Hive大数据倾斜总结

来源:互联网 发布:太古的盟约 知乎 编辑:程序博客网 时间:2024/04/29 12:23

所谓数据倾斜,说的是由于数据分布不均匀,个别值集中占据大部分数据量,加上Hadoop的计算模式,导致计算资源不均匀引起性能下降。

还是拿网站的访问日志说事吧。假设网站访问日志中会记录用户的user_id,并且对于注册用户使用其用户表的user_id,对于非注册用户使用一个user_id=0代表。那么鉴于大多数用户是非注册用户(只看不写),所以user_id=0占据了绝大多数。而如果进行计算的时候如果以user_id作为group by的维度或者是join key,那么个别Reduce会收到比其他Reduce多得多的数据——因为它要接收所有user_id=0的记录进行处理,使得其处理效果会非常差,其他Reduce都跑完很久了它还在运行。

倾斜原因总结

操作:

 

原因:

1)key分布不均匀

2)、业务数据本身的特性

3)、建表时考虑不周

4)、某些SQL语句本身就有数据倾斜

表现:

任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。最长时长远大于平均时长。

倾斜分成group by造成的倾斜和join造成的倾斜,需要分开看。

group by造成的倾斜有两个参数可以解决,一个是Hive.Map.aggr,默认值已经为true,意思是会做Map端的combiner。所以如果你的group by查询只是做count(*)的话,其实是看不出倾斜效果的,但是如果你做的是count(distinct),那么还是会看出一点倾斜效果。另一个参数是Hive.groupby. skewindata。这个参数的意思是做Reduce操作的时候,拿到的key并不是所有相同值给同一个Reduce,而是随机分发,然后Reduce做聚合,做完之后再做一轮MR,拿前面聚合过的数据再算结果。所以这个参数其实跟Hive.Map.aggr做的是类似的事情,只是拿到Reduce端来做,而且要额外启动一轮Job,所以其实不怎么推荐用,效果不明显。

如果说要改写SQL来优化的话,可以按照下面这么做:

/*改写前*/

select a, count(distinct b) as c from tbl group by a;

/*改写后*/

select a, count(*) as c from (select distinct a, b from tbl) group by a;

join造成的倾斜,就比如上面描述的网站访问日志和用户表两个表join

select a.* from logs a join users b on a.user_id = b.user_id;

Hive给出的解决方案叫skew join,其原理把这种user_id = 0的特殊值先不在Reduce端计算掉,而是先写入hdfs,然后启动一轮Map join专门做这个特殊值的计算,期望能提高计算这部分值的处理速度。当然你要告诉Hive这个join是个skew join,即:

set Hive.optimize.skewjoin = true;

还有要告诉Hive如何判断特殊值,根据Hive.skewjoin.key设置的数量Hive可以知道,比如默认值是100000,那么超过100000条记录的值就是特殊值。

skew join的流程可以用下图描述:

 

另外对于特殊值的处理往往跟业务有关系,所以也可以从业务角度重写sql解决。比如前面这种倾斜join,可以把特殊值隔离开来(从业务角度说,users表应该不存在user_id = 0的情况,但是这里还是假设有这个值,使得这个写法更加具有通用性): 

select a.* from 

(

select a.*

from (select * from logs where user_id = 0)  a 

join (select * from users where user_id = 0) b 

on auser_id =  buser_id

union all

select a.* 

from logs a join users b

on auser_id <> 0 and auser_id = b.user_id

)t;

数据倾斜不仅仅是Hive的问题,其实是share nothing架构下必然会碰到的数据分布问题,对此学界也有专门的研究,比如skewtune

SQL整体优化

前面对于单个Job如何做优化已经做过详细讨论,但是Hive查询会生成多个Job,针对多个Job,有什么地方需要优化?

Job间并行

首先,在Hive生成的多个Job中,在有些情况下Job之间是可以并行的,典型的就是子查询。当需要执行多个子查询union all或者join操作的时候,Job间并行就可以使用了。比如下面的代码就是一个可以并行的场景示意:

select * from 

(

   select count(*) from logs 

   where log_date = 20130801 and item_id = 1

   union all 

   select count(*) from logs 

   where log_date = 20130802 and item_id = 2

   union all 

   select count(*) from logs 

   where log_date = 20130803 and item_id = 3

)t

设置Job间并行的参数是Hive.exec.parallel,将其设为true即可。默认的并行度为8,也就是最多允许sql8Job并行。如果想要更高的并行度,可以通过Hive.exec.parallel. thread.number参数进行设置,但要避免设置过大而占用过多资源。

减少Job

另外在实际开发过程中也发现,一些实现思路会导致生成多余的Job而显得不够高效。比如这个需求:查询某网站日志中访问过页面a和页面b的用户数量。低效的思路是面向明细的,先取出看过页面a的用户,再取出看过页面b的用户,然后取交集,代码如下:

select count(*) 

from 

(select distinct user_id 

from logs where page_name = ‘a’) a

join 

(select distinct user_id 

from logs where blog_owner = ‘b’) b 

on a.user_id = b.user_id;

这样一来,就要产生2个求子查询的Job,一个用于关联的Job,还有一个计数的Job,一共有4Job

但是我们直接用面向统计的方法去计算的话(也就是用group by替代join),则会更加符合M/R的模式,而且生成了一个完全不带子查询的sql,只需要用一个Job就能跑完:

select count(*) 

from logs group by user_id

having (count(case when page_name = ‘a’ then 1 end) > 0

    and count(case when page_name = ‘b’ then 1 end) > 0)

第一种查询方法符合思考问题的直觉,是工程师和分析师在实际查数据中最先想到的写法,但是如果在目前Hivequery planner不是那么智能的情况下,想要更加快速的跑出结果,懂一点工具的内部机理也是必须的。

总结

使map的输出数据更均匀的分布到reduce中去,是我们的最终目标。由于Hash算法的局限性,key Hash会或多或少的造成数据倾斜。大量经验表明数据倾斜的原因是人为的建表疏忽或业务逻辑可以规避的。在此给出较为通用的步骤:

1采样log表,哪些user_id比较倾斜,得到一个结果表tmp1。由于对计算框架来说,所有的数据过来,他都是不知道数据分布情况的,所以采样是并不可少的。

2、数据的分布符合社会学统计规则,贫富不均。倾斜的key不会太多,就像一个社会的富人不多,奇特的人不多一样。所以tmp1记录数会很少。把tmp1usersmap join生成tmp2,tmp2读到distribute file cache。这是一个map过程。

3map读入userslog,假如记录来自log,则检查user_id是否在tmp2里,如果是,输出到本地文件a,否则生成<user_id,value>key,value对,假如记录来自member,生成<user_id,value>key,value对,进入reduce阶段。

4、最终把a文件,把Stage3 reduce阶段输出的文件合并起写到hdfs

如果确认业务需要这样倾斜的逻辑,考虑以下的优化方案:

1、对于join,在判断小表不大于1G的情况下,使用map join

2、对于group bydistinct,设定 hive.groupby.skewindata=true

3、尽量使用上述的SQL语句调节进行优化

补充

map side join

之所以存在reduce side join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中。Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输。

Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table中查找是否有相同的key的记录,如果有,则连接后输出即可。

为了支持文件的复制,Hadoop提供了一个类DistributedCache,使用该类的方法如下:

1)用户使用静态方法DistributedCache.addCacheFile()指定要复制的文件,它的参数是文件的URI(如果是HDFS上的文件,可以这样:hdfs://namenode:9000/home/XXX/file,其中9000是自己配置的NameNode端口号)。JobTracker在作业启动之前会获取这个URI列表,并将相应的文件拷贝到各个TaskTracker的本地磁盘上。

2)用户使用DistributedCache.getLocalCacheFiles()方法获取文件目录,并使用标准的文件读写API读取相应的文件。

深入浅出数据仓库中SQL性能优化之Hive篇

一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有MapReduceSpillShuffleSort等多个阶段,所以针对Hive查询的优化可以大致分为针对MR中单个步骤的优化(其中又会有细分),针对MR全局的优化,和针对整个查询(多MR Job)的优化,下文会分别阐述。

 

在开始之前,先把MR的流程图帖出来(摘自Hadoop权威指南),方便后面对照。另外要说明的是,这个优化只是针对Hive 0.9版本,而不是后来Hortonwork发起Stinger项目之后的版本。相对应的Hadoop版本是1.x而非2.x

 

Map阶段的优化(Map phase)

Map阶段的优化,主要是确定合适的Map,关于Map数的计算,在《如何在hadoop中控制map的个数》一文中有提到。

通常情况下,作业会通过input的目录产生一个或者多个map任务。 

主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改)

举例: 

a) 假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6128m的块和112m的块),从而产生7map数。

b)假设input目录下有3个文件abc,大小分别为10M,20M,130M,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4map数。

是不是map数越多越好? 

答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。

是不是保证每个map处理接近128m的文件块,就高枕无忧了? 

答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。(文件虽小,逻辑复杂)

如何合并小文件,减少map数?

假设一个SQL任务:

Select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’;

该任务的inputdir

 /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04

共有194个文件,其中很多是远远小于128m的小文件,总大小9G,正常执行会用194map任务。

Map总共消耗的计算资源:SLOTS_MILLIS_MAPS= 623,020

我通过以下方法来在map执行前合并小文件,减少map数:

set mapred.max.split.size=100000000;

set mapred.min.split.size.per.node=100000000;

set mapred.min.split.size.per.rack=100000000;

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

再执行上面的语句,用了74map任务,map消耗的计算资源:SLOTS_MILLIS_MAPS= 333,500

对于这个简单SQL任务,执行时间上可能差不多,但节省了一半的计算资源。

大概解释一下,100000000表示100M,

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

这个参数表示执行前进行小文件合并,

前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并,最终生成了74个块。

控制hive任务的reduce数:

1. Hive自己如何确定reduce数:

reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:

hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G) 

hive.exec.reducers.max(每个任务最大的reduce数,默认为999

计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)

即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务;

如:select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 

/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 总大小为9G多,因此这句有10reduce

2、调整reduce个数方法一:

调整hive.exec.reducers.bytes.per.reducer参数的值;

set hive.exec.reducers.bytes.per.reducer=500000000;500M

select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;

这次有20reduce

3、调整reduce个数方法二;

set mapred.reduce.tasks = 15;

select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;

这次有15reduce

4reduce个数并不是越多越好;

map一样,启动和初始化reduce也会消耗时间和资源;

另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;

5、什么情况下只有一个reduce

很多时候你会发现任务中不管数据量多大,不管你有没有设置调整reduce个数的参数,任务中一直都只有一个reduce任务;其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因:

a) 没有group by的汇总,比如把:

select pt, count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 

写成:

select count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04';

这点非常常见,希望大家尽量改写。

b)用了Order by

c)有笛卡尔积

通常这些情况下,除了找办法来变通和避免,我暂时没有什么好的办法,因为这些操作都是全局的,所以hadoop不得不用一个reduce去完成;

同样的,在设置reduce个数的时候也需要考虑这两个原则:使大数据量利用合适的reduce数;使单个reduce任务处理合适的数据量;

Reduce阶段的优化(Reduce phase)

这里说的Reduce阶段,是指前面流程图中的Reduce phase(实际的Reduce计算)而非图中整个Reduce taskReduce阶段优化的主要工作也是选择合适的Reduce task数量,跟上面的Map优化类似。

Map优化不同的是,Reduce优化时,可以直接设置Mapred.Reduce.tasks参数从而直接指定Reduce的个数。当然直接指定Reduce个数虽然比较方便,但是不利于自动扩展。Reduce数的设置虽然相较Map更灵活,但是也可以像Map一样设定一个自动生成规则,这样运行定时Job的时候就不用担心原来设置的固定Reduce数会由于数据量的变化而不合适。

Hive估算Reduce数量的时候,使用的是下面的公式:

num_Reduce_tasks = min[${Hive.exec.Reducers.max}

(${input.size} / ${ Hive.exec.Reducers.bytes.per.Reducer})]  

也就是说,根据输入的数据量大小来决定Reduce的个数,默认Hive.exec.Reducers.bytes.per.Reducer1G,而且Reduce个数不能超过一个上限参数值,这个参数的默认取值为999。所以我们可以调整Hive.exec.Reducers.bytes.per.Reducer来设置Reduce个数。

设置Reduce数同样也是根据运行时间作为参考调整,并且可以根据特定的业务需求、工作负载类型总结出经验,所以不再赘述。

MapReduce之间的优化(SpillcopySort phase)

Map phaseReduce phase之间主要有3道工序。首先要把Map输出的结果进行排序后做成中间文件,其次这个中间文件就能分发到各个Reduce,最后Reduce端在执行Reduce phase之前把收集到的排序子文件合并成一个排序文件。这个部分可以调的参数挺多,但是一般都是不要调整的,不必重点关注。

Spill 与 Sort

Spill阶段,由于内存不够,数据可能没办法在内存中一次性排序完成,那么就只能把局部排序的文件先保存到磁盘上,这个动作叫Spill,然后Spill出来的多个文件可以在最后进行merge。如果发生Spill,可以通过设置io.Sort.mb来增大Mapper输出buffer的大小,避免Spill的发生。另外合并时可以通过设置io.Sort.factor来使得一次性能够合并更多的数据。调试参数的时候,一个要看Spill的时间成本,一个要看merge的时间成本,还需要注意不要撑爆内存(io.Sort.mb是算在Map的内存里面的)。Reduce端的merge也是一样可以用io.Sort.factor。一般情况下这两个参数很少需要调整,除非很明确知道这个地方是瓶颈。

Copy

copy阶段是把文件从MapcopyReduce端。默认情况下在5%Map完成的情况下Reduce就开始启动copy,这个有时候是很浪费资源的,因为Reduce一旦启动就被占用,一直等到Map全部完成,收集到所有数据才可以进行后面的动作,所以我们可以等比较多的Map完成之后再启动Reduce流程,这个比例可以通Mapred.Reduce.slowstart.completed.Maps去调整,他的默认值就是5%。如果觉得这么做会减慢Reducecopy的进度,可以把copy过程的线程增大。tasktracker.http.threads可以决定作为server端的Map用于提供数据传输服务的线程,Mapred.Reduce.parallel.copies可以决定作为client端的Reduce同时从Map端拉取数据的并行度(一次同时从多少个Map拉数据),修改参数的时候这两个注意协调一下,server端能处理client端的请求即可。

文件格式的优化

文件格式方面有两个问题,一个是给输入和输出选择合适的文件格式,另一个则是小文件问题。小文件问题在目前的Hive环境下已经得到了比较好的解决,Hive的默认配置中就可以在小文件输入时自动把多个文件合并给1Map处理,输出时如果文件很小也会进行一轮单独的合并,所以这里就不专门讨论了。相关的参数可以在这里找到。

关于文件格式,Hive0.9版本有3种,textfilesequencefilercfile。总体上来说,rcfile的压缩比例和查询时间稍好一点,所以推荐使用。

关于使用方法,可以在建表结构时可以指定格式,然后指定压缩插入:

create table rc_file_test( col int ) stored as rcfile;  

set Hive.exec.compress.output = true;  

insert overwrite table rc_file_test  

select * from source_table; 

另外时也可以指定输出格式,也可以通过Hivedefaultfileformat来设定输出格式,适用于create table as select的情况:

set Hive.default.fileformat = SequenceFile;  

set Hive.exec.compress.output = true;   

/*对于sequencefile,有recordblock两种压缩方式可选,block压缩比更高*/  

set Mapred.output.compression.type = BLOCK;   

create table seq_file_test  

as select * from source_table;  

上面的文件格式转换,其实是由Hive完成的(也就是插入动作)。但是也可以由外部直接导入纯文本(可以按照这里的做法预先压缩),或者是由MapReduce Job生成的数据。

值得注意的是,Hive读取sequencefile的时候,是把key忽略的,也就是直接读value并且按照指定分隔符分隔字段。但是如果Hive的数据来源是从mr生成的,那么写sequencefile的时候,keyvalue都是有意义的,key不能被忽略,而是应该当成第一个字段。为了解决这种不匹配的情况,有两种办法。一种是要求凡是结果会给Hive用的mr Job输出value的时候带上key。但是这样的话对于开发是一个负担,读写数据的时候都要注意这个情况。所以更好的方法是第二种,也就是把这个源自于Hive的问题交给Hive解决,写一个InputFormat包装一下,把value输出加上key即可。以下是核心代码,修改了RecordReadernext方法

0 0
原创粉丝点击