3.1、随机森林之随机森林实例

来源:互联网 发布:厦门二手房成交数据 编辑:程序博客网 时间:2024/04/29 12:44

随机森林实例

Markdown脚本及数据集:http://pan.baidu.com/s/1bnY6ar9

实例一、用随机森林对鸢尾花数据进行分类

#1、加载数据并查看data("iris")summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   ##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  ##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  ##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  ##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  ##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  ##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  ##        Species  ##  setosa    :50  ##  versicolor:50  ##  virginica :50  ##                 ##                 ## 
str(iris)
## 'data.frame':    150 obs. of  5 variables:##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#2、创建训练集和测试集数据set.seed(2001)library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.2.3
index <- createDataPartition(iris$Species, p=0.7, list=F)train_iris <- iris[index, ]test_iris <- iris[-index, ]#3、建模 library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## ## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':## ##     margin
model_iris <- randomForest(Species~., data=train_iris, ntree=50, nPerm=10, mtry=3, proximity=T, importance=T)#4、模型评估model_iris
## ## Call:##  randomForest(formula = Species ~ ., data = train_iris, ntree = 50,      nPerm = 10, mtry = 3, proximity = T, importance = T) ##                Type of random forest: classification##                      Number of trees: 50## No. of variables tried at each split: 3## ##         OOB estimate of  error rate: 4.76%## Confusion matrix:##            setosa versicolor virginica class.error## setosa         35          0         0  0.00000000## versicolor      0         32         3  0.08571429## virginica       0          2        33  0.05714286
str(model_iris)
## List of 19##  $ call           : language randomForest(formula = Species ~ ., data = train_iris, ntree = 50,      nPerm = 10, mtry = 3, proximity = T, importance = T)##  $ type           : chr "classification"##  $ predicted      : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...##   ..- attr(*, "names")= chr [1:105] "5" "7" "8" "11" ...##  $ err.rate       : num [1:50, 1:4] 0.0513 0.0758 0.0741 0.0435 0.0505 ...##   ..- attr(*, "dimnames")=List of 2##   .. ..$ : NULL##   .. ..$ : chr [1:4] "OOB" "setosa" "versicolor" "virginica"##  $ confusion      : num [1:3, 1:4] 35 0 0 0 32 2 0 3 33 0 ...##   ..- attr(*, "dimnames")=List of 2##   .. ..$ : chr [1:3] "setosa" "versicolor" "virginica"##   .. ..$ : chr [1:4] "setosa" "versicolor" "virginica" "class.error"##  $ votes          : matrix [1:105, 1:3] 1 1 1 1 1 1 1 1 1 1 ...##   ..- attr(*, "dimnames")=List of 2##   .. ..$ : chr [1:105] "5" "7" "8" "11" ...##   .. ..$ : chr [1:3] "setosa" "versicolor" "virginica"##   ..- attr(*, "class")= chr [1:2] "matrix" "votes"##  $ oob.times      : num [1:105] 15 23 22 16 17 11 20 20 17 19 ...##  $ classes        : chr [1:3] "setosa" "versicolor" "virginica"##  $ importance     : num [1:4, 1:5] 0 0 0.3417 0.34918 -0.00518 ...##   ..- attr(*, "dimnames")=List of 2##   .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"##   .. ..$ : chr [1:5] "setosa" "versicolor" "virginica" "MeanDecreaseAccuracy" ...##  $ importanceSD   : num [1:4, 1:4] 0 0 0.04564 0.04711 0.00395 ...##   ..- attr(*, "dimnames")=List of 2##   .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"##   .. ..$ : chr [1:4] "setosa" "versicolor" "virginica" "MeanDecreaseAccuracy"##  $ localImportance: NULL##  $ proximity      : num [1:105, 1:105] 1 1 1 1 1 1 1 1 1 1 ...##   ..- attr(*, "dimnames")=List of 2##   .. ..$ : chr [1:105] "5" "7" "8" "11" ...##   .. ..$ : chr [1:105] "5" "7" "8" "11" ...##  $ ntree          : num 50##  $ mtry           : num 3##  $ forest         :List of 14##   ..$ ndbigtree : int [1:50] 11 5 9 9 9 9 9 11 11 9 ...##   ..$ nodestatus: int [1:17, 1:50] 1 -1 1 1 1 -1 -1 1 -1 -1 ...##   ..$ bestvar   : int [1:17, 1:50] 4 0 4 3 3 0 0 1 0 0 ...##   ..$ treemap   : int [1:17, 1:2, 1:50] 2 0 4 6 8 0 0 10 0 0 ...##   ..$ nodepred  : int [1:17, 1:50] 0 1 0 0 0 2 3 0 3 2 ...##   ..$ xbestsplit: num [1:17, 1:50] 0.8 0 1.65 5.25 4.85 0 0 6.05 0 0 ...##   ..$ pid       : num [1:3] 1 1 1##   ..$ cutoff    : num [1:3] 0.333 0.333 0.333##   ..$ ncat      : Named int [1:4] 1 1 1 1##   .. ..- attr(*, "names")= chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"##   ..$ maxcat    : int 1##   ..$ nrnodes   : int 17##   ..$ ntree     : num 50##   ..$ nclass    : int 3##   ..$ xlevels   :List of 4##   .. ..$ Sepal.Length: num 0##   .. ..$ Sepal.Width : num 0##   .. ..$ Petal.Length: num 0##   .. ..$ Petal.Width : num 0##  $ y              : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...##   ..- attr(*, "names")= chr [1:105] "5" "7" "8" "11" ...##  $ test           : NULL##  $ inbag          : NULL##  $ terms          :Classes 'terms', 'formula' length 3 Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width##   .. ..- attr(*, "variables")= language list(Species, Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)##   .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...##   .. .. ..- attr(*, "dimnames")=List of 2##   .. .. .. ..$ : chr [1:5] "Species" "Sepal.Length" "Sepal.Width" "Petal.Length" ...##   .. .. .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"##   .. ..- attr(*, "term.labels")= chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"##   .. ..- attr(*, "order")= int [1:4] 1 1 1 1##   .. ..- attr(*, "intercept")= num 0##   .. ..- attr(*, "response")= int 1##   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> ##   .. ..- attr(*, "predvars")= language list(Species, Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)##   .. ..- attr(*, "dataClasses")= Named chr [1:5] "factor" "numeric" "numeric" "numeric" ...##   .. .. ..- attr(*, "names")= chr [1:5] "Species" "Sepal.Length" "Sepal.Width" "Petal.Length" ...##  - attr(*, "class")= chr [1:2] "randomForest.formula" "randomForest"
pred <- predict(model_iris, train_iris)mean(pred==train_iris[, 5])
## [1] 1
#5、预测pred_iris <- predict(model_iris, test_iris)table(pred_iris, test_iris[, 5])
##             ## pred_iris    setosa versicolor virginica##   setosa         15          0         0##   versicolor      0         13         2##   virginica       0          2        13
mean(pred_iris==test_iris[, 5])
## [1] 0.9111111
library(gmodels)CrossTable(pred_iris, test_iris[, 5])
## ##  ##    Cell Contents## |-------------------------|## |                       N |## | Chi-square contribution |## |           N / Row Total |## |           N / Col Total |## |         N / Table Total |## |-------------------------|## ##  ## Total Observations in Table:  45 ## ##  ##              | test_iris[, 5] ##    pred_iris |     setosa | versicolor |  virginica |  Row Total | ## -------------|------------|------------|------------|------------|##       setosa |         15 |          0 |          0 |         15 | ##              |     20.000 |      5.000 |      5.000 |            | ##              |      1.000 |      0.000 |      0.000 |      0.333 | ##              |      1.000 |      0.000 |      0.000 |            | ##              |      0.333 |      0.000 |      0.000 |            | ## -------------|------------|------------|------------|------------|##   versicolor |          0 |         13 |          2 |         15 | ##              |      5.000 |     12.800 |      1.800 |            | ##              |      0.000 |      0.867 |      0.133 |      0.333 | ##              |      0.000 |      0.867 |      0.133 |            | ##              |      0.000 |      0.289 |      0.044 |            | ## -------------|------------|------------|------------|------------|##    virginica |          0 |          2 |         13 |         15 | ##              |      5.000 |      1.800 |     12.800 |            | ##              |      0.000 |      0.133 |      0.867 |      0.333 | ##              |      0.000 |      0.133 |      0.867 |            | ##              |      0.000 |      0.044 |      0.289 |            | ## -------------|------------|------------|------------|------------|## Column Total |         15 |         15 |         15 |         45 | ##              |      0.333 |      0.333 |      0.333 |            | ## -------------|------------|------------|------------|------------|## ## 

实例二、用坦泰尼克号乘客是否存活数据应用到随机森林算法中

在随机森林算法的函数randomForest()中有两个非常重要的参数,而这两个参数又将影响模型的准确性,它们分别是mtry和ntree。一般对mtry的选择是逐一尝试,直到找到比较理想的值,ntree的选择可通过图形大致判断模型内误差稳定时的值。 randomForest包中的randomForest(formula, data, ntree, nPerm, mtry, proximity, importace)函数:随机森林分类与回归。ntree表示生成决策树的数目(不应设置太小,默认为 500);nPerm表示计算importance时的重复次数,数量大于1给出了比较稳定的估计,但不是很有效(目前只实现了回归);mtry表示选择的分裂属性的个数;proximity表示是否生成邻近矩阵,为T表示生成邻近矩阵;importance表示输出分裂属性的重要性。

下面使用坦泰尼克号乘客是否存活数据应用到随机森林算法中,看看模型的准确性如何。

#1、加载数据并查看:同时读取训练样本和测试样本集train <- read.table("F:\\R\\Rworkspace\\RandomForest/train.csv", header=T, sep=",")test <- read.table("F:\\R\\Rworkspace\\RandomForest/test.csv", header=T, sep=",")#注意:训练集和测试集数据来自不同的数据集,一定要注意测试集和训练集的factor的levels相同,否则,在利用训练集训练的模型对测试集进行预测时,会报错!!!str(train)
## 'data.frame':    891 obs. of  8 variables:##  $ Survived: int  0 1 1 1 0 0 0 0 1 1 ...##  $ Pclass  : int  3 1 3 1 3 3 1 3 3 2 ...##  $ Sex     : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 2 1 1 ...##  $ Age     : num  22 38 26 35 35 NA 54 2 27 14 ...##  $ SibSp   : int  1 1 0 1 0 0 0 3 0 1 ...##  $ Parch   : int  0 0 0 0 0 0 0 1 2 0 ...##  $ Fare    : num  7.25 71.28 7.92 53.1 8.05 ...##  $ Embarked: Factor w/ 4 levels "","C","Q","S": 4 2 4 4 4 3 4 4 4 2 ...
str(test)
## 'data.frame':    418 obs. of  7 variables:##  $ Pclass  : int  3 3 2 3 3 3 3 2 3 3 ...##  $ Sex     : Factor w/ 2 levels "female","male": 2 1 2 2 1 2 1 2 1 2 ...##  $ Age     : num  34.5 47 62 27 22 14 30 26 18 21 ...##  $ SibSp   : int  0 1 0 0 1 0 0 1 0 2 ...##  $ Parch   : int  0 0 0 0 1 0 0 1 0 0 ...##  $ Fare    : num  7.83 7 9.69 8.66 12.29 ...##  $ Embarked: Factor w/ 3 levels "C","Q","S": 2 3 2 3 3 3 2 3 1 3 ...
#从上可知:训练集数据共891条记录,8个变量,Embarked因子水平为4;测试集数据共418条记录,7个变量,Embarked因子水平为3;训练集中存在缺失数据;Survived因变量为数字类型,测试集数据无因变量#2、数据清洗#1)调整测试集与训练基地因子水平levels(train$Embarked)
## [1] ""  "C" "Q" "S"
levels(test$Embarked)
## [1] "C" "Q" "S"
levels(test$Embarked) <- levels(train$Embarked)#2)把因变量转化为因子类型train$Survived <- as.factor(train$Survived)#3)使用rfImpute()函数补齐训练集的缺失值NAlibrary(randomForest)train_impute <- rfImpute(Survived~., data=train)
## ntree      OOB      1      2##   300:  16.39%  7.83% 30.12%## ntree      OOB      1      2##   300:  16.50%  8.93% 28.65%## ntree      OOB      1      2##   300:  16.72%  8.74% 29.53%## ntree      OOB      1      2##   300:  16.50%  8.56% 29.24%## ntree      OOB      1      2##   300:  17.28%  9.47% 29.82%
#4)补齐测试集的缺失值:对待测样本进行预测,发现待测样本中存在缺失值,这里使用多重插补法将缺失值补齐summary(test)
##      Pclass          Sex           Age            SibSp       ##  Min.   :1.000   female:152   Min.   : 0.17   Min.   :0.0000  ##  1st Qu.:1.000   male  :266   1st Qu.:21.00   1st Qu.:0.0000  ##  Median :3.000                Median :27.00   Median :0.0000  ##  Mean   :2.266                Mean   :30.27   Mean   :0.4474  ##  3rd Qu.:3.000                3rd Qu.:39.00   3rd Qu.:1.0000  ##  Max.   :3.000                Max.   :76.00   Max.   :8.0000  ##                               NA's   :86                      ##      Parch             Fare         Embarked##  Min.   :0.0000   Min.   :  0.000    :102   ##  1st Qu.:0.0000   1st Qu.:  7.896   C: 46   ##  Median :0.0000   Median : 14.454   Q:270   ##  Mean   :0.3923   Mean   : 35.627   S:  0   ##  3rd Qu.:0.0000   3rd Qu.: 31.500           ##  Max.   :9.0000   Max.   :512.329           ##                   NA's   :1
#可是看出测试集数据存在缺失值NA,Age和Fare的数据有NA#多重插补法填充缺失值:library(mice)
## Loading required package: Rcpp
## mice 2.25 2015-11-09
imput <- mice(data=test, m=10)
## ##  iter imp variable##   1   1  Age  Fare##   1   2  Age  Fare##   1   3  Age  Fare##   1   4  Age  Fare##   1   5  Age  Fare##   1   6  Age  Fare##   1   7  Age  Fare##   1   8  Age  Fare##   1   9  Age  Fare##   1   10  Age  Fare##   2   1  Age  Fare##   2   2  Age  Fare##   2   3  Age  Fare##   2   4  Age  Fare##   2   5  Age  Fare##   2   6  Age  Fare##   2   7  Age  Fare##   2   8  Age  Fare##   2   9  Age  Fare##   2   10  Age  Fare##   3   1  Age  Fare##   3   2  Age  Fare##   3   3  Age  Fare##   3   4  Age  Fare##   3   5  Age  Fare##   3   6  Age  Fare##   3   7  Age  Fare##   3   8  Age  Fare##   3   9  Age  Fare##   3   10  Age  Fare##   4   1  Age  Fare##   4   2  Age  Fare##   4   3  Age  Fare##   4   4  Age  Fare##   4   5  Age  Fare##   4   6  Age  Fare##   4   7  Age  Fare##   4   8  Age  Fare##   4   9  Age  Fare##   4   10  Age  Fare##   5   1  Age  Fare##   5   2  Age  Fare##   5   3  Age  Fare##   5   4  Age  Fare##   5   5  Age  Fare##   5   6  Age  Fare##   5   7  Age  Fare##   5   8  Age  Fare##   5   9  Age  Fare##   5   10  Age  Fare
Age <- data.frame(Age=apply(imput$imp$Age, 1, mean))Fare <- data.frame(Fare=apply(imput$imp$Fare, 1, mean))#添加行标号:test$Id <- row.names(test)Age$Id <- row.names(Age)Fare$Id <- row.names(Fare)#替换缺失值:test[test$Id %in% Age$Id, 'Age'] <- Age$Agetest[test$Id %in% Fare$Id, 'Fare'] <- Fare$Faresummary(test)
##      Pclass          Sex           Age            SibSp       ##  Min.   :1.000   female:152   Min.   : 0.17   Min.   :0.0000  ##  1st Qu.:1.000   male  :266   1st Qu.:22.00   1st Qu.:0.0000  ##  Median :3.000                Median :26.19   Median :0.0000  ##  Mean   :2.266                Mean   :29.41   Mean   :0.4474  ##  3rd Qu.:3.000                3rd Qu.:36.65   3rd Qu.:1.0000  ##  Max.   :3.000                Max.   :76.00   Max.   :8.0000  ##      Parch             Fare         Embarked      Id           ##  Min.   :0.0000   Min.   :  0.000    :102    Length:418        ##  1st Qu.:0.0000   1st Qu.:  7.896   C: 46    Class :character  ##  Median :0.0000   Median : 14.454   Q:270    Mode  :character  ##  Mean   :0.3923   Mean   : 35.583   S:  0                      ##  3rd Qu.:0.0000   3rd Qu.: 31.472                              ##  Max.   :9.0000   Max.   :512.329
#从上可知:测试数据集中已经没有了NA值。#3、选着随机森林的mtry和ntree值#1)选着mtry(n <- length(names(train)))
## [1] 8
library(randomForest)for(i in 1:n) {  model <- randomForest(Survived~., data=train_impute,  mtry=i)  err <- mean(model$err.rate)  print(err)}
## [1] 0.2100028## [1] 0.1889116## [1] 0.1776607## [1] 0.1902606## [1] 0.1960938## [1] 0.1953451## [1] 0.1951303## [1] 0.2018745
#从上可知:mtry=2或者mtry=3时,模型内评价误差最小,故确定参数mtry=2或者mtry=3#2)选着ntreeset.seed(2002)model <- randomForest(Survived~., data=train_impute, mtry=2, ntree=1000)plot(model)

#从上图可知:ntree在400左右时,模型内误差基本稳定,故取ntree=400#4、建模model_fit <- randomForest(Survived~., data=train_impute, mtry=2, ntree=400, importance=T)#5、模型评估model_fit
## ## Call:##  randomForest(formula = Survived ~ ., data = train_impute, mtry = 2,      ntree = 400, importance = T) ##                Type of random forest: classification##                      Number of trees: 400## No. of variables tried at each split: 2## ##         OOB estimate of  error rate: 16.61%## Confusion matrix:##     0   1 class.error## 0 500  49  0.08925319## 1  99 243  0.28947368
#查看变量的重要性(importance <- importance(x=model_fit))
##                  0         1 MeanDecreaseAccuracy MeanDecreaseGini## Pclass   16.766454 28.241508             32.16125         33.15984## Sex      46.578191 76.145306             72.42624        100.74843## Age      19.882605 24.586274             30.52032         60.85186## SibSp    19.070707  2.834303             18.95690         16.11720## Parch    10.366140  8.380559             13.18282         12.28725## Fare     18.649672 20.967558             29.43262         66.31489## Embarked  7.904436 11.479919             14.18780         12.68924
#绘制变量的重要性图varImpPlot(model_fit)

#从上图可知:模型中乘客的性别最为重要,接下来的是Pclass,age,Fare和Fare,age,Pclass。#6、预测#1)对训练集数据预测:train_pred <- predict(model_fit, train_impute)mean(train_pred==train_impute$Survived)
## [1] 0.9135802
table(train_pred, train_impute$Survived)
##           ## train_pred   0   1##          0 535  63##          1  14 279
#模型的预测精度在90%以上#2)对测试集数据预测:test_pred <- predict(model_fit, test[, 1:7])head(test_pred)
## 1 2 3 4 5 6 ## 0 0 0 0 1 0 ## Levels: 0 1
0 0
原创粉丝点击