Handler:Android异步消息处理机制完全解析

来源:互联网 发布:mac folx pro 编辑:程序博客网 时间:2024/05/16 05:28
我们都知道,Android UI是线程不安全的,如果在子线程中尝试进行UI操作,程序就有可能会崩溃。相信大家在日常的工作当中都会经常遇到这个问题,解决的方案应该也是早已烂熟于心,即创建一个Message对象,然后借助Handler发送出去,之后在Handler的handleMessage()方法中获得刚才发送的Message对象,然后在这里进行UI操作就不会再出现崩溃了。这种处理方式被称为异步消息处理线程,虽然我相信大家都会用,可是你知道它背后的原理是什么样的吗?今天我们就来一起深入探究一下Handler和Message背后的秘密。

首先来看一下如何创建Handler对象。你可能会觉得挺纳闷的,创建Handler有什么好看的呢,直接new一下不就行了?确实,不过即使只是简单new一下,还是有不少地方需要注意的,我们尝试在程序中创建两个Handler对象,一个在主线程中创建,一个在子线程中创建,代码如下所示:

    public class MainActivity extends Activity {                    private Handler handler1;                    private Handler handler2;                @Override          protected void onCreate(Bundle savedInstanceState) {              super.onCreate(savedInstanceState);              setContentView(R.layout.activity_main);              handler1 = new Handler();              new Thread(new Runnable() {                  @Override                  public void run() {                      handler2 = new Handler();                  }              }).start();          }            }  

如果现在运行一下程序,你会发现,在子线程中创建的Handler是会导致程序崩溃的,提示的错误信息为 Can't create handler inside thread that has not called Looper.prepare() 。说是不能在没有调用Looper.prepare() 的线程中创建Handler,那我们尝试在子线程中先调用一下Looper.prepare()呢,代码如下所示:
new Thread(new Runnable() {      @Override      public void run() {          Looper.prepare();          handler2 = new Handler();      }  }).start(); 

果然这样就不会崩溃了,不过只满足于此显然是不够的,我们来看下Handler的源码,搞清楚为什么不调用Looper.prepare()就不行呢。Handler的无参构造函数如下所示:
    public Handler() {          if (FIND_POTENTIAL_LEAKS) {              final Class<? extends Handler> klass = getClass();              if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&                      (klass.getModifiers() & Modifier.STATIC) == 0) {                  Log.w(TAG, "The following Handler class should be static or leaks might occur: " +                      klass.getCanonicalName());              }          }          mLooper = Looper.myLooper();          if (mLooper == null) {              throw new RuntimeException(                  "Can't create handler inside thread that has not called Looper.prepare()");          }          mQueue = mLooper.mQueue;          mCallback = null;      }  

可以看到,在第10行调用了Looper.myLooper()方法获取了一个Looper对象,如果Looper对象为空,则会抛出一个运行时异常,提示的错误正是 Can't create handler inside thread that has not called Looper.prepare()!那什么时候Looper对象才可能为空呢?这就要看看Looper.myLooper()中的代码了,如下所示:
    public static final Looper myLooper() {          return (Looper)sThreadLocal.get();      }  

这个方法非常简单,就是从sThreadLocal对象中取出Looper。如果sThreadLocal中有Looper存在就返回Looper,如果没有Looper存在自然就返回空了。因此你可以想象得到是在哪里给sThreadLocal设置Looper了吧,当然是Looper.prepare()方法!我们来看下它的源码:
    public static final void prepare() {          if (sThreadLocal.get() != null) {              throw new RuntimeException("Only one Looper may be created per thread");          }          sThreadLocal.set(new Looper());      }  

可以看到,首先判断sThreadLocal中是否已经存在Looper了,如果还没有则创建一个新的Looper设置进去。这样也就完全解释了为什么我们要先调用Looper.prepare()方法,才能创建Handler对象。同时也可以看出每个线程中最多只会有一个Looper对象。

咦?不对呀!主线程中的Handler也没有调用Looper.prepare()方法,为什么就没有崩溃呢?细心的朋友我相信都已经发现了这一点,这是由于在程序启动的时候,系统已经帮我们自动调用了Looper.prepare()方法。查看ActivityThread中的main()方法,代码如下所示:

    public static void main(String[] args) {          SamplingProfilerIntegration.start();          CloseGuard.setEnabled(false);          Environment.initForCurrentUser();          EventLogger.setReporter(new EventLoggingReporter());          Process.setArgV0("<pre-initialized>");          Looper.prepareMainLooper();          ActivityThread thread = new ActivityThread();          thread.attach(false);          if (sMainThreadHandler == null) {              sMainThreadHandler = thread.getHandler();          }          AsyncTask.init();          if (false) {              Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, "ActivityThread"));          }          Looper.loop();          throw new RuntimeException("Main thread loop unexpectedly exited");      } 

可以看到,在第7行调用了Looper.prepareMainLooper()方法,而这个方法又会再去调用Looper.prepare()方法,代码如下所示:
    public static final void prepareMainLooper() {          prepare();          setMainLooper(myLooper());          if (Process.supportsProcesses()) {              myLooper().mQueue.mQuitAllowed = false;          }      }  

因此我们应用程序的主线程中会始终存在一个Looper对象,从而不需要再手动去调用Looper.prepare()方法了。

这样基本就将Handler的创建过程完全搞明白了,总结一下就是在主线程中可以直接创建Handler对象,而在子线程中需要先调用Looper.prepare()才能创建Handler对象。

看完了如何创建Handler之后,接下来我们看一下如何发送消息,这个流程相信大家也已经非常熟悉了,new出一个Message对象,然后可以使用setData()方法或arg参数等方式为消息携带一些数据,再借助Handler将消息发送出去就可以了,示例代码如下:

    new Thread(new Runnable() {          @Override          public void run() {              Message message = new Message();              message.arg1 = 1;              Bundle bundle = new Bundle();              bundle.putString("data", "data");              message.setData(bundle);              handler.sendMessage(message);          }      }).start();  

可是这里Handler到底是把Message发送到哪里去了呢?为什么之后又可以在Handler的handleMessage()方法中重新得到这条Message呢?看来又需要通过阅读源码才能解除我们心中的疑惑了,Handler中提供了很多个发送消息的方法,其中除了sendMessageAtFrontOfQueue()方法之外,其它的发送消息方法最终都会辗转调用到sendMessageAtTime()方法中,这个方法的源码如下所示:
    public boolean sendMessageAtTime(Message msg, long uptimeMillis)      {          boolean sent = false;          MessageQueue queue = mQueue;          if (queue != null) {              msg.target = this;              sent = queue.enqueueMessage(msg, uptimeMillis);          }          else {              RuntimeException e = new RuntimeException(                  this + " sendMessageAtTime() called with no mQueue");              Log.w("Looper", e.getMessage(), e);          }          return sent;      } 

sendMessageAtTime()方法接收两个参数,其中msg参数就是我们发送的Message对象,而uptimeMillis参数则表示发送消息的时间,它的值等于自系统开机到当前时间的毫秒数再加上延迟时间,如果你调用的不是sendMessageDelayed()方法,延迟时间就为0,然后将这两个参数都传递到MessageQueue的enqueueMessage()方法中。这个MessageQueue又是什么东西呢?其实从名字上就可以看出了,它是一个消息队列,用于将所有收到的消息以队列的形式进行排列,并提供入队和出队的方法。这个类是在Looper的构造函数中创建的,因此一个Looper也就对应了一个MessageQueue。

那么enqueueMessage()方法毫无疑问就是入队的方法了,我们来看下这个方法的源码:

    final boolean enqueueMessage(Message msg, long when) {          if (msg.when != 0) {              throw new AndroidRuntimeException(msg + " This message is already in use.");          }          if (msg.target == null && !mQuitAllowed) {              throw new RuntimeException("Main thread not allowed to quit");          }          synchronized (this) {              if (mQuiting) {                  RuntimeException e = new RuntimeException(msg.target + " sending message to a Handler on a dead thread");                  Log.w("MessageQueue", e.getMessage(), e);                  return false;              } else if (msg.target == null) {                  mQuiting = true;              }              msg.when = when;              Message p = mMessages;              if (p == null || when == 0 || when < p.when) {                  msg.next = p;                  mMessages = msg;                  this.notify();              } else {                  Message prev = null;                  while (p != null && p.when <= when) {                      prev = p;                      p = p.next;                  }                  msg.next = prev.next;                  prev.next = msg;                  this.notify();              }          }          return true;      }  

首先你要知道,MessageQueue并没有使用一个集合把所有的消息都保存起来,它只使用了一个mMessages对象表示当前待处理的消息。然后观察上面的代码的16~31行我们就可以看出,所谓的入队其实就是将所有的消息按时间来进行排序,这个时间当然就是我们刚才介绍的uptimeMillis参数。具体的操作方法就根据时间的顺序调用msg.next,从而为每一个消息指定它的下一个消息是什么。当然如果你是通过sendMessageAtFrontOfQueue()方法来发送消息的,它也会调用enqueueMessage()来让消息入队,只不过时间为0,这时会把mMessages赋值为新入队的这条消息,然后将这条消息的next指定为刚才的mMessages,这样也就完成了添加消息到队列头部的操作。
现在入队操作我们就已经看明白了,那出队操作是在哪里进行的呢?这个就需要看一看Looper.loop()方法的源码了,如下所示:
    public static final void loop() {          Looper me = myLooper();          MessageQueue queue = me.mQueue;          while (true) {              Message msg = queue.next(); // might block              if (msg != null) {                  if (msg.target == null) {                      return;                  }                  if (me.mLogging!= null) me.mLogging.println(                          ">>>>> Dispatching to " + msg.target + " "                          + msg.callback + ": " + msg.what                          );                  msg.target.dispatchMessage(msg);                  if (me.mLogging!= null) me.mLogging.println(                          "<<<<< Finished to    " + msg.target + " "                          + msg.callback);                  msg.recycle();              }          }      }  

可以看到,这个方法从第4行开始,进入了一个死循环,然后不断地调用的MessageQueue的next()方法,我想你已经猜到了,这个next()方法就是消息队列的出队方法。不过由于这个方法的代码稍微有点长,我就不贴出来了,它的简单逻辑就是如果当前MessageQueue中存在mMessages(即待处理消息),就将这个消息出队,然后让下一条消息成为mMessages,否则就进入一个阻塞状态,一直等到有新的消息入队。继续看loop()方法的第14行,每当有一个消息出队,就将它传递到msg.target的dispatchMessage()方法中,那这里msg.target又是什么呢?其实就是Handler啦,你观察一下上面sendMessageAtTime()方法的第6行就可以看出来了。接下来当然就要看一看Handler中dispatchMessage()方法的源码了,如下所示:
    public void dispatchMessage(Message msg) {          if (msg.callback != null) {              handleCallback(msg);          } else {              if (mCallback != null) {                  if (mCallback.handleMessage(msg)) {                      return;                  }              }              handleMessage(msg);          }      } 

在第5行进行判断,如果mCallback不为空,则调用mCallback的handleMessage()方法,否则直接调用Handler的handleMessage()方法,并将消息对象作为参数传递过去。这样我相信大家就都明白了为什么handleMessage()方法中可以获取到之前发送的消息了吧!

因此,一个最标准的异步消息处理线程的写法应该是这样:

    class LooperThread extends Thread {            public Handler mHandler;                  public void run() {                Looper.prepare();                      mHandler = new Handler() {                    public void handleMessage(Message msg) {                        // process incoming messages here                    }                };                      Looper.loop();            }        } 

当然,这段代码是从Android官方文档上复制的,不过大家现在再来看这段代码,是不是理解的更加深刻了?

那么我们还是要来继续分析一下,为什么使用异步消息处理的方式就可以对UI进行操作了呢?这是由于Handler总是依附于创建时所在的线程,比如我们的Handler是在主线程中创建的,而在子线程中又无法直接对UI进行操作,于是我们就通过一系列的发送消息、入队、出队等环节,最后调用到了Handler的handleMessage()方法中,这时的handleMessage()方法已经是在主线程中运行的,因而我们当然可以在这里进行UI操作了。整个异步消息处理流程的示意图如下图所示:


另外除了发送消息之外,我们还有以下几种方法可以在子线程中进行UI操作:

1. Handler的post()方法

2. View的post()方法

3. Activity的runOnUiThread()方法

我们先来看下Handler中的post()方法,代码如下所示:

<span style="font-size:18px;">    public final boolean post(Runnable r)      {         return  sendMessageDelayed(getPostMessage(r), 0);      }  </span>

原来这里还是调用了sendMessageDelayed()方法去发送一条消息啊,并且还使用了getPostMessage()方法将Runnable对象转换成了一条消息,我们来看下这个方法的源码:
    private final Message getPostMessage(Runnable r) {          Message m = Message.obtain();          m.callback = r;          return m;      }  

在这个方法中将消息的callback字段的值指定为传入的Runnable对象。咦?这个callback字段看起来有些眼熟啊,喔!在Handler的dispatchMessage()方法中原来有做一个检查,如果Message的callback等于null才会去调用handleMessage()方法,否则就调用handleCallback()方法。那我们快来看下handleCallback()方法中的代码吧:
    private final void handleCallback(Message message) {          message.callback.run();      }  

也太简单了!竟然就是直接调用了一开始传入的Runnable对象的run()方法。因此在子线程中通过Handler的post()方法进行UI操作就可以这么写:
    public class MainActivity extends Activity {                private Handler handler;                @Override          protected void onCreate(Bundle savedInstanceState) {              super.onCreate(savedInstanceState);              setContentView(R.layout.activity_main);              handler = new Handler();              new Thread(new Runnable() {                  @Override                  public void run() {                      handler.post(new Runnable() {                          @Override                          public void run() {                              // 在这里进行UI操作                          }                      });                  }              }).start();          }      }  

虽然写法上相差很多,但是原理是完全一样的,我们在Runnable对象的run()方法里更新UI,效果完全等同于在handleMessage()方法中更新UI。

然后再来看一下View中的post()方法,代码如下所示:

    public boolean post(Runnable action) {          Handler handler;          if (mAttachInfo != null) {              handler = mAttachInfo.mHandler;          } else {              ViewRoot.getRunQueue().post(action);              return true;          }          return handler.post(action);      }  

原来就是调用了Handler中的post()方法,我相信已经没有什么必要再做解释了。

最后再来看一下Activity中的runOnUiThread()方法,代码如下所示:

    public final void runOnUiThread(Runnable action) {          if (Thread.currentThread() != mUiThread) {              mHandler.post(action);          } else {              action.run();          }      }  

如果当前的线程不等于UI线程(主线程),就去调用Handler的post()方法,否则就直接调用Runnable对象的run()方法。还有什么会比这更清晰明了的吗?

通过以上所有源码的分析,我们已经发现了,不管是使用哪种方法在子线程中更新UI,其实背后的原理都是相同的,必须都要借助异步消息处理的机制来实现,而我们又已经将这个机制的流程完全搞明白了,真是一件一本万利的事情啊。


本文转自郭霖大神的博客原链接

0 0
原创粉丝点击