数据结构之“Ordered List and Sorted List”(七)

来源:互联网 发布:网络药店排名 编辑:程序博客网 时间:2024/06/11 02:15

        本文主要学习“Sorted List”的应用—— 多项式相加(the addition of two polynomials,点击打开链接)。


一、多项式相加的计算机表示

        前面学习“Ordered List”的应用的时候,我们学到用“a sequence of ordered pairs”来表示一个多项式。如下:


        然后,用“Ordered List”来表示这个多项式,并编写了一个算法来求该多项式的微分。(点击打开链接)

        在计算多项式的微分的算法中,多项式中的每一项在序列中的具体位置并不影响该算法的效率。但是,如果我们考虑两个多项式相加的算法:它需要找出指数(exponent)相同的项,即分组(group),然将指数相同的项的系数(coefficient)相加。如果多项式中的项的位置是任意的,这个分组的过程需要多次遍历“Ordered List”,效率非常低。反之,如果多项式的项是从小到大(按指数)排列的,那么这个分组仅需一次遍历。


二、实现

接口声明:

#pragma once#include "SortedListAsLinkedList.h"// the oredered pairclass TermB : public Object{public:    TermB(double, unsigned int);    void Put(std::ostream &)const;    void Differentiate();    double Coefficient() const;    unsigned int Exponent() const;    friend TermB operator+(const TermB&, const TermB&);protected:    int CompareTo(Object const &) const;private:    double coefficient;    unsigned int exponent;};class SortedPolynomial : public SortedListAsLinkedList{public:    SortedPolynomial();    ~SortedPolynomial();    SortedPolynomial(SortedPolynomial&);    friend SortedPolynomial operator+(const SortedPolynomial &, const SortedPolynomial &);};

实现

#include "stdafx.h"#include "SortedPolynomial.h"TermB::TermB(double _coefficient, unsigned int _exponent)    : coefficient(_coefficient)    , exponent(_exponent){}void TermB::Put(std::ostream & s) const{    s << typeid(*this).name() << " {";    s << coefficient << "," << exponent;    s << " }";}void TermB::Differentiate(){    if (exponent > 0)    {        coefficient *= exponent;        --exponent;    }    else        coefficient = 0;}double TermB::Coefficient() const{    return coefficient;}unsigned int TermB::Exponent() const{    return exponent;}TermB operator+(const TermB& arg1, const TermB& arg2){    if (arg1.exponent != arg2.exponent)        throw std::domain_error("unequal exponent");    return TermB(arg1.coefficient + arg2.coefficient, arg1.exponent);}int TermB::CompareTo(Object const & object) const{    TermB const & term = dynamic_cast<TermB const &> (object);    if (exponent == term.exponent)        return ::Compare(coefficient, term.coefficient);    else        return exponent - term.exponent;}SortedPolynomial::SortedPolynomial(){}SortedPolynomial::~SortedPolynomial(){}SortedPolynomial::SortedPolynomial(SortedPolynomial& arg){    Purge();    Pos & pos = *new Pos(arg, arg.linkedList.Head());    //Iterator & pos = arg.NewIterator();    while (!pos.IsDone())    {            const TermB & term = dynamic_cast<const TermB &> (*pos);            Insert(*new TermB(term));            ++pos;    }}SortedPolynomial operator+(const SortedPolynomial & arg1, const SortedPolynomial & arg2){    SortedPolynomial result;    ListAsLinkedList::Pos & pos1 = *new ListAsLinkedList::Pos(arg1, arg1.linkedList.Head());    ListAsLinkedList::Pos & pos2 = *new ListAsLinkedList::Pos(arg2, arg2.linkedList.Head());    //Iterator & pos1 = arg1.NewIterator();    //Iterator & pos2 = arg2.NewIterator();    while (!pos1.IsDone() && !pos2.IsDone())    {        const TermB & term1 = dynamic_cast<const TermB &> (*pos1);        const TermB & term2 = dynamic_cast<const TermB &> (*pos2);        if (term1.Exponent() < term2.Exponent())        {            result.Insert(*new TermB(term1));            ++pos1;        }        else if (term1.Exponent() > term2.Exponent())        {            result.Insert(*new TermB(term2));            ++pos2;        }        else        {            TermB sum = term1 + term2;            if (sum.Coefficient())                result.Insert(*new TermB(sum));            ++pos1;            ++pos2;        }    }    while (!pos1.IsDone())    {        const TermB & term1 = dynamic_cast<const TermB &> (*pos1);        result.Insert(*new TermB(term1));        ++pos1;    }    while (!pos2.IsDone())    {        const TermB & term2 = dynamic_cast<const TermB &> (*pos2);        result.Insert(*new TermB(term2));        ++pos2;    }    delete& pos1;    delete& pos2;    return result;}


三、测试

测试代码

    // test for Polynomial Addition    {        SortedPolynomial polynomial;        TermB pArray[] = { TermB(5,0), TermB(32,5), TermB(4,2), TermB(56,3), TermB(16,4), TermB(45,1) };        for (unsigned int i = 0; i < 6; ++i)            polynomial.Insert(pArray[i]);        polynomial.Put(std::cout);        cout << endl;        SortedPolynomial polynomial2;        TermB pArray2[] = { TermB(5, 0), TermB(32, 5), TermB(4, 2), TermB(56, 3), TermB(16, 4), TermB(45, 6) };        for (unsigned int i = 0; i < 6; ++i)            polynomial2.Insert(pArray2[i]);        polynomial2.Put(std::cout);        cout << endl;        SortedPolynomial polynomial3 = polynomial + polynomial2;        polynomial3.Put(std::cout);        polynomial.RescindOwnership();        polynomial2.RescindOwnership();        polynomial3.RescindOwnership();    }


四、分析和优化

1,“互补多项式”求和

        假设计算两个“互补多项式”(a addition of a polynomial and its arithmetic complement)的和。这两个多项式对应项相加为0,最终结果也为零,即在求和函数中无需执行“Insert”。那么它的总消耗时间就是主循环的次数,即O(n)。

        注:先考虑特殊情况,再考虑一般情况,这是一种解决问题的思路。

2,一般多项求和

        假设两个项数不相等的多项式,p(x) < q(x)。主循环执行L次,次循环执行M次。“Insert”函数为O(k),则求和函数的效率为:



最坏的情况是O(n*n)。主要是因为,我们在分析时假设“Insert”函数不知道每次的具体插入位置。事实上,在循环中,每次都是“在尾部插入”,参照“Insert”函数的实现:

void SortedListAsLinkedList::Insert(Object & object){    const Node<Object*>* prevPtr = NULL;    const Node<Object*>* ptr = linkedList.Head();    while (ptr != NULL && *ptr->Datum() < object)    {        prevPtr = ptr;        ptr = ptr->Next();    }    if (!prevPtr)        linkedList.Prepend(&object);    else        linkedList.InsertAfter(prevPtr, &object);    ++count;}

      我们可以进行以下优化,取代Insert。

SortedPolynomial operator+(const SortedPolynomial & arg1, const SortedPolynomial & arg2){    SortedPolynomial result;    ListAsLinkedList::Pos & pos1 = *new ListAsLinkedList::Pos(arg1, arg1.linkedList.Head());    ListAsLinkedList::Pos & pos2 = *new ListAsLinkedList::Pos(arg2, arg2.linkedList.Head());    //Iterator & pos1 = arg1.NewIterator();    //Iterator & pos2 = arg2.NewIterator();    while (!pos1.IsDone() && !pos2.IsDone())    {        const TermB & term1 = dynamic_cast<const TermB &> (*pos1);        const TermB & term2 = dynamic_cast<const TermB &> (*pos2);        if (term1.Exponent() < term2.Exponent())        {            result.linkedList.Append(new TermB(term1));// result.Insert(*new TermB(term1));            ++pos1;        }        else if (term1.Exponent() > term2.Exponent())        {            result.linkedList.Append(new TermB(term2)); //result.Insert(*new TermB(term2));            ++pos2;        }        else        {            TermB sum = term1 + term2;            if (sum.Coefficient())                result.linkedList.Append(new TermB(sum)); // result.Insert(*new TermB(sum));            ++pos1;            ++pos2;        }    }    while (!pos1.IsDone())    {        const TermB & term1 = dynamic_cast<const TermB &> (*pos1);        result.linkedList.Append(new TermB(term1)); // result.Insert(*new TermB(term1));        ++pos1;    }    while (!pos2.IsDone())    {        const TermB & term2 = dynamic_cast<const TermB &> (*pos2);        result.linkedList.Append(new TermB(term2)); // result.Insert(*new TermB(term2));        ++pos2;    }    delete& pos1;    delete& pos2;    return result;}

        优化后,运行时间降为O(n)。


0 0