面试系列之HashMap原理

来源:互联网 发布:左连接查询sql语句 编辑:程序博客网 时间:2024/06/11 11:12
  • 背景
  • 源码
  • 总结

背景

有过Java编程经验的大概都要这个印象:四大集合除了List之外,用的最多的集合非HashMap莫属。虽然用的很多,但许多人包括我在内,未必能真正弄懂其原理。

前面的介绍,我们也知道,HashMap是Map的接口实现,是LinkedHashMap的父类,与Hashtable并没有什么继承关系。至于两者的关系也是极微妙的。大的来说,主要有两点不同,这里也顺带提一下:

  • HashMap是不同步的,Hashtable是同步的;
  • Hashtable的key和value对于null都是零容忍,而HashTable允许一个key为null,多个value为null。
  • Hashtable因为要维护线程同步,所以存取速度上不如HashMap。
  • 它们两个都不保证顺序。

源码

源码有2000多行,里面的实现也比较精妙,笔者水平有限,这里只做浅层探讨,了解其实现思路。

开篇的引入,留下这两段译文,以供参考。

HashMap 的实例有两个参数影响其性能:初始容量 和加载因子。容量 是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。

通常,默认加载因子 (0.75) 在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数 HashMap 类的操作中,包括 get 和 put 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少 rehash 操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。

如果很多映射关系要存储在 HashMap 实例中,则相对于按需执行自动的 rehash 操作以增大表的容量来说,使用足够大的初始容量创建它将使得映射关系能更有效地存储。

注意,此实现不是同步的。如果多个线程同时访问一个哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须 保持外部同步。(结构上的修改是指添加或删除一个或多个映射关系的任何操作;仅改变与实例已经包含的键关联的值不是结构上的修改。)这一般通过对自然封装该映射的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedMap 方法来“包装”该映射。最好在创建时完成这一操作,以防止对映射进行意外的非同步访问,如下所示:

   Map m = Collections.synchronizedMap(new HashMap(...));

    public class HashMap<K,V> extends AbstractMap<K,V>        implements Map<K,V>, Cloneable, Serializable {        //默认序列化ID        private static final long serialVersionUID = 362498820763181265L;        //默认的初始容量,必须是2的幂        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16        //最大容量,必须是2的幂        static final int MAXIMUM_CAPACITY = 1 << 30;        //默认加载因子        static final float DEFAULT_LOAD_FACTOR = 0.75f;        //当add一个元素到某个位桶,其链表长度达到8时将链表转换为红黑树        static final int TREEIFY_THRESHOLD = 8;        //位桶的链表长度小于6时,解散红黑树        static final int UNTREEIFY_THRESHOLD = 6;        //默认的最小的扩容量64,为避免重新扩容冲突,至少为4 * TREEIFY_THRESHOLD=32,即默认初始容量的2倍        static final int MIN_TREEIFY_CAPACITY = 64;        //节点,我们通常使用的方法,大多数都是这里面的。        static class Node<K,V> implements Map.Entry<K,V> {            final int hash;            final K key;            V value;            Node<K,V> next;            Node(int hash, K key, V value, Node<K,V> next) {                this.hash = hash;                this.key = key;                this.value = value;                this.next = next;            }            public final K getKey()        { return key; }            public final V getValue()      { return value; }            public final String toString() { return key + "=" + value; }            public final int hashCode() {                return Objects.hashCode(key) ^ Objects.hashCode(value);            }            public final V setValue(V newValue) {                V oldValue = value;                value = newValue;                return oldValue;            }            public final boolean equals(Object o) {                if (o == this)                    return true;                if (o instanceof Map.Entry) {                    Map.Entry<?,?> e = (Map.Entry<?,?>)o;                    if (Objects.equals(key, e.getKey()) &&                        Objects.equals(value, e.getValue()))                        return true;                }                return false;            }        }        //计算哈希值        static final int hash(Object key) {            int h;            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);        }        //类比较,是否实现了Comparable接口        static Class<?> comparableClassFor(Object x) {            if (x instanceof Comparable) {                Class<?> c; Type[] ts, as; Type t; ParameterizedType p;                if ((c = x.getClass()) == String.class) // bypass checks                    return c;                if ((ts = c.getGenericInterfaces()) != null) {                    for (int i = 0; i < ts.length; ++i) {                        if (((t = ts[i]) instanceof ParameterizedType) &&                            ((p = (ParameterizedType)t).getRawType() ==                             Comparable.class) &&                            (as = p.getActualTypeArguments()) != null &&                            as.length == 1 && as[0] == c) // type arg is c                            return c;                    }                }            }            return null;        }        //k和x比较大小        @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable        static int compareComparables(Class<?> kc, Object k, Object x) {            return (x == null || x.getClass() != kc ? 0 :                    ((Comparable)k).compareTo(x));        }        // capacity必须满足是2的N次方,如果在构造函数内指定的容量cap不满足,通过下面的算法将其转换为大于n的最小的2的N次方数.        static final int tableSizeFor(int cap) {            int n = cap - 1;            n |= n >>> 1;            n |= n >>> 2;            n |= n >>> 4;            n |= n >>> 8;            n |= n >>> 16;            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;        }        //初始化和resize时用到,长度总是2的n次方。        transient Node<K,V>[] table;        //缓存entrySet()        transient Set<Map.Entry<K,V>> entrySet;        //HashMap的大小        transient int size;        //HashMap实例被改变的次数        transient int modCount;        //阀值,即容量*负载因子,执行put方法时如果size大于threshold则进行扩容.        int threshold;        //加载因子        final float loadFactor;        //构造器        public HashMap(int initialCapacity, float loadFactor) {            if (initialCapacity < 0)                throw new IllegalArgumentException("Illegal initial capacity: " +                                                   initialCapacity);            if (initialCapacity > MAXIMUM_CAPACITY)                initialCapacity = MAXIMUM_CAPACITY;            if (loadFactor <= 0 || Float.isNaN(loadFactor))                throw new IllegalArgumentException("Illegal load factor: " +                                                   loadFactor);            this.loadFactor = loadFactor;            this.threshold = tableSizeFor(initialCapacity);        }        //构造方法        public HashMap(int initialCapacity) {            this(initialCapacity, DEFAULT_LOAD_FACTOR);        }        //构造方法        public HashMap() {            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted        }        //构造方法        public HashMap(Map<? extends K, ? extends V> m) {            this.loadFactor = DEFAULT_LOAD_FACTOR;            putMapEntries(m, false);        }        //复制一个map到当前map中,evict=false,构造时插入;=true,有关方法执行完之后插入;        final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {            int s = m.size();            if (s > 0) {                if (table == null) { // pre-size                    float ft = ((float)s / loadFactor) + 1.0F;                    int t = ((ft < (float)MAXIMUM_CAPACITY) ?                             (int)ft : MAXIMUM_CAPACITY);                    if (t > threshold)                        threshold = tableSizeFor(t);                }                else if (s > threshold)                    resize();                for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {                    K key = e.getKey();                    V value = e.getValue();                    putVal(hash(key), key, value, false, evict);                }            }        }        //size        public int size() {            return size;        }        //为空判断        public boolean isEmpty() {            return size == 0;        }        //获取value        public V get(Object key) {            Node<K,V> e;            return (e = getNode(hash(key), key)) == null ? null : e.value;        }        //获取节点        final Node<K,V> getNode(int hash, Object key) {            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;            if ((tab = table) != null && (n = tab.length) > 0 &&                (first = tab[(n - 1) & hash]) != null) {                if (first.hash == hash && // always check first node                    ((k = first.key) == key || (key != null && key.equals(k))))                    return first;                if ((e = first.next) != null) {                    if (first instanceof TreeNode)                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);                    do {                        if (e.hash == hash &&                            ((k = e.key) == key || (key != null && key.equals(k))))                            return e;                    } while ((e = e.next) != null);                }            }            return null;        }        //是否包含key        public boolean containsKey(Object key) {            return getNode(hash(key), key) != null;        }        //存放键值,返回key的前任value        public V put(K key, V value) {            return putVal(hash(key), key, value, false, true);        }        //存放键值,hash为key的hash值;onlyIfAbsent=true,不改变key的前任值;evict=false,处于创建模式;返回key的前任value        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                       boolean evict) {            Node<K,V>[] tab; Node<K,V> p; int n, i;            if ((tab = table) == null || (n = tab.length) == 0)                n = (tab = resize()).length;            if ((p = tab[i = (n - 1) & hash]) == null)                tab[i] = newNode(hash, key, value, null);            else {                Node<K,V> e; K k;                if (p.hash == hash &&                    ((k = p.key) == key || (key != null && key.equals(k))))                    e = p;                else if (p instanceof TreeNode)                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);                else {                    for (int binCount = 0; ; ++binCount) {                        if ((e = p.next) == null) {                            p.next = newNode(hash, key, value, null);                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                                treeifyBin(tab, hash);                            break;                        }                        if (e.hash == hash &&                            ((k = e.key) == key || (key != null && key.equals(k))))                            break;                        p = e;                    }                }                if (e != null) { // existing mapping for key                    V oldValue = e.value;                    if (!onlyIfAbsent || oldValue == null)                        e.value = value;                    afterNodeAccess(e);                    return oldValue;                }            }            ++modCount;            if (++size > threshold)                resize();            afterNodeInsertion(evict);            return null;        }        初始化或者扩容2final Node<K,V>[] resize() {            Node<K,V>[] oldTab = table;            int oldCap = (oldTab == null) ? 0 : oldTab.length;            int oldThr = threshold;            int newCap, newThr = 0;            if (oldCap > 0) {                if (oldCap >= MAXIMUM_CAPACITY) {                    threshold = Integer.MAX_VALUE;                    return oldTab;                }                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                         oldCap >= DEFAULT_INITIAL_CAPACITY)                    newThr = oldThr << 1; // double threshold            }            else if (oldThr > 0) // initial capacity was placed in threshold                newCap = oldThr;            else {               // zero initial threshold signifies using defaults                newCap = DEFAULT_INITIAL_CAPACITY;                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);            }            if (newThr == 0) {                float ft = (float)newCap * loadFactor;                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                          (int)ft : Integer.MAX_VALUE);            }            threshold = newThr;            @SuppressWarnings({"rawtypes","unchecked"})                Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];            table = newTab;            if (oldTab != null) {                for (int j = 0; j < oldCap; ++j) {                    Node<K,V> e;                    if ((e = oldTab[j]) != null) {                        oldTab[j] = null;                        if (e.next == null)                            newTab[e.hash & (newCap - 1)] = e;                        else if (e instanceof TreeNode)                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                        else { // preserve order                            Node<K,V> loHead = null, loTail = null;                            Node<K,V> hiHead = null, hiTail = null;                            Node<K,V> next;                            do {                                next = e.next;                                if ((e.hash & oldCap) == 0) {                                    if (loTail == null)                                        loHead = e;                                    else                                        loTail.next = e;                                    loTail = e;                                }                                else {                                    if (hiTail == null)                                        hiHead = e;                                    else                                        hiTail.next = e;                                    hiTail = e;                                }                            } while ((e = next) != null);                            if (loTail != null) {                                loTail.next = null;                                newTab[j] = loHead;                            }                            if (hiTail != null) {                                hiTail.next = null;                                newTab[j + oldCap] = hiHead;                            }                        }                    }                }            }            return newTab;        }        //指定位置用bin来替换所有链表节点,如果table太小就resizes代替。        final void treeifyBin(Node<K,V>[] tab, int hash) {            int n, index; Node<K,V> e;            if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)                resize();            else if ((e = tab[index = (n - 1) & hash]) != null) {                TreeNode<K,V> hd = null, tl = null;                do {                    TreeNode<K,V> p = replacementTreeNode(e, null);                    if (tl == null)                        hd = p;                    else {                        p.prev = tl;                        tl.next = p;                    }                    tl = p;                } while ((e = e.next) != null);                if ((tab[index] = hd) != null)                    hd.treeify(tab);            }        }        //将一个map放入另一个map中        public void putAll(Map<? extends K, ? extends V> m) {            putMapEntries(m, true);        }        //移除指定的key,返回value;        public V remove(Object key) {            Node<K,V> e;            return (e = removeNode(hash(key), key, null, false, true)) == null ?                null : e.value;        }        //移除节点,hash为key的hash值,matchValue=true,只移除equal的value;movable=false,删除后节点不会迁移        final Node<K,V> removeNode(int hash, Object key, Object value,                                   boolean matchValue, boolean movable) {            Node<K,V>[] tab; Node<K,V> p; int n, index;            if ((tab = table) != null && (n = tab.length) > 0 &&                (p = tab[index = (n - 1) & hash]) != null) {                Node<K,V> node = null, e; K k; V v;                if (p.hash == hash &&                    ((k = p.key) == key || (key != null && key.equals(k))))                    node = p;                else if ((e = p.next) != null) {                    if (p instanceof TreeNode)                        node = ((TreeNode<K,V>)p).getTreeNode(hash, key);                    else {                        do {                            if (e.hash == hash &&                                ((k = e.key) == key ||                                 (key != null && key.equals(k)))) {                                node = e;                                break;                            }                            p = e;                        } while ((e = e.next) != null);                    }                }                if (node != null && (!matchValue || (v = node.value) == value ||                                     (value != null && value.equals(v)))) {                    if (node instanceof TreeNode)                        ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);                    else if (node == p)                        tab[index] = node.next;                    else                        p.next = node.next;                    ++modCount;                    --size;                    afterNodeRemoval(node);                    return node;                }            }            return null;        }        //移除所有元素,保留空的map        public void clear() {            Node<K,V>[] tab;            modCount++;            if ((tab = table) != null && size > 0) {                size = 0;                for (int i = 0; i < tab.length; ++i)                    tab[i] = null;            }        }        //是否包含指定value        public boolean containsValue(Object value) {            Node<K,V>[] tab; V v;            if ((tab = table) != null && size > 0) {                for (int i = 0; i < tab.length; ++i) {                    for (Node<K,V> e = tab[i]; e != null; e = e.next) {                        if ((v = e.value) == value ||                            (value != null && value.equals(v)))                            return true;                    }                }            }            return false;        }        //key的set集合        public Set<K> keySet() {            Set<K> ks;            return (ks = keySet) == null ? (keySet = new KeySet()) : ks;        }        //内部类,KeySet        final class KeySet extends AbstractSet<K> {            public final int size()                 { return size; }            public final void clear()               { HashMap.this.clear(); }            public final Iterator<K> iterator()     { return new KeyIterator(); }            public final boolean contains(Object o) { return containsKey(o); }            public final boolean remove(Object key) {                return removeNode(hash(key), key, null, false, true) != null;            }            public final Spliterator<K> spliterator() {                return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);            }            public final void forEach(Consumer<? super K> action) {                Node<K,V>[] tab;                if (action == null)                    throw new NullPointerException();                if (size > 0 && (tab = table) != null) {                    int mc = modCount;                    for (int i = 0; i < tab.length; ++i) {                        for (Node<K,V> e = tab[i]; e != null; e = e.next)                            action.accept(e.key);                    }                    if (modCount != mc)                        throw new ConcurrentModificationException();                }            }        }        //包含的values集合        public Collection<V> values() {            Collection<V> vs;            return (vs = values) == null ? (values = new Values()) : vs;        }        //内部类,Values        final class Values extends AbstractCollection<V> {            public final int size()                 { return size; }            public final void clear()               { HashMap.this.clear(); }            public final Iterator<V> iterator()     { return new ValueIterator(); }            public final boolean contains(Object o) { return containsValue(o); }            public final Spliterator<V> spliterator() {                return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);            }            public final void forEach(Consumer<? super V> action) {                Node<K,V>[] tab;                if (action == null)                    throw new NullPointerException();                if (size > 0 && (tab = table) != null) {                    int mc = modCount;                    for (int i = 0; i < tab.length; ++i) {                        for (Node<K,V> e = tab[i]; e != null; e = e.next)                            action.accept(e.value);                    }                    if (modCount != mc)                        throw new ConcurrentModificationException();                }            }        }        //返回entry集合        public Set<Map.Entry<K,V>> entrySet() {            Set<Map.Entry<K,V>> es;            return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;        }        //内部类,EntrySet        final class EntrySet extends AbstractSet<Map.Entry<K,V>> {            public final int size()                 { return size; }            public final void clear()               { HashMap.this.clear(); }            public final Iterator<Map.Entry<K,V>> iterator() {                return new EntryIterator();            }            public final boolean contains(Object o) {                if (!(o instanceof Map.Entry))                    return false;                Map.Entry<?,?> e = (Map.Entry<?,?>) o;                Object key = e.getKey();                Node<K,V> candidate = getNode(hash(key), key);                return candidate != null && candidate.equals(e);            }            public final boolean remove(Object o) {                if (o instanceof Map.Entry) {                    Map.Entry<?,?> e = (Map.Entry<?,?>) o;                    Object key = e.getKey();                    Object value = e.getValue();                    return removeNode(hash(key), key, value, true, true) != null;                }                return false;            }            public final Spliterator<Map.Entry<K,V>> spliterator() {                return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);            }            public final void forEach(Consumer<? super Map.Entry<K,V>> action) {                Node<K,V>[] tab;                if (action == null)                    throw new NullPointerException();                if (size > 0 && (tab = table) != null) {                    int mc = modCount;                    for (int i = 0; i < tab.length; ++i) {                        for (Node<K,V> e = tab[i]; e != null; e = e.next)                            action.accept(e);                    }                    if (modCount != mc)                        throw new ConcurrentModificationException();                }            }        }        //JDK8扩展方法,基本上都是对原有方法的封装        //传入一个默认值获取value        @Override        public V getOrDefault(Object key, V defaultValue) {            Node<K,V> e;            return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;        }        //检测key对应的valu是否为null,如果key对应的value为null,就用新value代替原来null值。        @Override        public V putIfAbsent(K key, V value) {            return putVal(hash(key), key, value, true, true);        }        @Override        public boolean remove(Object key, Object value) {            return removeNode(hash(key), key, value, true, true) != null;        }    //将map中指定的key-value对应的原value替换为新value        @Override        public boolean replace(K key, V oldValue, V newValue) {            Node<K,V> e; V v;            if ((e = getNode(hash(key), key)) != null &&                ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {                e.value = newValue;                afterNodeAccess(e);                return true;            }            return false;        }    //将map中指定key对应的value替换新value,如果存在的话。        @Override        public V replace(K key, V value) {            Node<K,V> e;            if ((e = getNode(hash(key), key)) != null) {                V oldValue = e.value;                e.value = value;                afterNodeAccess(e);                return oldValue;            }            return null;        }    //如果key对应的value为null,就用mappingFunction根据key计算一个新的结果,如果计算结果不为null,就用计算结果覆盖原来的value,如果map中不包括该key,可能会添加一组key-value对。        @Override        public V computeIfAbsent(K key,                                 Function<? super K, ? extends V> mappingFunction) {            if (mappingFunction == null)                throw new NullPointerException();            int hash = hash(key);            Node<K,V>[] tab; Node<K,V> first; int n, i;            int binCount = 0;            TreeNode<K,V> t = null;            Node<K,V> old = null;            if (size > threshold || (tab = table) == null ||                (n = tab.length) == 0)                n = (tab = resize()).length;            if ((first = tab[i = (n - 1) & hash]) != null) {                if (first instanceof TreeNode)                    old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);                else {                    Node<K,V> e = first; K k;                    do {                        if (e.hash == hash &&                            ((k = e.key) == key || (key != null && key.equals(k)))) {                            old = e;                            break;                        }                        ++binCount;                    } while ((e = e.next) != null);                }                V oldValue;                if (old != null && (oldValue = old.value) != null) {                    afterNodeAccess(old);                    return oldValue;                }            }            V v = mappingFunction.apply(key);            if (v == null) {                return null;            } else if (old != null) {                old.value = v;                afterNodeAccess(old);                return v;            }            else if (t != null)                t.putTreeVal(this, tab, hash, key, v);            else {                tab[i] = newNode(hash, key, v, first);                if (binCount >= TREEIFY_THRESHOLD - 1)                    treeifyBin(tab, hash);            }            ++modCount;            ++size;            afterNodeInsertion(true);            return v;        }        //如果key对应的value不为null,就用remappingFunction根据原key、value计算一个新的结果,如果计算结果不为null,就用计算结果覆盖原来的value,如果计算结果为null,就删除原来的key-value对。        public V computeIfPresent(K key,                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {            if (remappingFunction == null)                throw new NullPointerException();            Node<K,V> e; V oldValue;            int hash = hash(key);            if ((e = getNode(hash, key)) != null &&                (oldValue = e.value) != null) {                V v = remappingFunction.apply(key, oldValue);                if (v != null) {                    e.value = v;                    afterNodeAccess(e);                    return v;                }                else                    removeNode(hash, key, null, false, true);            }            return null;        }        //使用remappingFunction根据原key-value计算一个新的value,如果新value不为null,就覆盖原value。如果原value不为null,但新value为null,删除原key-value对。如果原value、新value同时为null,不做改变。        @Override        public V compute(K key,                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {            if (remappingFunction == null)                throw new NullPointerException();            int hash = hash(key);            Node<K,V>[] tab; Node<K,V> first; int n, i;            int binCount = 0;            TreeNode<K,V> t = null;            Node<K,V> old = null;            if (size > threshold || (tab = table) == null ||                (n = tab.length) == 0)                n = (tab = resize()).length;            if ((first = tab[i = (n - 1) & hash]) != null) {                if (first instanceof TreeNode)                    old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);                else {                    Node<K,V> e = first; K k;                    do {                        if (e.hash == hash &&                            ((k = e.key) == key || (key != null && key.equals(k)))) {                            old = e;                            break;                        }                        ++binCount;                    } while ((e = e.next) != null);                }            }            V oldValue = (old == null) ? null : old.value;            V v = remappingFunction.apply(key, oldValue);            if (old != null) {                if (v != null) {                    old.value = v;                    afterNodeAccess(old);                }                else                    removeNode(hash, key, null, false, true);            }            else if (v != null) {                if (t != null)                    t.putTreeVal(this, tab, hash, key, v);                else {                    tab[i] = newNode(hash, key, v, first);                    if (binCount >= TREEIFY_THRESHOLD - 1)                        treeifyBin(tab, hash);                }                ++modCount;                ++size;                afterNodeInsertion(true);            }            return v;        }        //覆盖原value        @Override        public V merge(K key, V value,                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {            if (value == null)                throw new NullPointerException();            if (remappingFunction == null)                throw new NullPointerException();            int hash = hash(key);            Node<K,V>[] tab; Node<K,V> first; int n, i;            int binCount = 0;            TreeNode<K,V> t = null;            Node<K,V> old = null;            if (size > threshold || (tab = table) == null ||                (n = tab.length) == 0)                n = (tab = resize()).length;            if ((first = tab[i = (n - 1) & hash]) != null) {                if (first instanceof TreeNode)                    old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);                else {                    Node<K,V> e = first; K k;                    do {                        if (e.hash == hash &&                            ((k = e.key) == key || (key != null && key.equals(k)))) {                            old = e;                            break;                        }                        ++binCount;                    } while ((e = e.next) != null);                }            }            if (old != null) {                V v;                if (old.value != null)                    v = remappingFunction.apply(old.value, value);                else                    v = value;                if (v != null) {                    old.value = v;                    afterNodeAccess(old);                }                else                    removeNode(hash, key, null, false, true);                return v;            }            if (value != null) {                if (t != null)                    t.putTreeVal(this, tab, hash, key, value);                else {                    tab[i] = newNode(hash, key, value, first);                    if (binCount >= TREEIFY_THRESHOLD - 1)                        treeifyBin(tab, hash);                }                ++modCount;                ++size;                afterNodeInsertion(true);            }            return value;        }        //遍历map        @Override        public void forEach(BiConsumer<? super K, ? super V> action) {            Node<K,V>[] tab;            if (action == null)                throw new NullPointerException();            if (size > 0 && (tab = table) != null) {                int mc = modCount;                for (int i = 0; i < tab.length; ++i) {                    for (Node<K,V> e = tab[i]; e != null; e = e.next)                        action.accept(e.key, e.value);                }                if (modCount != mc)                    throw new ConcurrentModificationException();            }        }        @Override        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {            Node<K,V>[] tab;            if (function == null)                throw new NullPointerException();            if (size > 0 && (tab = table) != null) {                int mc = modCount;                for (int i = 0; i < tab.length; ++i) {                    for (Node<K,V> e = tab[i]; e != null; e = e.next) {                        e.value = function.apply(e.key, e.value);                    }                }                if (modCount != mc)                    throw new ConcurrentModificationException();            }        }        //复制和序列化         @SuppressWarnings("unchecked")        @Override        public Object clone() {            HashMap<K,V> result;            try {                result = (HashMap<K,V>)super.clone();            } catch (CloneNotSupportedException e) {                // this shouldn't happen, since we are Cloneable                throw new InternalError(e);            }            result.reinitialize();            result.putMapEntries(this, false);            return result;        }        // These methods are also used when serializing HashSets        final float loadFactor() { return loadFactor; }        final int capacity() {            return (table != null) ? table.length :                (threshold > 0) ? threshold :                DEFAULT_INITIAL_CAPACITY;        }        private void writeObject(java.io.ObjectOutputStream s)            throws IOException {            int buckets = capacity();            // Write out the threshold, loadfactor, and any hidden stuff            s.defaultWriteObject();            s.writeInt(buckets);            s.writeInt(size);            internalWriteEntries(s);        }        private void readObject(java.io.ObjectInputStream s)            throws IOException, ClassNotFoundException {            // Read in the threshold (ignored), loadfactor, and any hidden stuff            s.defaultReadObject();            reinitialize();            if (loadFactor <= 0 || Float.isNaN(loadFactor))                throw new InvalidObjectException("Illegal load factor: " +                                                 loadFactor);            s.readInt();                // Read and ignore number of buckets            int mappings = s.readInt(); // Read number of mappings (size)            if (mappings < 0)                throw new InvalidObjectException("Illegal mappings count: " +                                                 mappings);            else if (mappings > 0) { // (if zero, use defaults)                // Size the table using given load factor only if within                // range of 0.25...4.0                float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);                float fc = (float)mappings / lf + 1.0f;                int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?                           DEFAULT_INITIAL_CAPACITY :                           (fc >= MAXIMUM_CAPACITY) ?                           MAXIMUM_CAPACITY :                           tableSizeFor((int)fc));                float ft = (float)cap * lf;                threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?                             (int)ft : Integer.MAX_VALUE);                @SuppressWarnings({"rawtypes","unchecked"})                    Node<K,V>[] tab = (Node<K,V>[])new Node[cap];                table = tab;                // Read the keys and values, and put the mappings in the HashMap                for (int i = 0; i < mappings; i++) {                    @SuppressWarnings("unchecked")                        K key = (K) s.readObject();                    @SuppressWarnings("unchecked")                        V value = (V) s.readObject();                    putVal(hash(key), key, value, false, false);                }            }        }        //抽象HashIterator遍历器        abstract class HashIterator {            Node<K,V> next;        // next entry to return            Node<K,V> current;     // current entry            int expectedModCount;  // for fast-fail            int index;             // current slot            HashIterator() {                expectedModCount = modCount;                Node<K,V>[] t = table;                current = next = null;                index = 0;                if (t != null && size > 0) { // advance to first entry                    do {} while (index < t.length && (next = t[index++]) == null);                }            }            public final boolean hasNext() {                return next != null;            }            final Node<K,V> nextNode() {                Node<K,V>[] t;                Node<K,V> e = next;                if (modCount != expectedModCount)                    throw new ConcurrentModificationException();                if (e == null)                    throw new NoSuchElementException();                if ((next = (current = e).next) == null && (t = table) != null) {                    do {} while (index < t.length && (next = t[index++]) == null);                }                return e;            }            public final void remove() {                Node<K,V> p = current;                if (p == null)                    throw new IllegalStateException();                if (modCount != expectedModCount)                    throw new ConcurrentModificationException();                current = null;                K key = p.key;                removeNode(hash(key), key, null, false, false);                expectedModCount = modCount;            }        }        //KeyIterator遍历器        final class KeyIterator extends HashIterator            implements Iterator<K> {            public final K next() { return nextNode().key; }        }        //ValueIterator遍历器        final class ValueIterator extends HashIterator            implements Iterator<V> {            public final V next() { return nextNode().value; }        }        //EntryIterator遍历器        final class EntryIterator extends HashIterator            implements Iterator<Map.Entry<K,V>> {            public final Map.Entry<K,V> next() { return nextNode(); }        }        //静态类,HashMapSpliterator,Spliterator作用与Iterator类似,但更强大,可以将集合分成多个块并行处理,然后将处理结果汇总。也更加灵活,允许你编写检查和分离集合的自定义行为,并在遍历时直接插入。        static class HashMapSpliterator<K,V> {            final HashMap<K,V> map;            Node<K,V> current;          // current node            int index;                  // current index, modified on advance/split            int fence;                  // one past last index            int est;                    // size estimate            int expectedModCount;       // for comodification checks            HashMapSpliterator(HashMap<K,V> m, int origin,                               int fence, int est,                               int expectedModCount) {                this.map = m;                this.index = origin;                this.fence = fence;                this.est = est;                this.expectedModCount = expectedModCount;            }            final int getFence() { // initialize fence and size on first use                int hi;                if ((hi = fence) < 0) {                    HashMap<K,V> m = map;                    est = m.size;                    expectedModCount = m.modCount;                    Node<K,V>[] tab = m.table;                    hi = fence = (tab == null) ? 0 : tab.length;                }                return hi;            }            public final long estimateSize() {                getFence(); // force init                return (long) est;            }        }        //静态类,KeySpliterator        static final class KeySpliterator<K,V>            extends HashMapSpliterator<K,V>            implements Spliterator<K> {            KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,                           int expectedModCount) {                super(m, origin, fence, est, expectedModCount);            }            public KeySpliterator<K,V> trySplit() {                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;                return (lo >= mid || current != null) ? null :                    new KeySpliterator<>(map, lo, index = mid, est >>>= 1,                                            expectedModCount);            }            public void forEachRemaining(Consumer<? super K> action) {                int i, hi, mc;                if (action == null)                    throw new NullPointerException();                HashMap<K,V> m = map;                Node<K,V>[] tab = m.table;                if ((hi = fence) < 0) {                    mc = expectedModCount = m.modCount;                    hi = fence = (tab == null) ? 0 : tab.length;                }                else                    mc = expectedModCount;                if (tab != null && tab.length >= hi &&                    (i = index) >= 0 && (i < (index = hi) || current != null)) {                    Node<K,V> p = current;                    current = null;                    do {                        if (p == null)                            p = tab[i++];                        else {                            action.accept(p.key);                            p = p.next;                        }                    } while (p != null || i < hi);                    if (m.modCount != mc)                        throw new ConcurrentModificationException();                }            }            public boolean tryAdvance(Consumer<? super K> action) {                int hi;                if (action == null)                    throw new NullPointerException();                Node<K,V>[] tab = map.table;                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {                    while (current != null || index < hi) {                        if (current == null)                            current = tab[index++];                        else {                            K k = current.key;                            current = current.next;                            action.accept(k);                            if (map.modCount != expectedModCount)                                throw new ConcurrentModificationException();                            return true;                        }                    }                }                return false;            }            public int characteristics() {                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |                    Spliterator.DISTINCT;            }        }        //静态类,ValueSpliterator        static final class ValueSpliterator<K,V>            extends HashMapSpliterator<K,V>            implements Spliterator<V> {            ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,                             int expectedModCount) {                super(m, origin, fence, est, expectedModCount);            }            public ValueSpliterator<K,V> trySplit() {                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;                return (lo >= mid || current != null) ? null :                    new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,                                              expectedModCount);            }            public void forEachRemaining(Consumer<? super V> action) {                int i, hi, mc;                if (action == null)                    throw new NullPointerException();                HashMap<K,V> m = map;                Node<K,V>[] tab = m.table;                if ((hi = fence) < 0) {                    mc = expectedModCount = m.modCount;                    hi = fence = (tab == null) ? 0 : tab.length;                }                else                    mc = expectedModCount;                if (tab != null && tab.length >= hi &&                    (i = index) >= 0 && (i < (index = hi) || current != null)) {                    Node<K,V> p = current;                    current = null;                    do {                        if (p == null)                            p = tab[i++];                        else {                            action.accept(p.value);                            p = p.next;                        }                    } while (p != null || i < hi);                    if (m.modCount != mc)                        throw new ConcurrentModificationException();                }            }            public boolean tryAdvance(Consumer<? super V> action) {                int hi;                if (action == null)                    throw new NullPointerException();                Node<K,V>[] tab = map.table;                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {                    while (current != null || index < hi) {                        if (current == null)                            current = tab[index++];                        else {                            V v = current.value;                            current = current.next;                            action.accept(v);                            if (map.modCount != expectedModCount)                                throw new ConcurrentModificationException();                            return true;                        }                    }                }                return false;            }            public int characteristics() {                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);            }        }        //静态类,EntrySpliterator        static final class EntrySpliterator<K,V>            extends HashMapSpliterator<K,V>            implements Spliterator<Map.Entry<K,V>> {            EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,                             int expectedModCount) {                super(m, origin, fence, est, expectedModCount);            }            public EntrySpliterator<K,V> trySplit() {                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;                return (lo >= mid || current != null) ? null :                    new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,                                              expectedModCount);            }            public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {                int i, hi, mc;                if (action == null)                    throw new NullPointerException();                HashMap<K,V> m = map;                Node<K,V>[] tab = m.table;                if ((hi = fence) < 0) {                    mc = expectedModCount = m.modCount;                    hi = fence = (tab == null) ? 0 : tab.length;                }                else                    mc = expectedModCount;                if (tab != null && tab.length >= hi &&                    (i = index) >= 0 && (i < (index = hi) || current != null)) {                    Node<K,V> p = current;                    current = null;                    do {                        if (p == null)                            p = tab[i++];                        else {                            action.accept(p);                            p = p.next;                        }                    } while (p != null || i < hi);                    if (m.modCount != mc)                        throw new ConcurrentModificationException();                }            }            public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {                int hi;                if (action == null)                    throw new NullPointerException();                Node<K,V>[] tab = map.table;                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {                    while (current != null || index < hi) {                        if (current == null)                            current = tab[index++];                        else {                            Node<K,V> e = current;                            current = current.next;                            action.accept(e);                            if (map.modCount != expectedModCount)                                throw new ConcurrentModificationException();                            return true;                        }                    }                }                return false;            }            public int characteristics() {                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |                    Spliterator.DISTINCT;            }        }        //LinkedHashMap继承实现        //创建新节点        Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {            return new Node<>(hash, key, value, next);        }        //替代节点        Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {            return new Node<>(p.hash, p.key, p.value, next);        }        //创建一个树节点        TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {            return new TreeNode<>(hash, key, value, next);        }        //替代树节点        TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {            return new TreeNode<>(p.hash, p.key, p.value, next);        }        //由clone和readObject方法调用,重置默认状态        void reinitialize() {            table = null;            entrySet = null;            keySet = null;            values = null;            modCount = 0;            threshold = 0;            size = 0;        }        //LinkedHashMap回调方法        void afterNodeAccess(Node<K,V> p) { }        void afterNodeInsertion(boolean evict) { }        void afterNodeRemoval(Node<K,V> p) { }        //writeObject调用,确保顺序兼容        void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {            Node<K,V>[] tab;            if (size > 0 && (tab = table) != null) {                for (int i = 0; i < tab.length; ++i) {                    for (Node<K,V> e = tab[i]; e != null; e = e.next) {                        s.writeObject(e.key);                        s.writeObject(e.value);                    }                }            }        }         //静态内部类,定义树槽的Entry        static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {            TreeNode<K,V> parent;  // red-black tree links            TreeNode<K,V> left;            TreeNode<K,V> right;            TreeNode<K,V> prev;    // needed to unlink next upon deletion            boolean red;            TreeNode(int hash, K key, V val, Node<K,V> next) {                super(hash, key, val, next);            }             //根节点            final TreeNode<K,V> root() {                for (TreeNode<K,V> r = this, p;;) {                    if ((p = r.parent) == null)                        return r;                    r = p;                }            }             //确保给定的根节点是其第一个槽节点            static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {                int n;                if (root != null && tab != null && (n = tab.length) > 0) {                    int index = (n - 1) & root.hash;                    TreeNode<K,V> first = (TreeNode<K,V>)tab[index];                    if (root != first) {                        Node<K,V> rn;                        tab[index] = root;                        TreeNode<K,V> rp = root.prev;                        if ((rn = root.next) != null)                            ((TreeNode<K,V>)rn).prev = rp;                        if (rp != null)                            rp.next = rn;                        if (first != null)                            first.prev = root;                        root.next = first;                        root.prev = null;                    }                    assert checkInvariants(root);                }            }             //根据哈希值和键值查找以p为根节点的节点            final TreeNode<K,V> find(int h, Object k, Class<?> kc) {                TreeNode<K,V> p = this;                do {                    int ph, dir; K pk;                    TreeNode<K,V> pl = p.left, pr = p.right, q;                    if ((ph = p.hash) > h)                        p = pl;                    else if (ph < h)                        p = pr;                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))                        return p;                    else if (pl == null)                        p = pr;                    else if (pr == null)                        p = pl;                    else if ((kc != null ||                              (kc = comparableClassFor(k)) != null) &&                             (dir = compareComparables(kc, k, pk)) != 0)                        p = (dir < 0) ? pl : pr;                    else if ((q = pr.find(h, k, kc)) != null)                        return q;                    else                        p = pl;                } while (p != null);                return null;            }             //取到根节点            final TreeNode<K,V> getTreeNode(int h, Object k) {                return ((parent != null) ? root() : this).find(h, k, null);            }             //比较两个对象的identityHashCode            static int tieBreakOrder(Object a, Object b) {                int d;                if (a == null || b == null ||                    (d = a.getClass().getName().                     compareTo(b.getClass().getName())) == 0)                    d = (System.identityHashCode(a) <= System.identityHashCode(b) ?                         -1 : 1);                return d;            }             //生成该节点的节点树            final void treeify(Node<K,V>[] tab) {                TreeNode<K,V> root = null;                for (TreeNode<K,V> x = this, next; x != null; x = next) {                    next = (TreeNode<K,V>)x.next;                    x.left = x.right = null;                    if (root == null) {                        x.parent = null;                        x.red = false;                        root = x;                    }                    else {                        K k = x.key;                        int h = x.hash;                        Class<?> kc = null;                        for (TreeNode<K,V> p = root;;) {                            int dir, ph;                            K pk = p.key;                            if ((ph = p.hash) > h)                                dir = -1;                            else if (ph < h)                                dir = 1;                            else if ((kc == null &&                                      (kc = comparableClassFor(k)) == null) ||                                     (dir = compareComparables(kc, k, pk)) == 0)                                dir = tieBreakOrder(k, pk);                            TreeNode<K,V> xp = p;                            if ((p = (dir <= 0) ? p.left : p.right) == null) {                                x.parent = xp;                                if (dir <= 0)                                    xp.left = x;                                else                                    xp.right = x;                                root = balanceInsertion(root, x);                                break;                            }                        }                    }                }                moveRootToFront(tab, root);            }            /**             * Returns a list of non-TreeNodes replacing those linked from             * this node.             */             //用非树节点的列表来替换该点的链表            final Node<K,V> untreeify(HashMap<K,V> map) {                Node<K,V> hd = null, tl = null;                for (Node<K,V> q = this; q != null; q = q.next) {                    Node<K,V> p = map.replacementNode(q, null);                    if (tl == null)                        hd = p;                    else                        tl.next = p;                    tl = p;                }                return hd;            }            /**             * Tree version of putVal.             */            final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,                                           int h, K k, V v) {                Class<?> kc = null;                boolean searched = false;                TreeNode<K,V> root = (parent != null) ? root() : this;                for (TreeNode<K,V> p = root;;) {                    int dir, ph; K pk;                    if ((ph = p.hash) > h)                        dir = -1;                    else if (ph < h)                        dir = 1;                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))                        return p;                    else if ((kc == null &&                              (kc = comparableClassFor(k)) == null) ||                             (dir = compareComparables(kc, k, pk)) == 0) {                        if (!searched) {                            TreeNode<K,V> q, ch;                            searched = true;                            if (((ch = p.left) != null &&                                 (q = ch.find(h, k, kc)) != null) ||                                ((ch = p.right) != null &&                                 (q = ch.find(h, k, kc)) != null))                                return q;                        }                        dir = tieBreakOrder(k, pk);                    }                    TreeNode<K,V> xp = p;                    if ((p = (dir <= 0) ? p.left : p.right) == null) {                        Node<K,V> xpn = xp.next;                        TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);                        if (dir <= 0)                            xp.left = x;                        else                            xp.right = x;                        xp.next = x;                        x.parent = x.prev = xp;                        if (xpn != null)                            ((TreeNode<K,V>)xpn).prev = x;                        moveRootToFront(tab, balanceInsertion(root, x));                        return null;                    }                }            }                //移除指定的节点            final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,                                      boolean movable) {                int n;                if (tab == null || (n = tab.length) == 0)                    return;                int index = (n - 1) & hash;                TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;                TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;                if (pred == null)                    tab[index] = first = succ;                else                    pred.next = succ;                if (succ != null)                    succ.prev = pred;                if (first == null)                    return;                if (root.parent != null)                    root = root.root();                if (root == null || root.right == null ||                    (rl = root.left) == null || rl.left == null) {                    tab[index] = first.untreeify(map);  // too small                    return;                }                TreeNode<K,V> p = this, pl = left, pr = right, replacement;                if (pl != null && pr != null) {                    TreeNode<K,V> s = pr, sl;                    while ((sl = s.left) != null) // find successor                        s = sl;                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors                    TreeNode<K,V> sr = s.right;                    TreeNode<K,V> pp = p.parent;                    if (s == pr) { // p was s's direct parent                        p.parent = s;                        s.right = p;                    }                    else {                        TreeNode<K,V> sp = s.parent;                        if ((p.parent = sp) != null) {                            if (s == sp.left)                                sp.left = p;                            else                                sp.right = p;                        }                        if ((s.right = pr) != null)                            pr.parent = s;                    }                    p.left = null;                    if ((p.right = sr) != null)                        sr.parent = p;                    if ((s.left = pl) != null)                        pl.parent = s;                    if ((s.parent = pp) == null)                        root = s;                    else if (p == pp.left)                        pp.left = s;                    else                        pp.right = s;                    if (sr != null)                        replacement = sr;                    else                        replacement = p;                }                else if (pl != null)                    replacement = pl;                else if (pr != null)                    replacement = pr;                else                    replacement = p;                if (replacement != p) {                    TreeNode<K,V> pp = replacement.parent = p.parent;                    if (pp == null)                        root = replacement;                    else if (p == pp.left)                        pp.left = replacement;                    else                        pp.right = replacement;                    p.left = p.right = p.parent = null;                }                TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);                if (replacement == p) {  // detach                    TreeNode<K,V> pp = p.parent;                    p.parent = null;                    if (pp != null) {                        if (p == pp.left)                            pp.left = null;                        else if (p == pp.right)                            pp.right = null;                    }                }                if (movable)                    moveRootToFront(tab, r);            }             //重新计算大小时调用,把树节点拆分成lower和upper两个,如果太小不拆了。            final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {                TreeNode<K,V> b = this;                // Relink into lo and hi lists, preserving order                TreeNode<K,V> loHead = null, loTail = null;                TreeNode<K,V> hiHead = null, hiTail = null;                int lc = 0, hc = 0;                for (TreeNode<K,V> e = b, next; e != null; e = next) {                    next = (TreeNode<K,V>)e.next;                    e.next = null;                    if ((e.hash & bit) == 0) {                        if ((e.prev = loTail) == null)                            loHead = e;                        else                            loTail.next = e;                        loTail = e;                        ++lc;                    }                    else {                        if ((e.prev = hiTail) == null)                            hiHead = e;                        else                            hiTail.next = e;                        hiTail = e;                        ++hc;                    }                }                if (loHead != null) {                    if (lc <= UNTREEIFY_THRESHOLD)                        tab[index] = loHead.untreeify(map);                    else {                        tab[index] = loHead;                        if (hiHead != null) // (else is already treeified)                            loHead.treeify(tab);                    }                }                if (hiHead != null) {                    if (hc <= UNTREEIFY_THRESHOLD)                        tab[index + bit] = hiHead.untreeify(map);                    else {                        tab[index + bit] = hiHead;                        if (loHead != null)                            hiHead.treeify(tab);                    }                }            }            //改写红黑树的方法,左旋,之所以加旋转是为了保持红黑树的特性而提供的辅助方法,具体可参看红黑树的算法原理。            static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,                                                  TreeNode<K,V> p) {                TreeNode<K,V> r, pp, rl;                if (p != null && (r = p.right) != null) {                    if ((rl = p.right = r.left) != null)                        rl.parent = p;                    if ((pp = r.parent = p.parent) == null)                        (root = r).red = false;                    else if (pp.left == p)                        pp.left = r;                    else                        pp.right = r;                    r.left = p;                    p.parent = r;                }                return root;            }            //右旋            static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,                                                   TreeNode<K,V> p) {                TreeNode<K,V> l, pp, lr;                if (p != null && (l = p.left) != null) {                    if ((lr = p.left = l.right) != null)                        lr.parent = p;                    if ((pp = l.parent = p.parent) == null)                        (root = l).red = false;                    else if (pp.right == p)                        pp.right = l;                    else                        pp.left = l;                    l.right = p;                    p.parent = l;                }                return root;            }            //平衡插入            static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,                                                        TreeNode<K,V> x) {                x.red = true;                for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {                    if ((xp = x.parent) == null) {                        x.red = false;                        return x;                    }                    else if (!xp.red || (xpp = xp.parent) == null)                        return root;                    if (xp == (xppl = xpp.left)) {                        if ((xppr = xpp.right) != null && xppr.red) {                            xppr.red = false;                            xp.red = false;                            xpp.red = true;                            x = xpp;                        }                        else {                            if (x == xp.right) {                                root = rotateLeft(root, x = xp);                                xpp = (xp = x.parent) == null ? null : xp.parent;                            }                            if (xp != null) {                                xp.red = false;                                if (xpp != null) {                                    xpp.red = true;                                    root = rotateRight(root, xpp);                                }                            }                        }                    }                    else {                        if (xppl != null && xppl.red) {                            xppl.red = false;                            xp.red = false;                            xpp.red = true;                            x = xpp;                        }                        else {                            if (x == xp.left) {                                root = rotateRight(root, x = xp);                                xpp = (xp = x.parent) == null ? null : xp.parent;                            }                            if (xp != null) {                                xp.red = false;                                if (xpp != null) {                                    xpp.red = true;                                    root = rotateLeft(root, xpp);                                }                            }                        }                    }                }            }            //删除            static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,                                                       TreeNode<K,V> x) {                for (TreeNode<K,V> xp, xpl, xpr;;)  {                    if (x == null || x == root)                        return root;                    else if ((xp = x.parent) == null) {                        x.red = false;                        return x;                    }                    else if (x.red) {                        x.red = false;                        return root;                    }                    else if ((xpl = xp.left) == x) {                        if ((xpr = xp.right) != null && xpr.red) {                            xpr.red = false;                            xp.red = true;                            root = rotateLeft(root, xp);                            xpr = (xp = x.parent) == null ? null : xp.right;                        }                        if (xpr == null)                            x = xp;                        else {                            TreeNode<K,V> sl = xpr.left, sr = xpr.right;                            if ((sr == null || !sr.red) &&                                (sl == null || !sl.red)) {                                xpr.red = true;                                x = xp;                            }                            else {                                if (sr == null || !sr.red) {                                    if (sl != null)                                        sl.red = false;                                    xpr.red = true;                                    root = rotateRight(root, xpr);                                    xpr = (xp = x.parent) == null ?                                        null : xp.right;                                }                                if (xpr != null) {                                    xpr.red = (xp == null) ? false : xp.red;                                    if ((sr = xpr.right) != null)                                        sr.red = false;                                }                                if (xp != null) {                                    xp.red = false;                                    root = rotateLeft(root, xp);                                }                                x = root;                            }                        }                    }                    else { // symmetric                        if (xpl != null && xpl.red) {                            xpl.red = false;                            xp.red = true;                            root = rotateRight(root, xp);                            xpl = (xp = x.parent) == null ? null : xp.left;                        }                        if (xpl == null)                            x = xp;                        else {                            TreeNode<K,V> sl = xpl.left, sr = xpl.right;                            if ((sl == null || !sl.red) &&                                (sr == null || !sr.red)) {                                xpl.red = true;                                x = xp;                            }                            else {                                if (sl == null || !sl.red) {                                    if (sr != null)                                        sr.red = false;                                    xpl.red = true;                                    root = rotateLeft(root, xpl);                                    xpl = (xp = x.parent) == null ?                                        null : xp.left;                                }                                if (xpl != null) {                                    xpl.red = (xp == null) ? false : xp.red;                                    if ((sl = xpl.left) != null)                                        sl.red = false;                                }                                if (xp != null) {                                    xp.red = false;                                    root = rotateRight(root, xp);                                }                                x = root;                            }                        }                    }                }            }             //递归不变检查            static <K,V> boolean checkInvariants(TreeNode<K,V> t) {                TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,                    tb = t.prev, tn = (TreeNode<K,V>)t.next;                if (tb != null && tb.next != t)                    return false;                if (tn != null && tn.prev != t)                    return false;                if (tp != null && t != tp.left && t != tp.right)                    return false;                if (tl != null && (tl.parent != t || tl.hash > t.hash))                    return false;                if (tr != null && (tr.parent != t || tr.hash < t.hash))                    return false;                if (t.red && tl != null && tl.red && tr != null && tr.red)                    return false;                if (tl != null && !checkInvariants(tl))                    return false;                if (tr != null && !checkInvariants(tr))                    return false;                return true;            }        }    }

总结

1.8中源码的实现就如上所示,里面涉及的数据结构、算法比较复杂,导致看起来并不轻松。

但看完,至少有这么几个印象:

  • HashMap是在bucket中储存的是Map.Entry,由它来封装键对象和值对象。
  • HashMap基本的存储结构是数组和链表。
  • 存取的原理大致如下:
    • key的hash值决定了Entry存放的bucket,通常是hash对map的长度取余;
    • 不同的key的hash对map长度取余的结果可能一样,所以一个bucket可能会存放多个Entry,这些Entry之间用链表连接。如果链表的长度>8,就转成存取速度更快的红黑树;如果长度<6,就转回链表。
    • 同一个bucket的多个Entry之间,是通过调用keys.equals()方法找到正确的链表节点,即要取出的Entry;
    • 建议使用不可变的、声明final的对象做key,并重写equals()和hashCode()方法,保证二者一致性。比如常用的String/Integer等wrapper类。
  • 初始容量和加载因子决定了Map的容量,如果超过这个容量,就会执行rehashing。原有对象重新分配入桶,容量扩大2倍,这应该是HashMap的魅力和精华。
  • rehashing触发的条件:1、超过默认容量*加载因子;2、加载因子不靠谱,比如远大于1。
  • 同步解决方案: 1、Map m = Collections.synchronizedMap(new HashMap(…));2、CocurrentHashMap,HashTable是synchronized的,相比于Hashtable而言,它的同步性能更好,因为仅仅根据同步级别对map的一部分进行上锁。
  • 哈希冲突的解决方法:
    • 开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列);
    • 再哈希法,就是在原hash函数的基础,再次执行hash算法;
    • 链地址法,各种处理哈希碰撞的方法中,这种最简单,也是HashMap中使用的方法;
    • 建立一个公共溢出区;

总结自用,欢迎留言拍砖,转载请注明出处http://blog.csdn.net/luochoudan/article/details/51005997。

1 0
原创粉丝点击