uboot启动流程

来源:互联网 发布:印刷体汉字识别数据集 编辑:程序博客网 时间:2024/06/04 18:27
u-boot支持许多CPU,以及一些常见的开发板。本文以u-boot-2011.06这个最新版本为例,简要介绍一下u-boot在smdk2410上的启动流程。首先系统是从arch/arm/cpu/arm920t目录下的start.s文件开始执行,并且实际开始执行的代码是从第117行开始:117:start_code:118/*119:      * set the cpu to SVC32 mode120:     */121:     mrs  r0, cpsr122:     bic   r0, r0, #0x1f123:     orr   r0, r0, #0xd3124:     msr  cpsr, r0上述代码的含义是设置cpu为SVC32模式,即超级保护模式,用于操作系统使用。140#ifdef CONFIG_S3C24X0141/* turn off the watchdog */142143# if defined(CONFIG_S3C2400)144#  define pWTCON    0x15300000145#  define INTMSK     0x14400008    /* Interupt-Controller base addresses */146#  define CLKDIVN   0x14800014    /* clock divisor register */147#else148#  define pWTCON    0x53000000149#  define INTMSK     0x4A000008   /* Interupt-Controller base addresses */150#  define INTSUBMSK     0x4A00001C151#  define CLKDIVN   0x4C000014   /* clock divisor register */152# endif153154:     ldr   r0, =pWTCON155mov r1, #0x0156:     str    r1, [r0]157158/*159:     * mask all IRQs by setting all bits in the INTMR - default160:     */161mov r1, #0xffffffff162:     ldr   r0, =INTMSK163:     str    r1, [r0]164# if defined(CONFIG_S3C2410)165:     ldr   r1, =0x3ff166:     ldr   r0, =INTSUBMSK167:     str    r1, [r0]168# endif169170/* FCLK:HCLK:PCLK = 1:2:4 */171/* default FCLK is 120 MHz ! */172:     ldr   r0, =CLKDIVN173mov r1, #3174:     str    r1, [r0]175#endif   /* CONFIG_S3C24X0 */该段代码的含义为,先定义几个需要的寄存器,然后关闭开门狗定时器,以及屏蔽所有中断和子中断,最后设置三个时钟频率之间的比值。181#ifndef CONFIG_SKIP_LOWLEVEL_INIT182:     bl    cpu_init_crit183#endif在第182行中,程序跳转到cpu_init_crit中,它也是在start.s文件中,函数的位置在第328行至第356行,它的作用是设置一些重要的寄存器(如MMU和caches等)以及内存时序。其中在第353行,程序又跳转到了lowlevel_init函数,它是在board/samsung/smdk2410目录下的lowlevel_init.s文件中定义的,这个文件的目的就是为了设置内存的时序。186:call_board_init_f:187:     ldr   sp, =(CONFIG_SYS_INIT_SP_ADDR)188:     bic   sp, sp, #7 /* 8-byte alignment for ABI compliance */189:     ldr   r0,=0x00000000190:     bl    board_init_f从cpu_init_crit返回后,来到了调用board_init_f的函数处。首先进行堆栈的设置,然后就跳转到board_init_f函数,其中传递给该函数的参数为0。board_init_f这个函数是在arch/arm/lib目录下的board.c文件内定义的,函数的位置是在第268行至第422行,它的作用是初始化开发板。需要注意的是,此时程序是在flash中运行的。下面我们就来分析board_init_f函数。275/* Pointer is writable since we allocated a register for it */276:     gd = (gd_t *) ((CONFIG_SYS_INIT_SP_ADDR) & ~0x07);277/* compiler optimization barrier needed for GCC >= 3.4 */278:     __asm__ __volatile__("": : :"memory");279280:     memset ((void*)gd, 0, sizeof (gd_t));281282:     gd->mon_len = _bss_end_ofs;gd是一个保存在ARM的r8寄存器中的gd_t结构体的指针,该结构体包括了u-boot中所有重要的全局变量,它是在arch/arm/include/asm目录下的global_data.h文件内被定义的。上述代码的作用是为gd分配地址,并清零,最后得到整个u-boot的长度。284:     for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {285:            if ((*init_fnc_ptr)() != 0) {286:                   hang ();287:            }288:     }上述代码的作用是循环调用init_sequence函数指针数组中的成员,该数组成员函数主要完成一些初始化的工作,如:board_early_init_f函数(在board/samsung/smdk2410目录下的smdk2410.c文件内)完成ARM的时钟频率和IO的设置;timer_init函数(在arch/arm/cpu/arm920t/s3c24x0目录下的timer.c文件内)完成定时器4的设置;env_init函数(在common目录下的env_flash.c文件内,因为include/configs/smdk2410.h中定义了CONFIG_ENV_IS_IN_FLASH)完成环境变量的设置;init_baudrate函数(在arch/arm/lib目录下的board.c文件内)完成波特率的设置;serial_init函数(在drivers/serial目录下的serial_s3c24x0.c文件内,因为include/configs/smdk2410.h中定义了CONFIG_S3C24X0_SERIAL)完成串口通讯的设置;console_init_f函数(在common目录下的console.c文件内)完成第一阶段的控制台初始化;display_banner函数(在arch/arm/lib目录下的board.c文件内)用来打印输出一些信息;dram_init函数(在board/samsung/smdk2410目录下的smdk2410.c文件内)用来配置SDRAM的大小。309:     addr = CONFIG_SYS_SDRAM_BASE + gd->ram_size;得到SDRAM的末位物理地址为0x3400 0000,即SDRAM的空间分布为0x3000 0000~0x33FF FFFF。329#if !(defined(CONFIG_SYS_NO_ICACHE) && defined(CONFIG_SYS_NO_DCACHE))330/* reserve TLB table */331:     addr -= (4096 * 4);332333/* round down to next 64 kB limit */334:     addr &= ~(0x10000 - 1);335336:     gd->tlb_addr = addr;337:     debug ("TLB table at: %08lx\n", addr);338#endif339340/* round down to next 4 kB limit */341:     addr &= ~(4096 - 1);342:     debug ("Top of RAM usable for U-Boot at: %08lx\n", addr);分配SDRAM的高64kB区域作为TLB,即0x33FF 0000~0x33FF FFFF,并且该区域也被用于U-Boot。354/*355:     * reserve memory for U-Boot code, data & bss356:     * round down to next 4 kB limit357:     */358:     addr -= gd->mon_len;359:     addr &= ~(4096 - 1);360361:     debug ("Reserving %ldk for U-Boot at: %08lx\n", gd->mon_len >> 10, addr);分配SDRAM的下一个单元为U-Boot代码段、数据段及BSS段。363#ifndef CONFIG_PRELOADER364/*365:     * reserve memory for malloc() arena366:     */367:     addr_sp = addr - TOTAL_MALLOC_LEN;368:     debug ("Reserving %dk for malloc() at: %08lx\n",369:                   TOTAL_MALLOC_LEN >> 10, addr_sp);370/*371:     * (permanently) allocate a Board Info struct372:     * and a permanent copy of the "global" data373:     */374:     addr_sp -= sizeof (bd_t);375:     bd = (bd_t *) addr_sp;376:     gd->bd = bd;377:     debug ("Reserving %zu Bytes for Board Info at: %08lx\n",378:                   sizeof (bd_t), addr_sp);379:     addr_sp -= sizeof (gd_t);380:     id = (gd_t *) addr_sp;381:     debug ("Reserving %zu Bytes for Global Data at: %08lx\n",382:                   sizeof (gd_t), addr_sp);383384/* setup stackpointer for exeptions */385:     gd->irq_sp = addr_sp;386#ifdef CONFIG_USE_IRQ387:     addr_sp -= (CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ);388:     debug ("Reserving %zu Bytes for IRQ stack at: %08lx\n",389:            CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ, addr_sp);390#endif391/* leave 3 words for abort-stack    */392:     addr_sp -= 12;393394/* 8-byte alignment for ABI compliance */395:     addr_sp &= ~0x07;396#else397:     addr_sp += 128;     /* leave 32 words for abort-stack   */398:     gd->irq_sp = addr_sp;399#endif367行的意思为在SDRAM中又开辟了一块malloc空间,该区域是紧挨着上面定义的U-Boot区域的下面。然后在SDRAM中又分别依次定义了bd结构体空间、gd结构体空间和3个字大小的异常中断堆空间。其中bd结构体的数据原型为bd_t数据结构,它表示的是“板级信息”结构体,这些信息包括开发板的波特率、IP地址、ID、以及DRAM等信息,它是在arch/arm/include/asm目录下的u-boot.h文件中定义的。下图详细描述了SDRAM的空间分配情况:408:     gd->bd->bi_baudrate = gd->baudrate;409/* Ram ist board specific, so move it to board code ... */410:     dram_init_banksize();411:      display_dram_config();  /* and display it */412413:     gd->relocaddr = addr;414:     gd->start_addr_sp = addr_sp;415:     gd->reloc_off = addr - _TEXT_BASE;上述代码主要的作用是为gd结构体赋值,其中display_dram_config函数的作用是计算SDRAM的大小,并把它通过串口显示在控制台上。417:     memcpy (id, (void *)gd, sizeof (gd_t));418419:     relocate_code (addr_sp, id, addr);在board_init_f函数的最后是跳转到relocate_code函数体内,这个函数是在arch/arm/cpu/arm920t目录下的start.s文件内,也就是说从最开始的start.s跳到board.c,又从board.c跳回到了start.s中,这是因为此时程序需要重定向,即把代码从flash中搬运到ram中,这个过程是需要汇编这个低级语言来完成的。传递给relocate_code函数的三个参数分别栈顶地址、数据ID(即全局结构gd)在SDRAM中的起始地址和在SDRAM中存储U-Boot的起始地址。需要注意的是relocate_code函数执行完后,并不会返回到relocate_code (addr_sp, id, addr);的下一条语句继续执行。下面我们再回到start.s文件:201.globl      relocate_code202:relocate_code:203mov r4, r0      /* save addr_sp */204mov r5, r1      /* save addr of gd */205mov r6, r2      /* save addr of destination */取得三个参数,分别放入寄存器r4r5r6208:stack_setup:209mov sp, r4设置堆栈地址。211:      adr   r0, _start212:     cmp r0, r6213:     beq  clear_bss        /* skip relocation */214mov r1, r6                    /* r1 <- scratch for copy_loop */215:     ldr   r3, _bss_start_ofs216add  r2, r0, r3        /* r2 <- source end address        */217218:copy_loop:219:     ldmia      r0!, {r9-r10}         /* copy from source address [r0]    */220:     stmia       r1!, {r9-r10}         /* copy to   target address [r1]    */221:     cmp r0, r2                    /* until source end address [r2]    */222:     blo   copy_loop判断U-Boot是在什么位置上,如果在SDRAM中,则直接跳到BSS段清零函数处即可;如果在FLASH中,则要把U-Boot复制到SDRAM中指定的位置处。224#ifndef CONFIG_PRELOADER225/*226:     * fix .rel.dyn relocations227:     */228:     ldr   r0, _TEXT_BASE         /* r0 <- Text base */229sub  r9, r6, r0        /* r9 <- relocation offset */230:     ldr   r10, _dynsym_start_ofs  /* r10 <- sym table ofs */231add  r10, r10, r0            /* r10 <- sym table in FLASH */232:     ldr   r2, _rel_dyn_start_ofs    /* r2 <- rel dyn start ofs */233add  r2, r2, r0        /* r2 <- rel dyn start in FLASH */234:     ldr   r3, _rel_dyn_end_ofs     /* r3 <- rel dyn end ofs */235add  r3, r3, r0        /* r3 <- rel dyn end in FLASH */236:fixloop:237:     ldr   r0, [r2]           /* r0 <- location to fix up, IN FLASH! */238add  r0, r0, r9        /* r0 <- location to fix up in RAM */239:     ldr   r1, [r2, #4]240and  r7, r1, #0xff241:     cmp r7, #23                  /* relative fixup? */242:     beq  fixrel243:     cmp r7, #2                    /* absolute fixup? */244:     beq  fixabs245/* ignore unknown type of fixup */246:     b     fixnext247:fixabs:248/* absolute fix: set location to (offset) symbol value */249mov r1, r1, LSR #4              /* r1 <- symbol index in .dynsym */250add  r1, r10, r1             /* r1 <- address of symbol in table */251:     ldr   r1, [r1, #4]            /* r1 <- symbol value */252add  r1, r1, r9        /* r1 <- relocated sym addr */253:     b     fixnext254:fixrel:255/* relative fix: increase location by offset */256:     ldr   r1, [r0]257add  r1, r1, r9258:fixnext:259:     str    r1, [r0]260add  r2, r2, #8        /* each rel.dyn entry is 8 bytes */261:     cmp r2, r3262:     blo   fixloop263#endif上述代码的含义是对rel.dyn进行重定向。265:clear_bss:266#ifndef CONFIG_PRELOADER267:     ldr   r0, _bss_start_ofs268:     ldr   r1, _bss_end_ofs269mov r4, r6                    /* reloc addr */270add  r0, r0, r4271add  r1, r1, r4272mov r2, #0x00000000           /* clear                      */273274:clbss_l:str     r2, [r0]           /* clear loop...                  */275add  r0, r0, #4276:     cmp r0, r1277:     bne  clbss_l278279:     bl coloured_LED_init280:     bl red_LED_on281#endif对BSS段进行清零的函数。287#ifdef CONFIG_NAND_SPL288:     ldr     r0, _nand_boot_ofs289mov pc, r0290291:_nand_boot_ofs:292.word nand_boot293#else294:     ldr   r0, _board_init_r_ofs295:     adr   r1, _start296add  lr, r0, r1297add  lr, lr, r9298/* setup parameters for board_init_r */299mov r0, r5             /* gd_t */300mov r1, r6             /* dest_addr */301/* jump to it ... */302mov pc, lr303304:_board_init_r_ofs:305.word board_init_r - _start306#endif由于没有定义CONFIG_NAND_SPL,所以程序是从第294行开始执行。该段代码的作用是跳转到board_init_r函数,并且给该函数传递了两个参数:全局结构gd在SDRAM中的起始地址和在SDRAM中存储U-Boot的起始地址。board_init_r函数是在arch/arm/lib目录下的board.c文件中,也就是又回到了上面执行过的board_init_f函数所在的board.c文件中。以后,程序就开始在SDRAM中运行了。下面我们来分析board_init_r函数:447:     gd = id;448:     bd = gd->bd;449:     gd->flags |= GD_FLG_RELOC;    /* tell others: relocation done */450451:     monitor_flash_len = _end_ofs;452:     debug ("monitor flash len: %08lX\n", monitor_flash_len);453:     board_init();   /* Setup chipselects */上述代码的作用是对gd和bd进行赋值,其中monitor_flash_len为整个U-Boot的长度。469/* The Malloc area is immediately below the monitor copy in DRAM */470:     malloc_start = dest_addr - TOTAL_MALLOC_LEN;471:     mem_malloc_init (malloc_start, TOTAL_MALLOC_LEN);对SDRAM中的malloc空间进行清零初始化。473#if !defined(CONFIG_SYS_NO_FLASH)474:     puts ("Flash: ");475476:     if ((flash_size = flash_init ()) > 0) {477# ifdef CONFIG_SYS_FLASH_CHECKSUM478:            print_size (flash_size, "");479/*480:            * Compute and print flash CRC if flashchecksum is set to 'y'481:            *482:            * NOTE: Maybe we should add some WATCHDOG_RESET()? XXX483:            */484:            s = getenv ("flashchecksum");485:            if (s && (*s == 'y')) {486:                   printf ("  CRC: %08X",487:                          crc32 (0, (const unsigned char *) CONFIG_SYS_FLASH_BASE, flash_size)488:                   );489:            }490:            putc ('\n');491# else    /* !CONFIG_SYS_FLASH_CHECKSUM */492:            print_size (flash_size, "\n");493# endif /* CONFIG_SYS_FLASH_CHECKSUM */494:     } else {495:            puts (failed);496:            hang ();497:     }498#endif上述代码的作用是计算FLASH的大小,并把它通过串口显示在控制台上。由于没有定义CONFIG_SYS_FLASH_CHECKSUM,所以没有执行CRC的校验和。其中flash_init函数是在drivers/mtd目录下的cfi_flash.c文件内(因为include/configs/smdk2410.h中定义了CONFIG_FLASH_CFI_DRIVER)。500#if defined(CONFIG_CMD_NAND)501:     puts ("NAND:  ");502:     nand_init();           /* go init the NAND */503#endif上述代码的作用是初始化NANDFLASH,并把NANDFLASH的大小通过串口显示在控制台上。其中nand_init函数是在divers/mtd/nand目录下的nand.c文件内定义的。505#if defined(CONFIG_CMD_ONENAND)506:     onenand_init();507#endif初始化ONENAND FLASH519/* initialize environment */520:     env_relocate ();初始化环境变量,由于gd->env_valid等于0,所以在这里设置的是缺省环境变量。env_relocate函数是在common目录下的env_common.c文件中定义的。522#if defined(CONFIG_CMD_PCI) || defined(CONFIG_PCI)523:     arm_pci_init();524#endif初始化PCI。526/* IP Address */527:     gd->bd->bi_ip_addr = getenv_IPaddr ("ipaddr");设置IP地址。529:     stdio_init ();   /* get the devices list going. */初始化各类外设,如IIC、LCD、键盘、USB等,当然只有在定义了这些外设的前提下,才对这些外设进行初始化。该函数是在common目录下的stdio.c文件中定义的。531:     jumptable_init ();初始化跳转表gd->jt,该跳转表是一个函数指针数组,它定义了U-Boot中基本的常用函数库。该函数是在common目录下的exports.c文件中定义的。538:     console_init_r ();    /* fully init console as a device */初始化控制台,即标准输入、标准输出和标准错误,在这里都是串口。该函数是在common目录下的console.c文件中定义的。549/* set up exceptions */550:     interrupt_init ();551/* enable exceptions */552:     enable_interrupts ();interrupt_init函数是建立IRQ中断堆栈,enable_interrupts函数是使能IRQ中断,它们都是在arch/arm/lib目录下的interrupts.c文件中定义的。564/* Initialize from environment */565:     if ((s = getenv ("loadaddr")) != NULL) {566:            load_addr = simple_strtoul (s, NULL, 16);567:     }从环境变量中获取loadaddr参数,得到需要加载的地址。568#if defined(CONFIG_CMD_NET)569:     if ((s = getenv ("bootfile")) != NULL) {570:            copy_filename (BootFile, s, sizeof (BootFile));571:     }572#endif从环境变量中获取bootfile参数,得到通过TFTP加载的镜像文件名。581#if defined(CONFIG_CMD_NET)582#if defined(CONFIG_NET_MULTI)583:     puts ("Net:   ");584#endif585:     eth_initialize(gd->bd);586#if defined(CONFIG_RESET_PHY_R)587:     debug ("Reset Ethernet PHY\n");588:     reset_phy();589#endif590#endif上面代码主要的作用是初始化以太网,其中eth_initialize函数是在net目录下的eth.c文件的第209行至第298行定义的。626/* main_loop() can return to retry autoboot, if so just run it again. */627:     for (;;) {628:            main_loop ();629:     }board_init_r函数的最后就是执行一个死循环,调用main_loop函数。该函数是在common目录下的main.c文件内定义的。下面我们就来分析main_loop函数270#ifndef CONFIG_SYS_HUSH_PARSER271:     static char lastcommand[CONFIG_SYS_CBSIZE] = { 0, };272:     int len;273:     int rc = 1;274:     int flag;275#endif声明一些hush参数。277#if defined(CONFIG_BOOTDELAY) && (CONFIG_BOOTDELAY >= 0)278:     char *s;279:     int bootdelay;280#endif声明启动延时需要的参数。320#ifdef CONFIG_SYS_HUSH_PARSER321:     u_boot_hush_start ();322#endif初始化hush功能。351#if defined(CONFIG_BOOTDELAY) && (CONFIG_BOOTDELAY >= 0)352:     s = getenv ("bootdelay");353:     bootdelay = s ? (int)simple_strtol(s, NULL, 10) : CONFIG_BOOTDELAY;354355:     debug ("### main_loop entered: bootdelay=%d\n\n", bootdelay);356357# ifdef CONFIG_BOOT_RETRY_TIME358:     init_cmd_timeout ();359# endif  /* CONFIG_BOOT_RETRY_TIME */360361#ifdef CONFIG_POST362:     if (gd->flags & GD_FLG_POSTFAIL) {363:            s = getenv("failbootcmd");364:     }365:     else366#endif /* CONFIG_POST */367#ifdef CONFIG_BOOTCOUNT_LIMIT368:     if (bootlimit && (bootcount > bootlimit)) {369:            printf ("Warning: Bootlimit (%u) exceeded. Using altbootcmd.\n",370:                          (unsigned)bootlimit);371:            s = getenv ("altbootcmd");372:     }373:     else374#endif /* CONFIG_BOOTCOUNT_LIMIT */375:            s = getenv ("bootcmd");376377:     debug ("### main_loop: bootcmd=\"%s\"\n", s ? s : "<UNDEFINED>");378379:     if (bootdelay >= 0 && s && !abortboot (bootdelay)) {380# ifdef CONFIG_AUTOBOOT_KEYED381:            int prev = disable_ctrlc(1);    /* disable Control C checking */382# endif383384# ifndef CONFIG_SYS_HUSH_PARSER385:            run_command (s, 0);386# else387:            parse_string_outer(s, FLAG_PARSE_SEMICOLON |388:                                 FLAG_EXIT_FROM_LOOP);389# endif390391# ifdef CONFIG_AUTOBOOT_KEYED392:            disable_ctrlc(prev); /* restore Control C checking */393# endif394:     }395396# ifdef CONFIG_MENUKEY397:     if (menukey == CONFIG_MENUKEY) {398:            s = getenv("menucmd");399:            if (s) {400# ifndef CONFIG_SYS_HUSH_PARSER401:            run_command (s, 0);402# else403:            parse_string_outer(s, FLAG_PARSE_SEMICOLON |404:                                 FLAG_EXIT_FROM_LOOP);405# endif406:            }407:     }408#endif /* CONFIG_MENUKEY */409#endif /* CONFIG_BOOTDELAY */352行和第353行的含义是从环境变量中获取bootdelay参数,得到自动启动缺省镜像文件的延时(单位是秒)。第358行的含义是初始化命令行超时机制。第375行的含义是从环境变量中获取bootcmd参数,得到在启动延时过程中自动执行的命令。当我们得到了bootcmd参数,bootdelay参数也是大于等于0,并且在启动延时过程中没有按下任意键时,执行第387行的parse_string_outer函数,该函数的作用是解释bootcmd参数并执行,它是在common目录下的hush.c文件内定义的。414#ifdef CONFIG_SYS_HUSH_PARSER415:     parse_file_outer();416/* This point is never reached */417:     for (;;);418#else419:     for (;;) {420#ifdef CONFIG_BOOT_RETRY_TIME421:            if (rc >= 0) {422/* Saw enough of a valid command to423:                   * restart the timeout.424:                   */425:                   reset_cmd_timeout();426:            }427#endif428:            len = readline (CONFIG_SYS_PROMPT);429430:            flag = 0;  /* assume no special flags for now */431:            if (len > 0)432:                   strcpy (lastcommand, console_buffer);433:            else if (len == 0)434:                   flag |= CMD_FLAG_REPEAT;435#ifdef CONFIG_BOOT_RETRY_TIME436:            else if (len == -2) {437/* -2 means timed out, retry autoboot438:                   */439:                   puts ("\nTimed out waiting for command\n");440# ifdef CONFIG_RESET_TO_RETRY441/* Reinit board to run initialization code again */442:                   do_reset (NULL, 0, 0, NULL);443# else444:                   return;            /* retry autoboot */445# endif446:            }447#endif448449:            if (len == -1)450:                   puts ("<INTERRUPT>\n");451:            else452:                   rc = run_command (lastcommand, flag);453454:            if (rc <= 0) {455/* invalid command or not repeatable, forget it */456:                   lastcommand[0] = 0;457:            }458:     }459#endif /*CONFIG_SYS_HUSH_PARSER*/由于在include/configs/smdk2410.h文件中定义了CONFIG_SYS_HUSH_PARSER,所以上面的代码仅仅执行的是第415行至第417行的内容。第415行的parse_file_outer函数是在common目录下的hush.c文件中定义的,它的含义是依次读取命令序列中的命令并执行之,其中在该函数还调用了parse_stream_outer函数,这个函数体内有一个do-while循环,只有发生语法错误的时候才会跳出该循环,因此一般情况下永远也不会执行上面代码中的第417行内容,而是始终在那个do-while循环体内。

原文地址:

http://www.arm8.net/thread-178-1-1.html

1 0
原创粉丝点击