SLT的代码(当然不是我写的,今天不小心炸出来了,纪念一下)

来源:互联网 发布:网络创业的三个途径 编辑:程序博客网 时间:2024/04/30 13:46
// Functor implementations -*- C++ -*-

// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010,
// 2011, 2012
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996-1998
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file bits/stl_function.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{functional}
 */

#ifndef _STL_FUNCTION_H
#define _STL_FUNCTION_H 1

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  // 20.3.1 base classes
  /** @defgroup functors Function Objects
   * @ingroup utilities
   *
   *  Function objects, or @e functors, are objects with an @c operator()
   *  defined and accessible.  They can be passed as arguments to algorithm
   *  templates and used in place of a function pointer.  Not only is the
   *  resulting expressiveness of the library increased, but the generated
   *  code can be more efficient than what you might write by hand.  When we
   *  refer to @a functors, then, generally we include function pointers in
   *  the description as well.
   *
   *  Often, functors are only created as temporaries passed to algorithm
   *  calls, rather than being created as named variables.
   *
   *  Two examples taken from the standard itself follow.  To perform a
   *  by-element addition of two vectors @c a and @c b containing @c double,
   *  and put the result in @c a, use
   *  \code
   *  transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
   *  \endcode
   *  To negate every element in @c a, use
   *  \code
   *  transform(a.begin(), a.end(), a.begin(), negate<double>());
   *  \endcode
   *  The addition and negation functions will be inlined directly.
   *
   *  The standard functors are derived from structs named @c unary_function
   *  and @c binary_function.  These two classes contain nothing but typedefs,
   *  to aid in generic (template) programming.  If you write your own
   *  functors, you might consider doing the same.
   *
   *  @{
   */
  /**
   *  This is one of the @link functors functor base classes@endlink.
   */
  template<typename _Arg, typename _Result>
    struct unary_function
    {
      /// @c argument_type is the type of the argument
      typedef _Arg     argument_type;   

      /// @c result_type is the return type
      typedef _Result     result_type;  
    };

  /**
   *  This is one of the @link functors functor base classes@endlink.
   */
  template<typename _Arg1, typename _Arg2, typename _Result>
    struct binary_function
    {
      /// @c first_argument_type is the type of the first argument
      typedef _Arg1     first_argument_type;

      /// @c second_argument_type is the type of the second argument
      typedef _Arg2     second_argument_type;

      /// @c result_type is the return type
      typedef _Result     result_type;
    };
  /** @}  */

  // 20.3.2 arithmetic
  /** @defgroup arithmetic_functors Arithmetic Classes
   * @ingroup functors
   *
   *  Because basic math often needs to be done during an algorithm,
   *  the library provides functors for those operations.  See the
   *  documentation for @link functors the base classes@endlink
   *  for examples of their use.
   *
   *  @{
   */
  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct plus : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x + __y; }
    };

  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct minus : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x - __y; }
    };

  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct multiplies : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x * __y; }
    };

  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct divides : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x / __y; }
    };

  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct modulus : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x % __y; }
    };

  /// One of the @link arithmetic_functors math functors@endlink.
  template<typename _Tp>
    struct negate : public unary_function<_Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x) const
      { return -__x; }
    };
  /** @}  */

  // 20.3.3 comparisons
  /** @defgroup comparison_functors Comparison Classes
   * @ingroup functors
   *
   *  The library provides six wrapper functors for all the basic comparisons
   *  in C++, like @c <.
   *
   *  @{
   */
  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct equal_to : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x == __y; }
    };

  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct not_equal_to : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x != __y; }
    };

  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct greater : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x > __y; }
    };

  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct less : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x < __y; }
    };

  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct greater_equal : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x >= __y; }
    };

  /// One of the @link comparison_functors comparison functors@endlink.
  template<typename _Tp>
    struct less_equal : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x <= __y; }
    };
  /** @}  */

  // 20.3.4 logical operations
  /** @defgroup logical_functors Boolean Operations Classes
   * @ingroup functors
   *
   *  Here are wrapper functors for Boolean operations: @c &&, @c ||,
   *  and @c !.
   *
   *  @{
   */
  /// One of the @link logical_functors Boolean operations functors@endlink.
  template<typename _Tp>
    struct logical_and : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x && __y; }
    };

  /// One of the @link logical_functors Boolean operations functors@endlink.
  template<typename _Tp>
    struct logical_or : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x || __y; }
    };

  /// One of the @link logical_functors Boolean operations functors@endlink.
  template<typename _Tp>
    struct logical_not : public unary_function<_Tp, bool>
    {
      bool
      operator()(const _Tp& __x) const
      { return !__x; }
    };
  /** @}  */

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // DR 660. Missing Bitwise Operations.
  template<typename _Tp>
    struct bit_and : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x & __y; }
    };

  template<typename _Tp>
    struct bit_or : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x | __y; }
    };

  template<typename _Tp>
    struct bit_xor : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x ^ __y; }
    };

  // 20.3.5 negators
  /** @defgroup negators Negators
   * @ingroup functors
   *
   *  The functions @c not1 and @c not2 each take a predicate functor
   *  and return an instance of @c unary_negate or
   *  @c binary_negate, respectively.  These classes are functors whose
   *  @c operator() performs the stored predicate function and then returns
   *  the negation of the result.
   *
   *  For example, given a vector of integers and a trivial predicate,
   *  \code
   *  struct IntGreaterThanThree
   *    : public std::unary_function<int, bool>
   *  {
   *      bool operator() (int x) { return x > 3; }
   *  };
   *
   *  std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
   *  \endcode
   *  The call to @c find_if will locate the first index (i) of @c v for which
   *  <code>!(v[i] > 3)</code> is true.
   *
   *  The not1/unary_negate combination works on predicates taking a single
   *  argument.  The not2/binary_negate combination works on predicates which
   *  take two arguments.
   *
   *  @{
   */
  /// One of the @link negators negation functors@endlink.
  template<typename _Predicate>
    class unary_negate
    : public unary_function<typename _Predicate::argument_type, bool>
    {
    protected:
      _Predicate _M_pred;

    public:
      explicit
      unary_negate(const _Predicate& __x) : _M_pred(__x) { }

      bool
      operator()(const typename _Predicate::argument_type& __x) const
      { return !_M_pred(__x); }
    };

  /// One of the @link negators negation functors@endlink.
  template<typename _Predicate>
    inline unary_negate<_Predicate>
    not1(const _Predicate& __pred)
    { return unary_negate<_Predicate>(__pred); }

  /// One of the @link negators negation functors@endlink.
  template<typename _Predicate>
    class binary_negate
    : public binary_function<typename _Predicate::first_argument_type,
                 typename _Predicate::second_argument_type, bool>
    {
    protected:
      _Predicate _M_pred;

    public:
      explicit
      binary_negate(const _Predicate& __x) : _M_pred(__x) { }

      bool
      operator()(const typename _Predicate::first_argument_type& __x,
         const typename _Predicate::second_argument_type& __y) const
      { return !_M_pred(__x, __y); }
    };

  /// One of the @link negators negation functors@endlink.
  template<typename _Predicate>
    inline binary_negate<_Predicate>
    not2(const _Predicate& __pred)
    { return binary_negate<_Predicate>(__pred); }
  /** @}  */

  // 20.3.7 adaptors pointers functions
  /** @defgroup pointer_adaptors Adaptors for pointers to functions
   * @ingroup functors
   *
   *  The advantage of function objects over pointers to functions is that
   *  the objects in the standard library declare nested typedefs describing
   *  their argument and result types with uniform names (e.g., @c result_type
   *  from the base classes @c unary_function and @c binary_function).
   *  Sometimes those typedefs are required, not just optional.
   *
   *  Adaptors are provided to turn pointers to unary (single-argument) and
   *  binary (double-argument) functions into function objects.  The
   *  long-winded functor @c pointer_to_unary_function is constructed with a
   *  function pointer @c f, and its @c operator() called with argument @c x
   *  returns @c f(x).  The functor @c pointer_to_binary_function does the same
   *  thing, but with a double-argument @c f and @c operator().
   *
   *  The function @c ptr_fun takes a pointer-to-function @c f and constructs
   *  an instance of the appropriate functor.
   *
   *  @{
   */
  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
  template<typename _Arg, typename _Result>
    class pointer_to_unary_function : public unary_function<_Arg, _Result>
    {
    protected:
      _Result (*_M_ptr)(_Arg);

    public:
      pointer_to_unary_function() { }

      explicit
      pointer_to_unary_function(_Result (*__x)(_Arg))
      : _M_ptr(__x) { }

      _Result
      operator()(_Arg __x) const
      { return _M_ptr(__x); }
    };

  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
  template<typename _Arg, typename _Result>
    inline pointer_to_unary_function<_Arg, _Result>
    ptr_fun(_Result (*__x)(_Arg))
    { return pointer_to_unary_function<_Arg, _Result>(__x); }

  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
  template<typename _Arg1, typename _Arg2, typename _Result>
    class pointer_to_binary_function
    : public binary_function<_Arg1, _Arg2, _Result>
    {
    protected:
      _Result (*_M_ptr)(_Arg1, _Arg2);

    public:
      pointer_to_binary_function() { }

      explicit
      pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
      : _M_ptr(__x) { }

      _Result
      operator()(_Arg1 __x, _Arg2 __y) const
      { return _M_ptr(__x, __y); }
    };

  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
  template<typename _Arg1, typename _Arg2, typename _Result>
    inline pointer_to_binary_function<_Arg1, _Arg2, _Result>
    ptr_fun(_Result (*__x)(_Arg1, _Arg2))
    { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); }
  /** @}  */

  template<typename _Tp>
    struct _Identity
#ifndef __GXX_EXPERIMENTAL_CXX0X__
    // unary_function itself is deprecated in C++11 and deriving from
    // it can even be a nuisance (see PR 52942).
    : public unary_function<_Tp,_Tp>
#endif
    {
      _Tp&
      operator()(_Tp& __x) const
      { return __x; }

      const _Tp&
      operator()(const _Tp& __x) const
      { return __x; }
    };

  template<typename _Pair>
    struct _Select1st
#ifndef __GXX_EXPERIMENTAL_CXX0X__
    : public unary_function<_Pair, typename _Pair::first_type>
#endif
    {
      typename _Pair::first_type&
      operator()(_Pair& __x) const
      { return __x.first; }

      const typename _Pair::first_type&
      operator()(const _Pair& __x) const
      { return __x.first; }

#ifdef __GXX_EXPERIMENTAL_CXX0X__
      template<typename _Pair2>
        typename _Pair2::first_type&
        operator()(_Pair2& __x) const
        { return __x.first; }

      template<typename _Pair2>
        const typename _Pair2::first_type&
        operator()(const _Pair2& __x) const
        { return __x.first; }
#endif
    };

  template<typename _Pair>
    struct _Select2nd
#ifndef __GXX_EXPERIMENTAL_CXX0X__
    : public unary_function<_Pair, typename _Pair::second_type>
#endif
    {
      typename _Pair::second_type&
      operator()(_Pair& __x) const
      { return __x.second; }

      const typename _Pair::second_type&
      operator()(const _Pair& __x) const
      { return __x.second; }
    };

  // 20.3.8 adaptors pointers members
  /** @defgroup memory_adaptors Adaptors for pointers to members
   * @ingroup functors
   *
   *  There are a total of 8 = 2^3 function objects in this family.
   *   (1) Member functions taking no arguments vs member functions taking
   *        one argument.
   *   (2) Call through pointer vs call through reference.
   *   (3) Const vs non-const member function.
   *
   *  All of this complexity is in the function objects themselves.  You can
   *   ignore it by using the helper function mem_fun and mem_fun_ref,
   *   which create whichever type of adaptor is appropriate.
   *
   *  @{
   */
  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp>
    class mem_fun_t : public unary_function<_Tp*, _Ret>
    {
    public:
      explicit
      mem_fun_t(_Ret (_Tp::*__pf)())
      : _M_f(__pf) { }

      _Ret
      operator()(_Tp* __p) const
      { return (__p->*_M_f)(); }

    private:
      _Ret (_Tp::*_M_f)();
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp>
    class const_mem_fun_t : public unary_function<const _Tp*, _Ret>
    {
    public:
      explicit
      const_mem_fun_t(_Ret (_Tp::*__pf)() const)
      : _M_f(__pf) { }

      _Ret
      operator()(const _Tp* __p) const
      { return (__p->*_M_f)(); }

    private:
      _Ret (_Tp::*_M_f)() const;
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp>
    class mem_fun_ref_t : public unary_function<_Tp, _Ret>
    {
    public:
      explicit
      mem_fun_ref_t(_Ret (_Tp::*__pf)())
      : _M_f(__pf) { }

      _Ret
      operator()(_Tp& __r) const
      { return (__r.*_M_f)(); }

    private:
      _Ret (_Tp::*_M_f)();
  };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp>
    class const_mem_fun_ref_t : public unary_function<_Tp, _Ret>
    {
    public:
      explicit
      const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const)
      : _M_f(__pf) { }

      _Ret
      operator()(const _Tp& __r) const
      { return (__r.*_M_f)(); }

    private:
      _Ret (_Tp::*_M_f)() const;
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp, typename _Arg>
    class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret>
    {
    public:
      explicit
      mem_fun1_t(_Ret (_Tp::*__pf)(_Arg))
      : _M_f(__pf) { }

      _Ret
      operator()(_Tp* __p, _Arg __x) const
      { return (__p->*_M_f)(__x); }

    private:
      _Ret (_Tp::*_M_f)(_Arg);
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp, typename _Arg>
    class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret>
    {
    public:
      explicit
      const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const)
      : _M_f(__pf) { }

      _Ret
      operator()(const _Tp* __p, _Arg __x) const
      { return (__p->*_M_f)(__x); }

    private:
      _Ret (_Tp::*_M_f)(_Arg) const;
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp, typename _Arg>
    class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
    {
    public:
      explicit
      mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg))
      : _M_f(__pf) { }

      _Ret
      operator()(_Tp& __r, _Arg __x) const
      { return (__r.*_M_f)(__x); }

    private:
      _Ret (_Tp::*_M_f)(_Arg);
    };

  /// One of the @link memory_adaptors adaptors for member
  /// pointers@endlink.
  template<typename _Ret, typename _Tp, typename _Arg>
    class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
    {
    public:
      explicit
      const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const)
      : _M_f(__pf) { }

      _Ret
      operator()(const _Tp& __r, _Arg __x) const
      { return (__r.*_M_f)(__x); }

    private:
      _Ret (_Tp::*_M_f)(_Arg) const;
    };

  // Mem_fun adaptor helper functions.  There are only two:
  // mem_fun and mem_fun_ref.
  template<typename _Ret, typename _Tp>
    inline mem_fun_t<_Ret, _Tp>
    mem_fun(_Ret (_Tp::*__f)())
    { return mem_fun_t<_Ret, _Tp>(__f); }

  template<typename _Ret, typename _Tp>
    inline const_mem_fun_t<_Ret, _Tp>
    mem_fun(_Ret (_Tp::*__f)() const)
    { return const_mem_fun_t<_Ret, _Tp>(__f); }

  template<typename _Ret, typename _Tp>
    inline mem_fun_ref_t<_Ret, _Tp>
    mem_fun_ref(_Ret (_Tp::*__f)())
    { return mem_fun_ref_t<_Ret, _Tp>(__f); }

  template<typename _Ret, typename _Tp>
    inline const_mem_fun_ref_t<_Ret, _Tp>
    mem_fun_ref(_Ret (_Tp::*__f)() const)
    { return const_mem_fun_ref_t<_Ret, _Tp>(__f); }

  template<typename _Ret, typename _Tp, typename _Arg>
    inline mem_fun1_t<_Ret, _Tp, _Arg>
    mem_fun(_Ret (_Tp::*__f)(_Arg))
    { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }

  template<typename _Ret, typename _Tp, typename _Arg>
    inline const_mem_fun1_t<_Ret, _Tp, _Arg>
    mem_fun(_Ret (_Tp::*__f)(_Arg) const)
    { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }

  template<typename _Ret, typename _Tp, typename _Arg>
    inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
    mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
    { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }

  template<typename _Ret, typename _Tp, typename _Arg>
    inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
    mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
    { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }

  /** @}  */

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#if !defined(__GXX_EXPERIMENTAL_CXX0X__) || _GLIBCXX_USE_DEPRECATED
# include <backward/binders.h>
#endif

#endif /* _STL_FUNCTION_H */

感觉真的好屌……膜拜下写了STL的大神……

0 0
原创粉丝点击
热门问题 老师的惩罚 人脸识别 我在镇武司摸鱼那些年 重生之率土为王 我在大康的咸鱼生活 盘龙之生命进化 天生仙种 凡人之先天五行 春回大明朝 姑娘不必设防,我是瞎子 华为手机出现耳机标志没声音怎么办 苹果手机微信变成耳机模式怎么办 5s不能用4g网络怎么办 华为麦芒四手机系统乱了好卡怎么办 信翼路由器登录密码忘了怎么办 苹果手机电信4g信号变3g怎么办 苹果7手机4g变3g怎么办 朵唯v3逆客手机不支持计步怎么办 移动卡升级4g后网络不好怎么办 电信办宽带送的手机卡不用了怎么办 移动华为悦盒遥控器丢了怎么办 移动签了两年套餐不想用了怎么办 华为手机隐私空间密码忘记了怎么办 华为的隐私空间密码忘记了怎么办 格力新机没密码开不了怎么办 百度下载谷歌浏览器网页错误怎么办 华为手机进水开不了机怎么办开 华为7x金属外壳掉漆了怎么办 华为麦芒6连接蓝牙音响卡顿怎么办 华为芒麦6恢复出厂设置怎么办 华为麦芒4下拉通知栏没反应怎么办 怎么看华为麦芒6信号差怎么办 华为手机锁屏密码忘了怎么办 苹果手机进水后手机卡无服务怎么办 摩拜单车绑定的手机号注销了怎么办 摩拜单车注册的手机号注销了怎么办 摩拜单车注册手机号换了怎么办 被手机店骗话费送合约机怎么办 机蜜租赁的手机丢了怎么办 合约机返话费手机掉了怎么办 手机摔坏了开不了机怎么办 华为魅特10屏幕锁住了怎么办 电信送的路由器只有一个端口怎么办 苹果手机5c屏幕死机了怎么办 日版苹果手机显示无服务怎么办 iphone有锁4g变3g怎么办 耳机胶套脱落掉入耳朵怎么办 苹果笔记本电用完了开机了怎么办 华为荣耀5x锁屏密码忘了怎么办 华为荣耀锁屏密码忘了怎么办 华为手机屏锁密码忘了怎么办