.Net 互联网技术(一)分布式ID生成方法生成演变

来源:互联网 发布:新手编程书 编辑:程序博客网 时间:2024/06/07 09:48
.Net 互联网技术(一)分布式ID生成方法生成演变

一、需求缘起转载至

几乎所有的业务系统,都有生成一个记录标识的需求,例如:

1)消息标识:message-id

2)订单标识:order-id

3)帖子标识:tiezi-id

这个记录标识往往就是数据库中的唯一主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序。

 

这个记录标识上的查询,往往又有分页或者排序的业务需求,例如:

1)拉取最新的一页消息:selectmessage-id/ order by time/ limit 100

2)拉取最新的一页订单:selectorder-id/ order by time/ limit 100

3)拉取最新的一页帖子:selecttiezi-id/ order by time/ limit 100

所以往往要有一个time字段,并且在time字段上建立普通索引(non-cluster index)。

 

我们都知道普通索引存储的是实际记录的指针,其访问效率会比聚集索引慢,如果记录标识在生成时能够基本按照时间有序,则可以省去这个time字段的索引查询:

select message-id/ (order by message-id)/limit 100

再次强调,能这么做的前提是,message-id的生成基本是趋势时间递增的

 

这就引出了记录标识生成(也就是上文提到的三个XXX-id)的两大核心需求:

1)全局唯一

2)趋势有序

这也是本文要讨论的核心问题:如何高效生成趋势有序的全局唯一ID

 

二、常见方法、不足与优化

【常见方法一:使用数据库的 auto_increment 来生成全局唯一递增ID

优点:

1)简单,使用数据库已有的功能

2)能够保证唯一性

3)能够保证递增性

4)步长固定

缺点:

1)可用性难以保证:数据库常见架构是一主多从+读写分离,生成自增ID是写请求,主库挂了就玩不转了

2)扩展性差,性能有上限:因为写入是单点,数据库主库的写性能决定ID的生成性能上限,并且难以扩展

改进方法:

1)增加主库,避免写入单点

2)数据水平切分,保证各主库生成的ID不重复


如上图所述,由1个写库变成3个写库,每个写库设置不同的auto_increment初始值,以及相同的增长步长,以保证每个数据库生成的ID是不同的(上图中库0生成0,3,6,9…,库1生成1,4,7,10,库2生成2,5,8,11…

改进后的架构保证了可用性,但缺点是:

1丧失了ID生成的“绝对递增性”:先访问库0生成0,3,再访问库1生成1,可能导致在非常短的时间内,ID生成不是绝对递增的(这个问题不大,我们的目标是趋势递增,不是绝对递增)

2)数据库的写压力依然很大,每次生成ID都要访问数据库

为了解决上述两个问题,引出了第二个常见的方案

 

【常见方法二:单点批量ID生成服务】

分布式系统之所以难,很重要的原因之一是“没有一个全局时钟,难以保证绝对的时序”,要想保证绝对的时序,还是只能使用单点服务,用本地时钟保证“绝对时序”。数据库写压力大,是因为每次生成ID都访问了数据库,可以使用批量的方式降低数据库写压力


如上图所述,数据库使用双master保证可用性,数据库中只存储当前ID的最大值,例如0ID生成服务假设每次批量拉取6ID,服务访问数据库,将当前ID的最大值修改为5,这样应用访问ID生成服务索要IDID生成服务不需要每次访问数据库,就能依次派发0,1,2,3,4,5这些ID了,当ID发完后,再将ID的最大值修改为11,就能再次派发6,7,8,9,10,11这些ID了,于是数据库的压力就降低到原来的1/6了。

优点

1)保证了ID生成的绝对递增有序

2)大大的降低了数据库的压力,ID生成可以做到每秒生成几万几十万个

缺点

1服务仍然是单点

2)如果服务挂了,服务重启起来之后,继续生成ID可能会不连续,中间出现空洞(服务内存是保存着0,1,2,3,4,5,数据库中max-id5,分配到3时,服务重启了,下次会从6开始分配,45就成了空洞,不过这个问题也不大)

3)虽然每秒可以生成几万几十万个ID,但毕竟还是有性能上限,无法进行水平扩展

改进方法

单点服务的常用高可用优化方案是“备用服务”,也叫“影子服务”,所以我们能用以下方法优化上述缺点(1):


如上图,对外提供的服务是主服务,有一个影子服务时刻处于备用状态,当主服务挂了的时候影子服务顶上。这个切换的过程对调用方是透明的,可以自动完成,常用的技术是vip+keepalived,具体就不在这里展开。

 

【常见方法三:uuid

上述方案来生成ID,虽然性能大增,但由于是单点系统,总还是存在性能上限的。同时,上述两种方案,不管是数据库还是服务来生成ID,业务方Application都需要进行一次远程调用,比较耗时。有没有一种本地生成ID的方法,即高性能,又时延低呢?

uuid是一种常见的方案:string ID =GenUUID();

优点

1)本地生成ID,不需要进行远程调用,时延低

2)扩展性好,基本可以认为没有性能上限

缺点

1无法保证趋势递增

2uuid过长,往往用字符串表示,作为主键建立索引查询效率低,常见优化方案为转化为两个uint64整数存储或者折半存储(折半后不能保证唯一性)

 

【常见方法四:取当前毫秒数】

uuid是一个本地算法,生成性能高,但无法保证趋势递增,且作为字符串ID检索效率低,有没有一种能保证递增的本地算法呢

取当前毫秒数是一种常见方案:uint64 ID = GenTimeMS();

优点

1)本地生成ID,不需要进行远程调用,时延低

2)生成的ID趋势递增

3)生成的ID是整数,建立索引后查询效率高

缺点

1)如果并发量超过1000,会生成重复的ID

我去,这个缺点要了命了,不能保证ID的唯一性。当然,使用微秒可以降低冲突概率,但每秒最多只能生成1000000ID,再多的话就一定会冲突了,所以使用微秒并不从根本上解决问题。

 

【常见方法五:类snowflake算法】

snowflaketwitter开源的分布式ID生成算法,其核心思想是:一个long型的ID,使用其中41bit作为毫秒数,10bit作为机器编号,12bit作为毫秒内序列号。这个算法单机每秒内理论上最多可以生成1000*(2^12),也就是400WID,完全能满足业务的需求。

借鉴snowflake的思想,结合各公司的业务逻辑和并发量,可以实现自己的分布式ID生成算法。

举例,假设某公司ID生成器服务的需求如下:

1)单机高峰并发量小于1W,预计未来5年单机高峰并发量小于10W

2)有2个机房,预计未来5年机房数量小于4

3)每个机房机器数小于100

4)目前有5个业务线有ID生成需求,预计未来业务线数量小于10

5

分析过程如下:

1)高位取从201611日到现在的毫秒数(假设系统ID生成器服务在这个时间之后上线),假设系统至少运行10年,那至少需要10*365*24小时*3600*1000毫秒=320*10^9,差不多预留39bit给毫秒数

2)每秒的单机高峰并发量小于10W,即平均每毫秒的单机高峰并发量小于100,差不多预留7bit给每毫秒内序列号

35年内机房数小于4个,预留2bit给机房标识

4)每个机房小于100台机器,预留7bit给每个机房内的服务器标识

5)业务线小于10个,预留4bit给业务线标识


这样设计的64bit标识,可以保证:

1)每个业务线、每个机房、每个机器生成的ID都是不同的

2)同一个机器,每个毫秒内生成的ID都是不同的

3)同一个机器,同一个毫秒内,以序列号区区分保证生成的ID是不同的

4)将毫秒数放在最高位,保证生成的ID是趋势递增的

缺点

1)由于“没有一个全局时钟”,每台服务器分配的ID是绝对递增的,但从全局看,生成的ID只是趋势递增的(有些服务器的时间早,有些服务器的时间晚)

最后一个容易忽略的问题

生成的ID,例如message-id/ order-id/ tiezi-id,在数据量大时往往需要分库分表,这些ID经常作为取模分库分表的依据,为了分库分表后数据均匀,ID生成往往有“取模随机性”的需求,所以我们通常把每秒内的序列号放在ID的最末位,保证生成的ID是随机的。

又如果,我们在跨毫秒时,序列号总是归0会使得序列号为0ID比较多,导致生成的ID取模后不均匀。解决方法是,序列号不是每次都归0,而是归一个09的随机数,这个地方。

下面附上C#.Net 实现snowflake算法实现

using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threading.Tasks;namespace CommonTools{   public class SnowFlake    {             //机器ID        private static long workerId;    private static long twepoch = 687888001020L; //唯一时间,这是一个避免重复的随机量,自行设定不要大于当前时间戳    private static long sequence = 0L;    private static int workerIdBits = 4; //机器码字节数。4个字节用来保存机器码    public static long maxWorkerId = -1L ^ -1L << workerIdBits; //最大机器ID    private static int sequenceBits = 10; //计数器字节数,10个字节用来保存计数码    private static int workerIdShift = sequenceBits; //机器码数据左移位数,就是后面计数器占用的位数    private static int timestampLeftShift = sequenceBits + workerIdBits; //时间戳左移动位数就是机器码和计数器总字节数        public static long sequenceMask = -1L ^ -1L << sequenceBits; //一微秒内可以产生计数,如果达到该值则等到下一微妙在进行生成    private long lastTimestamp = -1L;        private static SnowFlake sigle = null;                private  SnowFlake(long workerId)        {            if (workerId > maxWorkerId || workerId < 0)                throw new Exception(string.Format("worker Id can't be greater than {0} or less than 0 ", workerId));            SnowFlake.workerId = workerId;        }        public static long NewID()        {            if (sigle == null)            {                sigle = new SnowFlake(4L);<span style="font-family:宋体;">///<span style="color:#FF0000;">此处4L应该从配置文件里读取当前机器配置</span></span>            }          return  sigle.nextId();        }        private long nextId()        {            lock (this)            {                long timestamp = timeGen();                if(this.lastTimestamp == timestamp){ //同一微妙中生成ID                    SnowFlake.sequence = (SnowFlake.sequence + 1) & SnowFlake.sequenceMask; //用&运算计算该微秒内产生的计数是否已经到达上限                    if (SnowFlake.sequence == 0)                    {                        //一微妙内产生的ID计数已达上限,等待下一微妙                        timestamp = tillNextMillis(this.lastTimestamp);                    }                }                else{ //不同微秒生成ID                    SnowFlake.sequence = 0; //计数清0                }                if(timestamp < lastTimestamp)                { //如果当前时间戳比上一次生成ID时时间戳还小,抛出异常,因为不能保证现在生成的ID之前没有生成过                    throw new Exception(string.Format("Clock moved backwards.  Refusing to generate id for {0} milliseconds",                        this.lastTimestamp - timestamp));                }                this.lastTimestamp = timestamp; //把当前时间戳保存为最后生成ID的时间戳                long nextId = (timestamp - twepoch << timestampLeftShift) | SnowFlake.workerId << SnowFlake.workerIdShift | SnowFlake.sequence;                return nextId;            }        }        /// <summary>        /// 获取下一微秒时间戳        /// </summary>        /// <param name="lastTimestamp"></param>        /// <returns></returns>        private long tillNextMillis(long lastTimestamp)        {            long timestamp = timeGen();            while(timestamp <= lastTimestamp)            {                timestamp = timeGen();            }            return timestamp;        }        /// <summary>        /// 生成当前时间戳        /// </summary>        /// <returns></returns>        private long timeGen()        {            return (long)(DateTime.UtcNow - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds;        }    }}



0 0