常见操作系统知识整理

来源:互联网 发布:手机修改mac地址软件 编辑:程序博客网 时间:2024/05/29 04:29

一、线程和进程区别

进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,它是系统进行资源分配和调度的一个独立单位。例如,用户运行自己的程序,系统就创建一个进程,并为它分配资源,包括各种表格、内存空间、磁盘空间、I/O设备等,然后,该进程被放入到进程的就绪队列,进程调度程序选中它,为它分配CPU及其它相关资源,该进程就被运行起来。

线程是进程的一个实体,是CPU调度和分派的基本单位,线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器、一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。

在没有实现线程的操作系统中,进程既是资源分配的基本单位,又是调度的基本单位,它是系统中并发执行的单元。而在实现了线程的操作系统中,进程是资源分配的基本单位,但线程是调度的基本单位,线程是系统中并发执行的单元。

具体而言,引入线程,主要有以下4个方面的优点:

(1)易于调度。
(2)提高并发性。通过线程可以方便有效地实现并发。
(3)开销小。创建线程比创建进程要快,所需要的开销也更少。
(4)有利于发挥多处理器的功能。通过创建多线程,每个线程都在一个处理器上运行,从而实现应用程序的并行,使每个处理器都得到充分运行。

需要注意的是,尽管线程与进程二者很相似,但也存在着很大的不同,区别如下

(1)一个线程必定属于也只能属于一个进程;而一个进程可以拥有多个线程并且至少拥有一个线程。
(2)属于一个进程的所有线程共享该线程的所有资源,包括打开的文件、创建的Socket等。不同的进程互相独立。
(3)线程又被称为轻量级进程。进程有进程控制块,线程也有线程控制块。但线程控制块比进程控制块小得多。线程间切换代价小,进程间切换代价大。
(4)进程是程序的一次执行,线程可以理解为程序中一段程序片段的执行。
(5)每个进程都有独立的内存空间,而线程共享其所属进程的内存空间。


二、内核线程和用户线程的区别

根据操作系统内核是否对线程可感知,可以把线程分为内核线程和用户线程。

内核线程建立和销毁都是由操作系统负责、通过系统调用完成的,操作系统在调度时,参考各进程内的线程运行情况做出调度决定,如果一个进程中没有就绪态的线程,那么这个进程也不会被调度占用CPU。

和内核线程相对应的是用户线程,用户线程指不需要内核支持而在用户程序中实现的线程,其不依赖于操作系统核心,用户进程利用线程库提供创建、同步、调度和管理线程的函数来控制用户线程。用户线程多见于一些历史悠久的操作系统,例如Unix操作系统,不需要用户态/核心态切换,速度快,操作系统内核不知道多线程的存在,因此一个线程阻塞将使得整个进程(包括它的所有线程)阻塞。由于这里的处理器时间片分配是以进程为基本单位,所以每个线程执行的时间相对减少为了在操作系统中加入线程支持,采用了在用户空间增加运行库来实现线程,这些运行库被称为“线程包”,用户线程是不能被操作系统所感知的。

引入用户线程,具体而言,有以下四个方面的优势:

(1)可以在不支持线程的操作系统中实现。
(2)创建和销毁线程、线程切换代价等线程管理的代价比内核线程少得多。
(3)允许每个进程定制自己的调度算法,线程管理比较灵活。
(4)线程能够利用的表空间和堆栈空间比内核级线程多。

用户线程的缺点主要有以下两点:
(1)同一进程中只能同时有一个线程在运行,如果有一个线程使用了系统调用而阻塞,那么整个进程都会被挂起。
(2)页面失效也会产生类似的问题。

内核线程的优缺点刚好跟用户线程相反。实际上,操作系统可以使用混合的方式来实现线程。

三、死锁、死锁必要条件和处理方法

多线程中,常见的一种问题除了竞态条件外就是死锁。

那什么是死锁呢?死锁就是:是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。

那么为什么会产生死锁呢?

1.因为系统资源不足。
2.进程运行推进的顺序不合适。
3.资源分配不当。
这个定义可能有点拗口,一个最简单的例子就是有资源A和资源B,都是不可剥夺资源,现在进程C已经申请了资源A,进程D也申请了资源B,进程C接下来的操作需要用到资源B,而进程D恰好也在申请资源A,那么就引发了死锁。这个肯定每个人都看过了。然后套用回去定义:如果一个进程集合里面(进程C和进程D)的每个进程(进程C和进程D)都在等待只能由这个集合中的其他一个进程(对于进程C,他在等进程D;对于进程D,他在等进程C)才能引发的事件(释放相应资源)。

这里的资源包括了软的资源(代码块)和硬的资源(例如扫描仪)。资源一般可以分两种:可剥夺资源(Preemptable)和不可剥夺资源(Nonpreemptable)。一般来说对于由可剥夺资源引起的死锁可以由系统的重新分配资源来解决,所以一般来说大家说的死锁都是由于不可剥夺资源所引起的。

学过操作系统的朋友都知道:产生死锁的条件有四个:

1.互斥条件:所谓互斥就是进程在某一时间内独占资源。
2.请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
3.不剥夺条件:进程已获得资源,在末使用完之前,不能强行剥夺。
4.循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。

处理死锁的策略:

1.忽略该问题。例如鸵鸟算法,该算法可以应用在极少发生死锁的的情况下。为什么叫鸵鸟算法呢,因为传说中鸵鸟看到危险就把头埋在地底下,可能鸵鸟觉得看不到危险也就没危险了吧。跟掩耳盗铃有点像。
2.检测死锁并且恢复。
3.仔细地对资源进行动态分配,以避免死锁。
4.通过破除死锁四个必要条件之一,来防止死锁产生


四、Linux 和windows 下进程通信的不同方式

一般我们写的程序都是以单个进程的方式来运行的,比较少涉及到多进程。特别是在windows下,因为Windows是按照线程来分配CPU时间片的,线程是最小的调度单位,所以在Windows下更多的用到多线程,在同一个进程里创建多个线程来执行不同的任务,达到充分利用CPU的目的。线程之间可以共享进程的资源,比如内存、变量,但是多线程有一个不好的地方,由于这些线程是在同一个进程空间里执行,所以只要一个线程崩溃,整个进程也就崩溃了,程序就退出了。多进程由于是在不同的进程空间里,一个进程崩溃,不会影响到其它的进程,但是进程之间要交换信息的话,就比较麻烦了,不像多线程可以简单的通过一个全局变量来通讯。为了解决进程间交换信息的问题,所以操作系统提供了进程间通讯(IPC)的技术。

1、管道(Pipe)
一个进程往管道里写数据,另一个进程从管道里取数据。管道又可以分为匿名管道,匿名管道只能在父、子进程之间通讯。还有一种命名管道(named pipes),Linux下叫做FIFO,命名管道可以在任意进程之间通讯。

2、油槽(Slot)
Linux下叫做消息队列(Message)。就像我们日常通过邮局寄送信件。一个进程寄送,另一个进程接收。

3、消息(Message)
Linux下叫做信号(Signal)。Windows是消息驱动的,进程可以调用WIN32 API函数SendMessage或者PostMessage向另一个进程发送消息,Windows系统也可以向进程发送消息。
Linux下可以通过kill、raise、alarm、pause这些信号处理系统调用来实现。

4、共享内存(Shared Memory)
进程之间通过共享一块内存的方式来交换数据。

5、Socket
通常我们使用socket来进行网络通讯,一方作为客户机,另一方作为服务器。同样的,socket也可以作为进程之间通讯的一种方式。

以上方式是Windows和Linux共有的通讯方式。Windows下进程之间还可以通过系统剪贴板的方式来通讯,一个进程把数据复制到剪贴板,另一个进程把数据从剪贴板上粘贴过来。

其实除了以上这些比较常用的通讯方式,个人认为还可以通过文件的方式。一个进程把数据写入文件,另一个进程从文件里读取数据。

当然还可以通过一个中间件的方式,比如Windows下的msmq(消息队列)中间件,Apache上也提供了一个用Java写的开源消息中间件Apache ActiveMQ。


五、Windows下进程通信方式

当线程分属于不同进程,也就是分驻在不同的地址空间时,它们之间的通讯需要跨越地址空间的边界,便得采取一些与同一进程中不同线程间通讯不同的方法。
在Windows程序中,各个进程之间常常需要交换数据,进行数据通讯。常用的方法有:
1、使用内存映射文件
2、通过共享内存DLL共享内存
3、使用SendMessage向另一进程发送WM_COPYDATA消息
比起前两种的复杂实现来,WM_COPYDATA消息无疑是一种经济实惠的一中方法。
WM_COPYDATA消息的主要目的是允许在进程间传递只读数据。Windows在通过WM_COPYDATA消息传递期间,不提供继承同步方式。SDK文档推荐用户使用SendMessage函数,接受方在数据拷贝完成前不返回,这样发送方就不可能删除和修改数据:
这个函数的原型及其要用到的结构如下:
SendMessage(hwnd,WM_COPYDATA,wParam,lParam); 
其中,WM_COPYDATA对应的十六进制数为0x004A
wParam设置为包含数据的窗口的句柄。

lParam指向一个COPYDATASTRUCT的结构:

typedef struct tagCOPYDATASTRUCT{   DWORD dwData;//用户定义数据   DWORD cbData;//数据大小   PVOID lpData;//指向数据的指针}COPYDATASTRUCT;
六、Linux下进程通信方式

Linux下进程通信的八种方法:管道(pipe),命名管道(FIFO),内存映射(mapped memeory),消息队列(message queue),共享内存(shared memory),信号量(semaphore),信号(signal),套接字(Socket)
    (1) 管道(pipe):管道允许一个进程和另一个与它有共同祖先的进程之间进行通信;
    (2) 命名管道(FIFO):类似于管道,但是它可以用于任何两个进程之间的通信,命名管道在文件系统中有对应的文件名。命名管道通过命令mkfifo或系统调用mkfifo来创建;
    (3) 信号(signal):信号是比较复杂的通信方式,用于通知接收进程有某种事情发生,除了用于进程间通信外,进程还可以发送信号给进程本身;Linux除了支持UNIX早期信号语义函数signal外,还支持语义符合POSIX.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD即能实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数的功能);
    (4) 内存映射(mapped memory):内存映射允许任何多个进程间通信,每一个使用该机制的进程通过把一个共享的文件映射到自己的进程地址空间来实现它;
    (5) 消息队列(message queue):消息队列是消息的连接表,包括POSIX消息对和System V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能成该无格式字节流以及缓冲区大小受限等缺点;
    (6) 信号量(semaphore):信号量主要作为进程间以及同进程不同线程之间的同步手段;
    (7) 共享内存 (shared memory):它使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。这是针对其他通信机制运行效率较低而设计的。它往往与其他通信机制,如信号量结合使用,以达到进程间的同步及互斥;
    (8) 套接字(Socket):它是更为通用的进程间通信机制,可用于不同机器之间的进程间通信。起初是由UNIX系统的BSD分支开发出来的,但现在一般可以移植到其他类UNIX系统上:Linux和System V的变种都支持套接字。


七、TCP、UDP程序设计

http://www.cnblogs.com/sooner/p/3192752.html   整理得非常详细

http://www.cnblogs.com/sooner/p/3192685.html

0 0
原创粉丝点击