hdu2544 最短路 Dijstra算法堆优化,Bellman-Ford,Bellman-Ford队列优化

来源:互联网 发布:stateserver 端口 编辑:程序博客网 时间:2024/05/17 03:00

最短路

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 48071    Accepted Submission(s): 21174


Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

 

Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
 

Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
 

Sample Input
2 11 2 33 31 2 52 3 53 1 20 0
 

Sample Output
32

Dijstra堆优化算法


#include <cstdio>#include <cstring>#include <iostream>#include <cstdlib>#include <queue>#include <vector>#include <limits>using namespace std;const int maxn = 150;const int INF = numeric_limits<int>::max();struct Edge {int from, to, dist;Edge(int from, int to, int dist) : from(from), to(to), dist(dist) {}};struct HeapNode {int d, u;HeapNode(int d, int u) : d(d), u(u) {}bool operator < (const HeapNode& hns) const {return d > hns.d;}};struct Dijstra {int d[maxn], p[maxn], n;bool v[maxn];vector<Edge> edges;vector<int> G[maxn];void Init(int n) {this->n = n;edges.clear();for (int i = 0; i < n; i++) G[i].clear();for (int i = 0; i < n; i++) d[i] = INF;memset(v, false, sizeof(v));}void AddEdges(int from, int to, int dist) {int m;edges.push_back(Edge(from, to, dist));   //将edges的位置哈希到G中m = edges.size();G[from].push_back(m - 1);edges.push_back(Edge(to, from, dist));m = edges.size();G[to].push_back(m - 1);}void dijstra(int s) {d[s] = 0;priority_queue<HeapNode> Q;Q.push(HeapNode(0, s));while (!Q.empty()) {HeapNode hn = Q.top(); Q.pop();int u = hn.u;if (v[u]) continue;v[u] = true;for (int i = 0; i < G[u].size(); i++) {Edge& e = edges[G[u][i]];if (d[e.to] > d[e.from] + e.dist) {d[e.to] = d[e.from] + e.dist;p[e.to] = G[u][i];//push()Q.push(HeapNode(d[e.to], e.to));}}}}};int main(){int N, M;Dijstra dij;while (~scanf("%d%d", &N, &M) && (N || M)) {dij.Init(N);int from, to, dist;for (int i = 0; i < M; i++) {scanf("%d%d%d", &from, &to, &dist);dij.AddEdges(from - 1, to - 1, dist);}dij.dijstra(0);printf("%d\n", dij.d[N - 1]);}return 0;}


Bellman-Ford算法


如果最短路存在,一定存在一个不含环的最短路

理由如下:在边权可正课负的图中,环游零环、正环和负环三种。如果包含零环或者正环,去掉以后路径不会边长;

如果包含负环,意味着最短路不存在,因为在负环中每绕一次,都会使路径长度减小,没有最小值

既然不含环,最短路径最多只经过(起点不算)n - 1个顶点,可以通过n - 1“轮”松弛来得到


#include <cstdio>#include <cstring>#include <iostream>#include <algorithm>using namespace std;const int maxn = 10005 * 2;  //无向图,存两条边const int INF = numeric_limits<int>::max();int u[maxn], v[maxn], w[maxn], d[105];int N, M;int main(){while (~scanf("%d%d", &N, &M) && (N || M)) {for (int i = 1; i <= N; i++) d[i] = INF;for (int i = 1; i <= M; i++) {scanf("%d%d%d", &u[i], &v[i], &w[i]);}for (int i = M + 1; i <= M + M; i++) {u[i] = v[i - M];v[i] = u[i - M];w[i] = w[i - M];}d[1] = 0;for (int i = 0; i < N - 1; i++) {for (int k = 1; k <= M + M; k++) {int x = u[k], y = v[k];if (d[x] < INF) {d[y] = min(d[y], d[x] + w[k]);  //松弛}}}printf("%d\n", d[N]);}return 0;}

时间复杂度为O(n * m)


用队列优化Bellman-Ford算法,用邻接表存图,减少对边的重复检查


#include <cstdio>#include <cstring>#include <iostream>#include <algorithm>#include <queue>#include <vector>using namespace std;const int maxn = 10005 * 2;const int INF = numeric_limits<int>::max();struct Edge {int u, v, w;Edge(int u, int v, int w) : u(u), v(v), w(w) {};Edge() {};};int d[105];int N, M;bool inq[105];  //标记某个点是否在queue里queue<int> Q;vector<int> G[105];vector<Edge> edges;int main(){while (~scanf("%d%d", &N, &M) && (N || M)) {//initfor (int i = 1; i <= N; i++) d[i] = INF;memset(inq, false, sizeof(inq));edges.clear();for (int i = 1; i <= N; i++) G[i].clear();while (!Q.empty()) Q.pop();for (int i = 1; i <= M; i++) {int u, v, w;scanf("%d%d%d", &u, &v, &w);edges.push_back(Edge(u, v, w));G[u].push_back(edges.size() - 1);edges.push_back(Edge(v, u, w));  //无向图,反向再输入一遍G[v].push_back(edges.size() - 1);}d[1] = 0;inq[1] = true;Q.push(1);//bellman-ford队列优化,这个题不用判断负环了while (!Q.empty()) {int p = Q.front(); Q.pop();inq[p] = false;//用邻接表每次只找查与这个点连接的边,而上面一个程序每次要检查所有的边for (int i = 0; i < G[p].size(); i++) {Edge& e = edges[G[p][i]];if (d[p] < INF && d[p] + e.w < d[e.v]) {d[e.v] = d[p] + e.w;if (!inq[e.v]) {Q.push(e.v);inq[e.v] = true;}}}}printf("%d\n", d[N]);}return 0;}




0 0
原创粉丝点击