Linux USB 驱动开发实例(二)—— USB 鼠标驱动注解及测试

来源:互联网 发布:阿里云rds pg如何使用 编辑:程序博客网 时间:2024/05/19 04:04

参考2.6.14版本中的driver/usb/input/usbmouse.c。鼠标驱动可分为几个部分:驱动加载部分、probe部分、open部分、urb回调函数处理部分。 


一、驱动加载部分

static int __init usb_mouse_init(void){ int retval = usb_register(&usb_mouse_driver);//注册鼠标驱动 if (retval == 0)info(DRIVER_VERSION ":" DRIVER_DESC);return retval;}
其中usb_mouse_driver的定义为:
static struct usb_driver usb_mouse_driver = {.owner = THIS_MODULE,.name = "usbmouse",.probe = usb_mouse_probe,.disconnect = usb_mouse_disconnect,.id_table = usb_mouse_id_table,};

 

      如果注册成功的话,将会调用usb_mouse_probe。那么什么时候才算注册成功呢?

      和其它驱动注册过程一样,只有在其对应的“总线”上发现匹配的“设备”才会调用probe。总线匹配的方法和具体总线相关,如:platform_bus_type中是判断驱动名称和平台设备名称是否相同;那如何确认usb总线的匹配方法呢?

       Usb设备是注册在usb_bus_type总线下的。查看usb_bus_type的匹配方法。

struct bus_type usb_bus_type = {.name = "usb",.match = usb_device_match,        .hotplug = usb_hotplug,.suspend = usb_generic_suspend,.resume = usb_generic_resume,};
其中usb_device_match定义了匹配方法
static int usb_device_match (struct device *dev, struct device_driver *drv){                    struct usb_interface *intf;                    struct usb_driver *usb_drv;                    const struct usb_device_id *id;                    /* check for generic driver, which we don't match any device with */                    if (drv == &usb_generic_driver)                    return 0;                    intf = to_usb_interface(dev);                    usb_drv = to_usb_driver(drv);                    id = usb_match_id (intf, usb_drv->id_table);                    if (id)                              return 1;                    return 0;}

可以看出usb的匹配方法是usb_match_id (intf, usb_drv->id_table),也就是说通过比对“dev中intf信息”和“usb_drv->id_table信息”,如果匹配则说明驱动所对应的设备已经添加到总线上了,所以接下了就会调用drv中的probe方法注册usb设备驱动。

usb_mouse_id_table的定义为:

static struct usb_device_id usb_mouse_id_table[] = {                    { USB_INTERFACE_INFO(3, 1, 2) },                    { }                              /* Terminating entry */          };#define USB_INTERFACE_INFO(cl,sc,pr) /          .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, /          .bInterfaceClass = (cl), /          .bInterfaceSubClass = (sc), /          .bInterfaceProtocol = (pr)

鼠标设备遵循USB人机接口设备(HID),在HID规范中规定鼠标接口类码为:

接口类:0x03
接口子类:0x01
接口协议:0x02

这样分类的好处是设备厂商可以直接利用标准的驱动程序。除了HID类以外还有Mass storage、printer、audio等

#define USB_DEVICE_ID_MATCH_INT_INFO /                    (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL)

匹配的过程为:

usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)          {                    struct usb_host_interface *intf;                    struct usb_device *dev;          /* proc_connectinfo in devio.c may call us with id == NULL. */                    if (id == NULL)                              return NULL;          intf = interface->cur_altsetting;                  dev = interface_to_usbdev(interface);          /* It is important to check that id->driver_info is nonzero,                    since an entry that is all zeroes except for a nonzero                    id->driver_info is the way to create an entry that                    indicates that the driver want to examine every                    device and interface. */                  for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||                           id->driver_info; id++) {                    if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&                                 id->idVendor != le16_to_cpu(dev->descriptor.idVendor))                                 continue;                    if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&                                 id->idProduct != le16_to_cpu(dev->descriptor.idProduct))                                 continue;                   /* No need to test id->bcdDevice_lo != 0, since 0 is never greater than any unsigned number. */                            if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&                                (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))                               continue;                    if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&                                 (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))                                 continue;                    if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&                                 (id->bDeviceClass != dev->descriptor.bDeviceClass))                                 continue;                    if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&                                 (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))                                 continue;                    if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&                                 (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))                                 continue;                    //接口类                    if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&                                (id->bInterfaceClass != intf->desc.bInterfaceClass))                                continue;                    //接口子类                    if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&                                (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))                                continue;                  //遵循的协议                    if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&                                (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))                                continue;                  return id;                      }                      return NULL;           }
从中可以看出,只有当设备的接口类、接口子类、接口协议匹配鼠标驱动时鼠标驱动才会调用probe方法。


二、probe部分

static int usb_mouse_probe(struct usb_interface * intf, const struct usb_device_id * id){         struct usb_device * dev = interface_to_usbdev(intf);         struct usb_host_interface *interface;         struct usb_endpoint_descriptor *endpoint;         struct usb_mouse *mouse;         int pipe, maxp;         char path[64];         interface = intf->cur_altsetting;/* 以下是网络的一段对cur_altsettin的解释,下面就借花献佛。usb 设备有一个configuration 的概念,表示配置,一个设备可以有多个配置,但只能同时激活一个,如:一些设备可以下载固件,或可以设置不同的全局模式,就像手机可以被设定为静音模式或响铃模式一样。而这里又有一个setting,咋一看有些奇怪,这两个词不是一回事吗.还是拿我们最熟悉的手机来打比方,configuration 不说了,setting,一个手机可能各种配置都确定了,是振动还是铃声已经确定了,各种功能都确定了,但是声音的大小还可以变吧,通常手机的音量是一格一格的变动,大概也就5,6 格,那么这个可以算一个setting 吧.这里cur_altsetting 就是表示的当前的这个setting,或者说设置。可以查看原码中usb_interface 结构定义的说明部分。从说明中可以看到一个接口可以有多种setting*/         if (interface->desc.bNumEndpoints != 1)return -ENODEV;/*根据HID规则,期望鼠标只有一个端点即中断端点bNumEndpoints 就是接口描述符中的成员,表示这个接口有多少个端点,不过这其中不包括0 号端点,0号端点是任何一个usb 设备都必须是提供的,这个端点专门用于进行控制传输,即它是一个控制端点.正因为如此,所以即使一个设备没有进行任何设置,usb 主机也可以开始跟它进行一些通信,因为即使不知道其它的端点,但至少知道它一定有一个0号端点,或者说一个控制端点。         */         endpoint = &interface->endpoint[0].desc;//端点0描述符,此处的0表示中断端点          if (!(endpoint->bEndpointAddress & 0x80))return -ENODEV;/*先看bEndpointAddress,这个struct usb_endpoint_descriptor 中的一个成员,是8个bit,或者说1 个byte,其中bit7 表示 *的是这个端点的方向,0 表示OUT,1 表示IN,OUT 与IN 是对主机而言。OUT 就是从主机到设备,IN 就是从设备到主机。而宏  *USB_DIR_IN 来自 *include/linux/usb_ch9.h * USB directions * This bit flag is used in endpoint descriptors' bEndpointAddress field. * It's also one of three fields in control requests bRequestType. *#define USB_DIR_OUT 0 /* to device */ *#define USB_DIR_IN 0x80 /* to host */  */if ((endpoint->bmAttributes & 3) != 3)? //判断是否是中断类型 return -ENODEV;/* bmAttributes 表示属性,总共8位,其中bit1和bit0 共同称为Transfer Type,即传输类型,即00 表示控制,01 表示等时,10 表示批量,11 表示中断*/pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);//构造中断端点的输入pipemaxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));/*跟踪usb_maxpacketusb_maxpacket(struct usb_device *udev, int pipe, int is_out){struct usb_host_endpoint         *ep;unsigned                  epnum = usb_pipeendpoint(pipe);/*                  得到的自然就是原来pipe 里边的15 至18 位.一个pipe 的15 位至18 位是endpoint 号,(一共16 个endpoint,)所以很显然,这里就是得到endpoint 号                   */if (is_out) {WARN_ON(usb_pipein(pipe));ep = udev->ep_out[epnum];} else {WARN_ON(usb_pipeout(pipe));ep = udev->ep_in[epnum];}if (!ep)return 0;                  /* NOTE:? only 0x07ff bits are for packet size... */return le16_to_cpu(ep->desc.wMaxPacketSize);         }         */         //返回对应端点能够传输的最大的数据包,鼠标的返回的最大数据包为4个字节,          第0个字节:bit 0、1、2、3、4分别代表左、右、中、SIDE、EXTRA键的按下情况          第1个字节:表示鼠标的水平位移          第2个字节:表示鼠标的垂直位移          第3个字节:REL_WHEEL位移if (!(mouse = kmalloc(sizeof(struct usb_mouse), GFP_KERNEL)))return -ENOMEM;memset(mouse, 0, sizeof(struct usb_mouse));mouse->data = usb_buffer_alloc(dev, 8, SLAB_ATOMIC, &mouse->data_dma);/*         申请用于urb用于数据传输的内存,注意:这里将返回“mouse->data”和“mouse->data_dma”          mouse->data:记录了用于普通传输用的内存指针          mouse->data_dma:记录了用于DMA传输的内存指针          如果是DMA 方式的传输,那么usb core 就应该使用mouse->data_dma         */if (!mouse->data) {kfree(mouse);return -ENOMEM;         }         mouse->irq = usb_alloc_urb(0, GFP_KERNEL);         if (!mouse->irq) {usb_buffer_free(dev, 8, mouse->data, mouse->data_dma);kfree(mouse);return -ENODEV;         }         mouse->usbdev = dev;         mouse->dev.evbit[0] = BIT(EV_KEY) | BIT(EV_REL);//设置input系统响应按键和REL(相对结果)事件mouse->dev.keybit[LONG(BTN_MOUSE)] = BIT(BTN_LEFT) | BIT(BTN_RIGHT) | BIT(BTN_MIDDLE);mouse->dev.relbit[0] = BIT(REL_X) | BIT(REL_Y);mouse->dev.keybit[LONG(BTN_MOUSE)] |= BIT(BTN_SIDE) | BIT(BTN_EXTRA);mouse->dev.relbit[0] |= BIT(REL_WHEEL);//设置input系统响应的码表及rel表mouse->dev.private = mouse;mouse->dev.open = usb_mouse_open;mouse->dev.close = usb_mouse_close;usb_make_path(dev, path, 64);sprintf(mouse->phys, "%s/input0", path);mouse->dev.name = mouse->name;mouse->dev.phys = mouse->phys;usb_to_input_id(dev, &mouse->dev.id);/*usb_to_input_id(const struct usb_device *dev, struct input_id *id){                  id->bustype = BUS_USB;                  id->vendor = le16_to_cpu(dev->descriptor.idVendor);                  id->product = le16_to_cpu(dev->descriptor.idProduct);                  id->version = le16_to_cpu(dev->descriptor.bcdDevice);         }struct usb_device 中有一个成员struct usb_device_descriptor,而struct usb_device_descriptor 中的成员__u16 bcdDevice,表示的是制造商指定的产品的版本号,制造商id 和产品id 来标志一个设备.bcdDevice 一共16 位,是以bcd码的方式保存的信息,也就是说,每4 位代表一个十进制的数,比如0011 0110 1001 0111 就代表的3697.业内为每家公司编一个号,这样便于管理,比如三星的编号就是0x0839,那么三星的产品中就会在其设备描述符中idVendor 的烙上0x0839.而三星自己的每种产品也会有个编号,和Digimax 410 对应的编号就是0x000a,而bcdDevice_lo 和bcdDevice_hi 共同组成一个具体设备的编号(device releasenumber),bcd 就意味着这个编号是二进制的格式.         */mouse->dev.dev = &intf->dev;if (dev->manufacturer)strcat(mouse->name, dev->manufacturer);if (dev->product)sprintf(mouse->name, "%s %s", mouse->name, dev->product);if (!strlen(mouse->name))sprintf(mouse->name, "USB HIDBP Mouse %04x:%04x",                           mouse->dev.id.vendor, mouse->dev.id.product);usb_fill_int_urb(mouse->irq, dev, pipe, mouse->data,                                    (maxp > 8 ? 8 : maxp),                                    usb_mouse_irq, mouse, endpoint->bInterval);/*         static inline void usb_fill_int_urb (struct urb *urb,                                        struct usb_device *dev,                                        unsigned int pipe,                                        void *transfer_buffer,                                        int buffer_length,                                        usb_complete_t complete,                                        void *context,                                        int interval)         {                  spin_lock_init(&urb->lock);                  urb->dev = dev;                  urb->pipe = pipe;                  urb->transfer_buffer = transfer_buffer;//如果不使用DMA传输方式,则使用这个缓冲指针。如何用DMA则使用transfer_DMA,这个值会在后面单独给URB赋         urb->transfer_buffer_length = buffer_length;                  urb->complete = complete;                  urb->context = context;                  if (dev->speed == USB_SPEED_HIGH)                           urb->interval = 1 << (interval - 1);                  else                           urb->interval = interval;                  urb->start_frame = -1;}此处只是构建好一个urb,在open方法中会实现向usb core递交urb         */mouse->irq->transfer_dma = mouse->data_dma;mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;/*         #define URB_NO_TRANSFER_DMA_MAP 0x0004? //urb->transfer_dma valid on submit          #define URB_NO_SETUP_DMA_MAP??? 0x0008? //urb->setup_dma valid on submit ,         这里是两个DMA 相关的flag,一个是URB_NO_SETUP_DMA_MAP,而另一个是          URB_NO_TRANSFER_DMA_MAP.注意这两个是不一样的,前一个是专门为控制传输准备的,因为只有控制传输需要有这么一个setup 阶段需要准备一个setup packet。          transfer_buffer 是给各种传输方式中真正用来数据传输的,而setup_packet 仅仅是在控制传输中发送setup 的包,控制传输除了setup 阶段之外,也会有数据传输阶段,这一阶段要传输数据还是得靠transfer_buffer,而如果使用dma 方式,那么就是使用transfer_dma.         因为这里使用了mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP,所以应该给urb的transfer_dma赋值。所以用了:         mouse->irq->transfer_dma = mouse->data_dma;         */input_register_device(&mouse->dev);//向input系统注册input设备printk(KERN_INFO "input: %s on %s/n", mouse->name, path);usb_set_intfdata(intf, mouse);/*usb_set_intfdata().的结果就是使得          %intf->dev->driver_data= mouse,而其它函数中会调用usb_get_intfdata(intf)的作用就是把mouse从中取出来         */return 0;}



三、open部分

当应用层打开鼠标设备时,usb_mouse_open将被调用

static int usb_mouse_open(struct input_dev *dev){         struct usb_mouse *mouse = dev->private;         mouse->irq->dev = mouse->usbdev;         if (usb_submit_urb(mouse->irq, GFP_KERNEL))                  return -EIO;//向usb core递交了在probe中构建好的中断urb,注意:此处是成功递交给usb core以后就返回,而不是等到从设备取得鼠标数据。         return 0;}


四、urb回调函数处理部分

当出现传输错误或获取到鼠标数据后,urb回调函数将被执行 

static void usb_mouse_irq(struct urb *urb, struct pt_regs *regs){         struct usb_mouse *mouse = urb->context;//在usb_fill_int_urb中有对urb->context赋值         signed char *data = mouse->data;         struct input_dev *dev = &mouse->dev;         int status;         switch (urb->status) {         case 0:                  /* success */                  break;         case -ECONNRESET:         /* unlink */         case -ENOENT:         case -ESHUTDOWN:                  return;         /* -EPIPE:? should clear the halt */         default:         /* error */                  goto resubmit;}input_regs(dev, regs);input_report_key(dev, BTN_LEFT,         data[0] & 0x01);         input_report_key(dev, BTN_RIGHT,         data[0] & 0x02);         input_report_key(dev, BTN_MIDDLE,      data[0] & 0x04);         input_report_key(dev, BTN_SIDE,         data[0] & 0x08);         input_report_key(dev, BTN_EXTRA,         data[0] & 0x10);         //向input系统报告key事件,分别是鼠标LEFT、RIGHT、MIDDLE、SIDE、EXTRA键,         static inline void input_report_key(struct input_dev *dev, unsigned int code, int value)中的value非0时表示按下,0表示释放          input_report_rel(dev, REL_X,         data[1]);         input_report_rel(dev, REL_Y,         data[2]);         input_report_rel(dev, REL_WHEEL, data[3]);         //向input系统报告rel事件,分别是x方向位移、y方向位移、wheel值          input_sync(dev);         //最后需要向事件接受者发送一个完整的报告。这是input系统的要求。          resubmit:         status = usb_submit_urb (urb, SLAB_ATOMIC);         //重新递交urb         if (status)                  err ("can't resubmit intr, %s-%s/input0, status %d",                           mouse->usbdev->bus->bus_name,                           mouse->usbdev->devpath, status);}


五、应用层测试代码编写

在应用层编写测试鼠标的测试程序,在我的系统中,鼠标设备为/dev/input/event3. 测试代码如下:

/* * usb_mouse_test.c * by lht */#include <stdio.h>#include <sys/types.h>#include <unistd.h>#include <fcntl.h>#include <linux/input.h>int main (void) {int fd,i,count;struct input_event ev_mouse[2];fd = open ("/dev/input/event3",O_RDWR);if (fd < 0) {printf ("fd open failed/n");exit(0);}printf ("/nmouse opened, fd=%d/n",fd);while(1){printf(".............................................../n");count=read(fd, ev_mouse, sizeof(struct input_event));for(i=0;i<(int)count/sizeof(struct input_event);i++){printf("type=%d/n",ev_mouse[i].type); if(EV_REL==ev_mouse[i].type) {printf("time:%ld.%d",ev_mouse[i].time.tv_sec,ev_mouse[i].time.tv_usec);printf(" type:%d code:%d value:%d/n",ev_mouse[i].type,ev_mouse[i].code,ev_mouse[i].value);}if(EV_KEY==ev_mouse[i].type){printf("time:%ld.%d",ev_mouse[i].time.tv_sec,ev_mouse[i].time.tv_usec);printf(" type:%d code:%d value:%d/n",ev_mouse[i].type,ev_mouse[i].code,ev_mouse[i].value);}}}close (fd);return 0;}



1 0
原创粉丝点击