/java-concurrent-hashmap-2/
、、、、、、、、、
http://ashkrit.blogspot.com/2014/12/what-is-new-in-java8-concurrenthashmap.html
http://blog.csdn.net/u010723709/article/details/48007881
http://yucchi.jp/blog/?p=2048
http://blog.csdn.net/q291611265/article/details/47985145
、、、、、、、、、、
SynchronizedMap:http://blog.sina.com.cn/s/blog_5157093c0100hm3y.html
http://blog.csdn.net/yangfanend/article/details/7165742
http://blog.csdn.net/xuefeng0707/article/details/40797085


5 0
原创粉丝点击