java集合框架11——TreeMap和源码分析(二)

来源:互联网 发布:知乎 欧美系护肤品 编辑:程序博客网 时间:2024/04/29 12:45

我们继续分析TreeMap的源码

1.TreeMap源码分析(续)

1. 存取方法

        TreeMap中的存取方法本质上就是对红黑树的插入和删除操作,从源码里体现的更为明显,其实就是对红黑树的插入和删除(可以参考:红黑树),下面简单看下源码:

/*************************** put和remove **********************************///将key-value对添加到TreeMap中,理解TreeMap的前提是理解红黑树//因为和红黑树中的添加基本一样public V put(K key, V value) {Entry<K,V> t = root;if (t == null) { //若红黑树为空,直接添加根节点compare(key, key); // type (and possibly null) checkroot = new Entry<>(key, value, null);size = 1;modCount++;return null;}int cmp;Entry<K,V> parent;//在红黑树中找到插入的位置Comparator<? super K> cpr = comparator;if (cpr != null) {do {parent = t;cmp = cpr.compare(key, t.key);if (cmp < 0)t = t.left;else if (cmp > 0)t = t.right;elsereturn t.setValue(value);} while (t != null);}else {if (key == null)throw new NullPointerException();Comparable<? super K> k = (Comparable<? super K>) key;do {parent = t;cmp = k.compareTo(t.key);if (cmp < 0)t = t.left;else if (cmp > 0)t = t.right;elsereturn t.setValue(value);} while (t != null);}//新建红黑树的节点eEntry<K,V> e = new Entry<>(key, value, parent);if (cmp < 0)parent.left = e;elseparent.right = e;fixAfterInsertion(e);//插入新节点后,要重新修复红黑树的特性size++;modCount++;return null;}//插入新节点后的修正操作,保证红黑树的平衡性//跟红黑树中的修正方式一样的private void fixAfterInsertion(Entry<K,V> x) {x.color = RED;while (x != null && x != root && x.parent.color == RED) {if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {Entry<K,V> y = rightOf(parentOf(parentOf(x)));if (colorOf(y) == RED) {setColor(parentOf(x), BLACK);setColor(y, BLACK);setColor(parentOf(parentOf(x)), RED);x = parentOf(parentOf(x));} else {if (x == rightOf(parentOf(x))) {x = parentOf(x);rotateLeft(x);}setColor(parentOf(x), BLACK);setColor(parentOf(parentOf(x)), RED);rotateRight(parentOf(parentOf(x)));}} else {Entry<K,V> y = leftOf(parentOf(parentOf(x)));if (colorOf(y) == RED) {setColor(parentOf(x), BLACK);setColor(y, BLACK);setColor(parentOf(parentOf(x)), RED);x = parentOf(parentOf(x));} else {if (x == leftOf(parentOf(x))) {x = parentOf(x);rotateRight(x);}setColor(parentOf(x), BLACK);setColor(parentOf(parentOf(x)), RED);rotateLeft(parentOf(parentOf(x)));}}}root.color = BLACK;}//左旋操作private void rotateLeft(Entry<K,V> p) {if (p != null) {Entry<K,V> r = p.right;p.right = r.left;if (r.left != null)r.left.parent = p;r.parent = p.parent;if (p.parent == null)root = r;else if (p.parent.left == p)p.parent.left = r;elsep.parent.right = r;r.left = p;p.parent = r;}}//右旋操作private void rotateRight(Entry<K,V> p) {if (p != null) {Entry<K,V> l = p.left;p.left = l.right;if (l.right != null) l.right.parent = p;l.parent = p.parent;if (p.parent == null)root = l;else if (p.parent.right == p)p.parent.right = l;else p.parent.left = l;l.right = p;p.parent = l;}}//删除指定key的Entrypublic V remove(Object key) {Entry<K,V> p = getEntry(key);if (p == null)return null;V oldValue = p.value;deleteEntry(p);return oldValue;}private void deleteEntry(Entry<K,V> p) {modCount++;size--;// If strictly internal, copy successor's element to p and then make p// point to successor.if (p.left != null && p.right != null) {Entry<K,V> s = successor(p);p.key = s.key;p.value = s.value;p = s;} // p has 2 children// Start fixup at replacement node, if it exists.Entry<K,V> replacement = (p.left != null ? p.left : p.right);if (replacement != null) {// Link replacement to parentreplacement.parent = p.parent;if (p.parent == null)root = replacement;else if (p == p.parent.left)p.parent.left  = replacement;elsep.parent.right = replacement;// Null out links so they are OK to use by fixAfterDeletion.p.left = p.right = p.parent = null;// Fix replacementif (p.color == BLACK)fixAfterDeletion(replacement);} else if (p.parent == null) { // return if we are the only node.root = null;} else { //  No children. Use self as phantom replacement and unlink.if (p.color == BLACK)fixAfterDeletion(p);if (p.parent != null) {if (p == p.parent.left)p.parent.left = null;else if (p == p.parent.right)p.parent.right = null;p.parent = null;}}}//删除后的修复,与红黑树一样private void fixAfterDeletion(Entry<K,V> x) {while (x != root && colorOf(x) == BLACK) {if (x == leftOf(parentOf(x))) {Entry<K,V> sib = rightOf(parentOf(x));if (colorOf(sib) == RED) {setColor(sib, BLACK);setColor(parentOf(x), RED);rotateLeft(parentOf(x));sib = rightOf(parentOf(x));}if (colorOf(leftOf(sib))  == BLACK &&colorOf(rightOf(sib)) == BLACK) {setColor(sib, RED);x = parentOf(x);} else {if (colorOf(rightOf(sib)) == BLACK) {setColor(leftOf(sib), BLACK);setColor(sib, RED);rotateRight(sib);sib = rightOf(parentOf(x));}setColor(sib, colorOf(parentOf(x)));setColor(parentOf(x), BLACK);setColor(rightOf(sib), BLACK);rotateLeft(parentOf(x));x = root;}} else { // symmetricEntry<K,V> sib = leftOf(parentOf(x));if (colorOf(sib) == RED) {setColor(sib, BLACK);setColor(parentOf(x), RED);rotateRight(parentOf(x));sib = leftOf(parentOf(x));}if (colorOf(rightOf(sib)) == BLACK &&colorOf(leftOf(sib)) == BLACK) {setColor(sib, RED);x = parentOf(x);} else {if (colorOf(leftOf(sib)) == BLACK) {setColor(rightOf(sib), BLACK);setColor(sib, RED);rotateLeft(sib);sib = leftOf(parentOf(x));}setColor(sib, colorOf(parentOf(x)));setColor(parentOf(x), BLACK);setColor(leftOf(sib), BLACK);rotateRight(parentOf(x));x = root;}}}setColor(x, BLACK);}
        理解了红黑树,这里的源码基本没啥好看的……因为是一回事!其他的方法我就放到源码里了,这里也不赘述了。到最后我们再看一下TreeMap的遍历方式。下面要耐住性子,因为TreeMap的源码很多……

1.2 其他方法

public int size() {return size;}//返回TreeMap中是否包含“键(key)”public boolean containsKey(Object key) {return getEntry(key) != null;}//返回TreeMap中是否包含"值(value)"public boolean containsValue(Object value) {//从最小的节点开始找for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))if (valEquals(value, e.value))return true;return false;}// 获取“键(key)”对应的“值(value)”public V get(Object key) {Entry<K,V> p = getEntry(key);return (p==null ? null : p.value);}public Comparator<? super K> comparator() {return comparator;}// 获取第一个节点对应的keypublic K firstKey() {return key(getFirstEntry());}// 获取最后一个节点对应的keypublic K lastKey() {return key(getLastEntry());}// 返回不大于key的最大的键值对所对应的KEY,没有的话返回nullpublic K floorKey(K key) {return keyOrNull(getFloorEntry(key));}// 返回不小于key的最小的键值对所对应的KEY,没有的话返回nullpublic K ceilingKey(K key) {return keyOrNull(getCeilingEntry(key));}// 返回小于key的最大的键值对所对应的KEY,没有的话返回nullpublic K lowerKey(K key) {return keyOrNull(getLowerEntry(key));}// 返回大于key的最小的键值对所对应的KEY,没有的话返回nullpublic K higherKey(K key) {return keyOrNull(getHigherEntry(key));}//TreeMap的红黑树节点对应的集合private transient EntrySet entrySet = null;//navigableKeySet为KeySet导航类private transient KeySet<K> navigableKeySet = null;//descendingMap为键值对的倒序“映射”private transient NavigableMap<K,V> descendingMap = null;// 返回TreeMap的“键的集合”public Set<K> keySet() {return navigableKeySet();}// 获取“可导航”的Key的集合// 实际上是返回KeySet类的对象。public NavigableSet<K> navigableKeySet() {KeySet<K> nks = navigableKeySet;return (nks != null) ? nks : (navigableKeySet = new KeySet(this));}// 获取TreeMap的降序的key的集合public NavigableSet<K> descendingKeySet() {return descendingMap().navigableKeySet();}// 获取TreeMap的降序Map// 实际上是返回DescendingSubMap类的对象public NavigableMap<K, V> descendingMap() {NavigableMap<K, V> km = descendingMap;return (km != null) ? km :(descendingMap = new DescendingSubMap(this,  true, null, true,  true, null, true));}// 返回“TreeMap的值对应的集合”public Collection<V> values() {Collection<V> vs = values;return (vs != null) ? vs : (values = new Values());}// ”TreeMap的值的集合“对应的类,它继承于AbstractCollectionclass Values extends AbstractCollection<V> {public Iterator<V> iterator() {return new ValueIterator(getFirstEntry());}public int size() {return TreeMap.this.size();}public boolean contains(Object o) {return TreeMap.this.containsValue(o);}public boolean remove(Object o) {for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {if (valEquals(e.getValue(), o)) {deleteEntry(e);return true;}}return false;}public void clear() {TreeMap.this.clear();}}// 获取TreeMap的Entry的集合,实际上是返回EntrySet类的对象。public Set<Map.Entry<K,V>> entrySet() {EntrySet es = entrySet;return (es != null) ? es : (entrySet = new EntrySet());}// EntrySet是“TreeMap的所有键值对组成的集合”,// EntrySet集合的单位是单个“键值对”。class EntrySet extends AbstractSet<Map.Entry<K,V>> {public Iterator<Map.Entry<K,V>> iterator() {return new EntryIterator(getFirstEntry());}public boolean contains(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;V value = entry.getValue();Entry<K,V> p = getEntry(entry.getKey());return p != null && valEquals(p.getValue(), value);}public boolean remove(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;V value = entry.getValue();Entry<K,V> p = getEntry(entry.getKey());if (p != null && valEquals(p.getValue(), value)) {deleteEntry(p);return true;}return false;}public int size() {return TreeMap.this.size();}public void clear() {TreeMap.this.clear();}}// 获取TreeMap的子Map// 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,K toKey,   boolean toInclusive) {return new AscendingSubMap(this,   false, fromKey, fromInclusive,   false, toKey,   toInclusive);}// 获取“Map的头部”// 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {return new AscendingSubMap(this,   true,  null,  true,   false, toKey, inclusive);}// 获取“Map的尾部”。// 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {return new AscendingSubMap(this,   false, fromKey, inclusive,   true,  null,    true);}// 获取“子Map”。// 范围是从fromKey(包括) 到 toKey(不包括)public SortedMap<K,V> subMap(K fromKey, K toKey) {return subMap(fromKey, true, toKey, false);}// 获取“Map的头部”。// 范围从第一个节点 到 toKey(不包括)public SortedMap<K,V> headMap(K toKey) {return headMap(toKey, false);}// 获取“Map的尾部”。// 范围是从 fromKey(包括) 到 最后一个节点public SortedMap<K,V> tailMap(K fromKey) {return tailMap(fromKey, true);}//返回“TreeMap的KEY组成的迭代器(顺序)”Iterator<K> keyIterator() {return new KeyIterator(getFirstEntry());}// 返回“TreeMap的KEY组成的迭代器(逆序)”Iterator<K> descendingKeyIterator() {return new DescendingKeyIterator(getLastEntry());}// KeySet是“TreeMap中所有的KEY组成的集合”// KeySet继承于AbstractSet,而且实现了NavigableSet接口。static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {private final NavigableMap<E, Object> m;KeySet(NavigableMap<E,Object> map) { m = map; }//升序迭代器public Iterator<E> iterator() {// 若是TreeMap对象,则调用TreeMap的迭代器keyIterator()// 否则,调用TreeMap子类NavigableSubMap的迭代器keyIterator()if (m instanceof TreeMap)return ((TreeMap<E,Object>)m).keyIterator();elsereturn (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());}//降序迭代器public Iterator<E> descendingIterator() {// 若是TreeMap对象,则调用TreeMap的迭代器descendingKeyIterator()// 否则,调用TreeMap子类NavigableSubMap的迭代器descendingKeyIterator()if (m instanceof TreeMap)return ((TreeMap<E,Object>)m).descendingKeyIterator();elsereturn (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());}public int size() { return m.size(); }public boolean isEmpty() { return m.isEmpty(); }public boolean contains(Object o) { return m.containsKey(o); }public void clear() { m.clear(); }public E lower(E e) { return m.lowerKey(e); }public E floor(E e) { return m.floorKey(e); }public E ceiling(E e) { return m.ceilingKey(e); }public E higher(E e) { return m.higherKey(e); }public E first() { return m.firstKey(); }public E last() { return m.lastKey(); }public Comparator<? super E> comparator() { return m.comparator(); }public E pollFirst() {Map.Entry<E,Object> e = m.pollFirstEntry();return (e == null) ? null : e.getKey();}public E pollLast() {Map.Entry<E,Object> e = m.pollLastEntry();return (e == null) ? null : e.getKey();}public boolean remove(Object o) {int oldSize = size();m.remove(o);return size() != oldSize;}public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,  E toElement,   boolean toInclusive) {return new KeySet<>(m.subMap(fromElement, fromInclusive,  toElement,   toInclusive));}public NavigableSet<E> headSet(E toElement, boolean inclusive) {return new KeySet<>(m.headMap(toElement, inclusive));}public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {return new KeySet<>(m.tailMap(fromElement, inclusive));}public SortedSet<E> subSet(E fromElement, E toElement) {return subSet(fromElement, true, toElement, false);}public SortedSet<E> headSet(E toElement) {return headSet(toElement, false);}public SortedSet<E> tailSet(E fromElement) {return tailSet(fromElement, true);}public NavigableSet<E> descendingSet() {return new KeySet(m.descendingMap());}}/// 它是TreeMap中的一个抽象迭代器,实现了一些通用的接口。abstract class PrivateEntryIterator<T> implements Iterator<T> {Entry<K,V> next;Entry<K,V> lastReturned;int expectedModCount;PrivateEntryIterator(Entry<K,V> first) {expectedModCount = modCount;lastReturned = null;next = first;}public final boolean hasNext() {return next != null;}final Entry<K,V> nextEntry() {Entry<K,V> e = next;if (e == null)throw new NoSuchElementException();if (modCount != expectedModCount)throw new ConcurrentModificationException();next = successor(e);lastReturned = e;return e;}final Entry<K,V> prevEntry() {Entry<K,V> e = next;if (e == null)throw new NoSuchElementException();if (modCount != expectedModCount)throw new ConcurrentModificationException();next = predecessor(e);lastReturned = e;return e;}public void remove() {if (lastReturned == null)throw new IllegalStateException();if (modCount != expectedModCount)throw new ConcurrentModificationException();// 这里重点强调一下“为什么当lastReturned的左右孩子都不为空时,要将其赋值给next”。// 目的是为了“删除lastReturned节点之后,next节点指向的仍然是下一个节点”。//     根据“红黑树”的特性可知://     当被删除节点有两个儿子时。那么,首先把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。//     这意味着“当被删除节点有两个儿子时,删除当前节点之后,'新的当前节点'实际上是‘原有的后继节点(即下一个节点)’”。//     而此时next仍然指向"新的当前节点"。也就是说next是仍然是指向下一个节点;能继续遍历红黑树。if (lastReturned.left != null && lastReturned.right != null)next = lastReturned;deleteEntry(lastReturned);expectedModCount = modCount;lastReturned = null;}}// TreeMap的Entry对应的迭代器final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {EntryIterator(Entry<K,V> first) {super(first);}public Map.Entry<K,V> next() {return nextEntry();}}// TreeMap的Value对应的迭代器final class ValueIterator extends PrivateEntryIterator<V> {ValueIterator(Entry<K,V> first) {super(first);}public V next() {return nextEntry().value;}}// reeMap的KEY组成的迭代器(顺序)final class KeyIterator extends PrivateEntryIterator<K> {KeyIterator(Entry<K,V> first) {super(first);}public K next() {return nextEntry().key;}}// TreeMap的KEY组成的迭代器(逆序)final class DescendingKeyIterator extends PrivateEntryIterator<K> {DescendingKeyIterator(Entry<K,V> first) {super(first);}public K next() {return prevEntry().key;}}// 比较两个对象的大小final int compare(Object k1, Object k2) {return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2): comparator.compare((K)k1, (K)k2);}// 判断两个对象是否相等static final boolean valEquals(Object o1, Object o2) {return (o1==null ? o2==null : o1.equals(o2));}// 返回“Key-Value键值对”的一个简单拷贝(AbstractMap.SimpleImmutableEntry<K,V>对象)// 可用来读取“键值对”的值static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {return (e == null) ? null :new AbstractMap.SimpleImmutableEntry<>(e);}// 若“键值对”不为null,则返回KEY;否则,返回nullstatic <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {return (e == null) ? null : e.key;}// 若“键值对”不为null,则返回KEY;否则,抛出异常static <K> K key(Entry<K,?> e) {if (e==null)throw new NoSuchElementException();return e.key;}private static final Object UNBOUNDED = new Object();// TreeMap的SubMap,它一个抽象类,实现了公共操作。// 它包括了"(升序)AscendingSubMap"和"(降序)DescendingSubMap"两个子类。abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>implements NavigableMap<K,V>, java.io.Serializable {// TreeMap的拷贝final TreeMap<K,V> m;// lo是“子Map范围的最小值”,hi是“子Map范围的最大值”;// loInclusive是“是否包含lo的标记”,hiInclusive是“是否包含hi的标记”// fromStart是“表示是否从第一个节点开始计算”,// toEnd是“表示是否计算到最后一个节点   final K lo, hi;final boolean fromStart, toEnd;final boolean loInclusive, hiInclusive;NavigableSubMap(TreeMap<K,V> m,boolean fromStart, K lo, boolean loInclusive,boolean toEnd,     K hi, boolean hiInclusive) {if (!fromStart && !toEnd) {if (m.compare(lo, hi) > 0)throw new IllegalArgumentException("fromKey > toKey");} else {if (!fromStart) // type checkm.compare(lo, lo);if (!toEnd)m.compare(hi, hi);}this.m = m;this.fromStart = fromStart;this.lo = lo;this.loInclusive = loInclusive;this.toEnd = toEnd;this.hi = hi;this.hiInclusive = hiInclusive;}// 判断key是否太小final boolean tooLow(Object key) {// 若该SubMap不包括“起始节点”,// 并且,“key小于最小键(lo)”或者“key等于最小键(lo),但最小键却没包括在该SubMap内”// 则判断key太小。其余情况都不是太小!if (!fromStart) {int c = m.compare(key, lo);if (c < 0 || (c == 0 && !loInclusive))return true;}return false;}// 判断key是否太大final boolean tooHigh(Object key) {// 若该SubMap不包括“结束节点”,// 并且,“key大于最大键(hi)”或者“key等于最大键(hi),但最大键却没包括在该SubMap内”// 则判断key太大。其余情况都不是太大!if (!toEnd) {int c = m.compare(key, hi);if (c > 0 || (c == 0 && !hiInclusive))return true;}return false;}// 判断key是否在“lo和hi”开区间范围内final boolean inRange(Object key) {return !tooLow(key) && !tooHigh(key);}// 判断key是否在封闭区间内final boolean inClosedRange(Object key) {return (fromStart || m.compare(key, lo) >= 0)&& (toEnd || m.compare(hi, key) >= 0);}// 判断key是否在区间内, inclusive是区间开关标志final boolean inRange(Object key, boolean inclusive) {return inclusive ? inRange(key) : inClosedRange(key);}// 返回最低的Entryfinal TreeMap.Entry<K,V> absLowest() {// 若“包含起始节点”,则调用getFirstEntry()返回第一个节点// 否则的话,若包括lo,则调用getCeilingEntry(lo)获取大于/等于lo的最小的Entry;// 否则,调用getHigherEntry(lo)获取大于lo的最小EntryTreeMap.Entry<K,V> e =(fromStart ?  m.getFirstEntry() : (loInclusive ? m.getCeilingEntry(lo) :m.getHigherEntry(lo)));return (e == null || tooHigh(e.key)) ? null : e;}// 返回最高的Entryfinal TreeMap.Entry<K,V> absHighest() {// 若“包含结束节点”,则调用getLastEntry()返回最后一个节点// 否则的话,若包括hi,则调用getFloorEntry(hi)获取小于/等于hi的最大的Entry;//           否则,调用getLowerEntry(hi)获取大于hi的最大EntryTreeMap.Entry<K,V> e =(toEnd ?  m.getLastEntry() : (hiInclusive ?  m.getFloorEntry(hi) : m.getLowerEntry(hi)));return (e == null || tooLow(e.key)) ? null : e;}// 返回"大于/等于key的最小的Entry"final TreeMap.Entry<K,V> absCeiling(K key) {// 只有在“key太小”的情况下,absLowest()返回的Entry才是“大于/等于key的最小Entry”// 其它情况下不行。例如,当包含“起始节点”时,absLowest()返回的是最小Entry了!if (tooLow(key))return absLowest();// 获取“大于/等于key的最小Entry”TreeMap.Entry<K,V> e = m.getCeilingEntry(key);return (e == null || tooHigh(e.key)) ? null : e;}// 返回"大于key的最小的Entry"final TreeMap.Entry<K,V> absHigher(K key) {// 只有在“key太小”的情况下,absLowest()返回的Entry才是“大于key的最小Entry”// 其它情况下不行。例如,当包含“起始节点”时,absLowest()返回的是最小Entry了,而不一定是“大于key的最小Entry”!if (tooLow(key))return absLowest();// 获取“大于key的最小Entry”TreeMap.Entry<K,V> e = m.getHigherEntry(key);return (e == null || tooHigh(e.key)) ? null : e;}// 返回"小于/等于key的最大的Entry"final TreeMap.Entry<K,V> absFloor(K key) {// 只有在“key太大”的情况下,(absHighest)返回的Entry才是“小于/等于key的最大Entry”// 其它情况下不行。例如,当包含“结束节点”时,absHighest()返回的是最大Entry了!if (tooHigh(key))return absHighest();// 获取"小于/等于key的最大的Entry"TreeMap.Entry<K,V> e = m.getFloorEntry(key);return (e == null || tooLow(e.key)) ? null : e;}// 返回"小于key的最大的Entry"final TreeMap.Entry<K,V> absLower(K key) {// 只有在“key太大”的情况下,(absHighest)返回的Entry才是“小于key的最大Entry”// 其它情况下不行。例如,当包含“结束节点”时,absHighest()返回的是最大Entry了,而不一定是“小于key的最大Entry”!if (tooHigh(key))return absHighest();// 获取"小于key的最大的Entry"TreeMap.Entry<K,V> e = m.getLowerEntry(key);return (e == null || tooLow(e.key)) ? null : e;}// 返回“大于最大节点中的最小节点”,不存在的话,返回nullfinal TreeMap.Entry<K,V> absHighFence() {return (toEnd ? null : (hiInclusive ?m.getHigherEntry(hi) :m.getCeilingEntry(hi)));}// 返回“小于最小节点中的最大节点”,不存在的话,返回nullfinal TreeMap.Entry<K,V> absLowFence() {return (fromStart ? null : (loInclusive ?m.getLowerEntry(lo) :m.getFloorEntry(lo)));}// 下面几个abstract方法是需要NavigableSubMap的实现类实现的方法abstract TreeMap.Entry<K,V> subLowest();abstract TreeMap.Entry<K,V> subHighest();abstract TreeMap.Entry<K,V> subCeiling(K key);abstract TreeMap.Entry<K,V> subHigher(K key);abstract TreeMap.Entry<K,V> subFloor(K key);abstract TreeMap.Entry<K,V> subLower(K key);// 返回“顺序”的键迭代器abstract Iterator<K> keyIterator();// 返回“逆序”的键迭代器abstract Iterator<K> descendingKeyIterator();// 返回SubMap是否为空。空的话,返回true,否则返回falsepublic boolean isEmpty() {return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();}// 返回SubMap的大小public int size() {return (fromStart && toEnd) ? m.size() : entrySet().size();}// 返回SubMap是否包含键keypublic final boolean containsKey(Object key) {return inRange(key) && m.containsKey(key);}// 将key-value 插入SubMap中public final V put(K key, V value) {if (!inRange(key))throw new IllegalArgumentException("key out of range");return m.put(key, value);}// 获取key对应值public final V get(Object key) {return !inRange(key) ? null :  m.get(key);}// 删除key对应的键值对public final V remove(Object key) {return !inRange(key) ? null : m.remove(key);}// 获取“大于/等于key的最小键值对”public final Map.Entry<K,V> ceilingEntry(K key) {return exportEntry(subCeiling(key));}// 获取“大于/等于key的最小键”public final K ceilingKey(K key) {return keyOrNull(subCeiling(key));}// 获取“大于key的最小键值对”public final Map.Entry<K,V> higherEntry(K key) {return exportEntry(subHigher(key));}// 获取“大于key的最小键”public final K higherKey(K key) {return keyOrNull(subHigher(key));}// 获取“小于/等于key的最大键值对”public final Map.Entry<K,V> floorEntry(K key) {return exportEntry(subFloor(key));}// 获取“小于/等于key的最大键”public final K floorKey(K key) {return keyOrNull(subFloor(key));}// 获取“小于key的最大键值对”public final Map.Entry<K,V> lowerEntry(K key) {return exportEntry(subLower(key));}// 获取“小于key的最大键”public final K lowerKey(K key) {return keyOrNull(subLower(key));}// 获取"SubMap的第一个键"public final K firstKey() {return key(subLowest());}// 获取"SubMap的最后一个键"public final K lastKey() {return key(subHighest());}// 获取"SubMap的第一个键值对"public final Map.Entry<K,V> firstEntry() {return exportEntry(subLowest());}// 获取"SubMap的最后一个键值对"public final Map.Entry<K,V> lastEntry() {return exportEntry(subHighest());}// 返回"SubMap的第一个键值对",并从SubMap中删除改键值对public final Map.Entry<K,V> pollFirstEntry() {TreeMap.Entry<K,V> e = subLowest();Map.Entry<K,V> result = exportEntry(e);if (e != null)m.deleteEntry(e);return result;}// 返回"SubMap的最后一个键值对",并从SubMap中删除改键值对public final Map.Entry<K,V> pollLastEntry() {TreeMap.Entry<K,V> e = subHighest();Map.Entry<K,V> result = exportEntry(e);if (e != null)m.deleteEntry(e);return result;}// Viewstransient NavigableMap<K,V> descendingMapView = null;transient EntrySetView entrySetView = null;transient KeySet<K> navigableKeySetView = null;// 返回NavigableSet对象,实际上返回的是当前对象的"Key集合"。 public final NavigableSet<K> navigableKeySet() {KeySet<K> nksv = navigableKeySetView;return (nksv != null) ? nksv :(navigableKeySetView = new TreeMap.KeySet(this));}// 返回"Key集合"对象public final Set<K> keySet() {return navigableKeySet();}// 返回“逆序”的Key集合public NavigableSet<K> descendingKeySet() {return descendingMap().navigableKeySet();}// 排列fromKey(包含) 到 toKey(不包含) 的子mappublic final SortedMap<K,V> subMap(K fromKey, K toKey) {return subMap(fromKey, true, toKey, false);}// 返回当前Map的头部(从第一个节点 到 toKey, 不包括toKey)public final SortedMap<K,V> headMap(K toKey) {return headMap(toKey, false);}// 返回当前Map的尾部[从 fromKey(包括fromKeyKey) 到 最后一个节点]public final SortedMap<K,V> tailMap(K fromKey) {return tailMap(fromKey, true);}// Map的Entry的集合abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {private transient int size = -1, sizeModCount;public int size() {if (fromStart && toEnd)return m.size();if (size == -1 || sizeModCount != m.modCount) {sizeModCount = m.modCount;size = 0;Iterator i = iterator();while (i.hasNext()) {size++;i.next();}}return size;}public boolean isEmpty() {TreeMap.Entry<K,V> n = absLowest();return n == null || tooHigh(n.key);}public boolean contains(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;K key = entry.getKey();if (!inRange(key))return false;TreeMap.Entry node = m.getEntry(key);return node != null &&valEquals(node.getValue(), entry.getValue());}public boolean remove(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;K key = entry.getKey();if (!inRange(key))return false;TreeMap.Entry<K,V> node = m.getEntry(key);if (node!=null && valEquals(node.getValue(),entry.getValue())) {m.deleteEntry(node);return true;}return false;}}// SubMap的迭代器abstract class SubMapIterator<T> implements Iterator<T> {TreeMap.Entry<K,V> lastReturned;TreeMap.Entry<K,V> next;final Object fenceKey;int expectedModCount;SubMapIterator(TreeMap.Entry<K,V> first,   TreeMap.Entry<K,V> fence) {expectedModCount = m.modCount;lastReturned = null;next = first;fenceKey = fence == null ? UNBOUNDED : fence.key;}public final boolean hasNext() {return next != null && next.key != fenceKey;}final TreeMap.Entry<K,V> nextEntry() {TreeMap.Entry<K,V> e = next;if (e == null || e.key == fenceKey)throw new NoSuchElementException();if (m.modCount != expectedModCount)throw new ConcurrentModificationException();next = successor(e);lastReturned = e;return e;}final TreeMap.Entry<K,V> prevEntry() {TreeMap.Entry<K,V> e = next;if (e == null || e.key == fenceKey)throw new NoSuchElementException();if (m.modCount != expectedModCount)throw new ConcurrentModificationException();next = predecessor(e);lastReturned = e;return e;}// 删除当前节点(用于“升序的SubMap”)。// 删除之后,可以继续升序遍历;红黑树特性没变。final void removeAscending() {if (lastReturned == null)throw new IllegalStateException();if (m.modCount != expectedModCount)throw new ConcurrentModificationException();// 这里重点强调一下“为什么当lastReturned的左右孩子都不为空时,要将其赋值给next”。// 目的是为了“删除lastReturned节点之后,next节点指向的仍然是下一个节点”。//     根据“红黑树”的特性可知://     当被删除节点有两个儿子时。那么,首先把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。//     这意味着“当被删除节点有两个儿子时,删除当前节点之后,'新的当前节点'实际上是‘原有的后继节点(即下一个节点)’”。//     而此时next仍然指向"新的当前节点"。也就是说next是仍然是指向下一个节点;能继续遍历红黑树。if (lastReturned.left != null && lastReturned.right != null)next = lastReturned;m.deleteEntry(lastReturned);lastReturned = null;expectedModCount = m.modCount;}// 删除当前节点(用于“降序的SubMap”)。// 删除之后,可以继续降序遍历;红黑树特性没变。final void removeDescending() {if (lastReturned == null)throw new IllegalStateException();if (m.modCount != expectedModCount)throw new ConcurrentModificationException();m.deleteEntry(lastReturned);lastReturned = null;expectedModCount = m.modCount;}}// SubMap的Entry迭代器,它只支持升序操作,继承于SubMapIteratorfinal class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {SubMapEntryIterator(TreeMap.Entry<K,V> first,TreeMap.Entry<K,V> fence) {super(first, fence);}public Map.Entry<K,V> next() {return nextEntry();}public void remove() {removeAscending();}}// SubMap的Key迭代器,它只支持升序操作,继承于SubMapIteratorfinal class SubMapKeyIterator extends SubMapIterator<K> {SubMapKeyIterator(TreeMap.Entry<K,V> first,  TreeMap.Entry<K,V> fence) {super(first, fence);}// 获取下一个节点(升序)public K next() {return nextEntry().key;}// 删除当前节点(升序)public void remove() {removeAscending();}}// 降序SubMap的Entry迭代器,它只支持降序操作,继承于SubMapIteratorfinal class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,  TreeMap.Entry<K,V> fence) {super(last, fence);}// 获取下一个节点(降序)public Map.Entry<K,V> next() {return prevEntry();}// 删除当前节点(降序)public void remove() {removeDescending();}}// 降序SubMap的Key迭代器,它只支持降序操作,继承于SubMapIteratorfinal class DescendingSubMapKeyIterator extends SubMapIterator<K> {DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,TreeMap.Entry<K,V> fence) {super(last, fence);}// 获取下一个节点(降序)public K next() {return prevEntry().key;}// 删除当前节点(降序)public void remove() {removeDescending();}}}// 升序的SubMap,继承于NavigableSubMapstatic final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {private static final long serialVersionUID = 912986545866124060L;AscendingSubMap(TreeMap<K,V> m,boolean fromStart, K lo, boolean loInclusive,boolean toEnd,     K hi, boolean hiInclusive) {super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);}public Comparator<? super K> comparator() {return m.comparator();}// 获取“子Map”。// 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,K toKey,   boolean toInclusive) {if (!inRange(fromKey, fromInclusive))throw new IllegalArgumentException("fromKey out of range");if (!inRange(toKey, toInclusive))throw new IllegalArgumentException("toKey out of range");return new AscendingSubMap(m,   false, fromKey, fromInclusive,   false, toKey,   toInclusive);}// 获取“Map的头部”。// 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {if (!inRange(toKey, inclusive))throw new IllegalArgumentException("toKey out of range");return new AscendingSubMap(m,   fromStart, lo,    loInclusive,   false,     toKey, inclusive);}// 获取“Map的尾部”。// 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {if (!inRange(fromKey, inclusive))throw new IllegalArgumentException("fromKey out of range");return new AscendingSubMap(m,   false, fromKey, inclusive,   toEnd, hi,      hiInclusive);}// 获取对应的降序Mappublic NavigableMap<K,V> descendingMap() {NavigableMap<K,V> mv = descendingMapView;return (mv != null) ? mv :(descendingMapView = new DescendingSubMap(m,  fromStart, lo, loInclusive,  toEnd,     hi, hiInclusive));}// 返回“升序Key迭代器”Iterator<K> keyIterator() {return new SubMapKeyIterator(absLowest(), absHighFence());}// 返回“降序Key迭代器”Iterator<K> descendingKeyIterator() {return new DescendingSubMapKeyIterator(absHighest(), absLowFence());}// “升序EntrySet集合”类// 实现了iterator()final class AscendingEntrySetView extends EntrySetView {public Iterator<Map.Entry<K,V>> iterator() {return new SubMapEntryIterator(absLowest(), absHighFence());}}// 返回“升序EntrySet集合”public Set<Map.Entry<K,V>> entrySet() {EntrySetView es = entrySetView;return (es != null) ? es : new AscendingEntrySetView();}TreeMap.Entry<K,V> subLowest()       { return absLowest(); }TreeMap.Entry<K,V> subHighest()      { return absHighest(); }TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }}// 降序的SubMap,继承于NavigableSubMap// 相比于升序SubMap,它的实现机制是将“SubMap的比较器反转”!static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {private static final long serialVersionUID = 912986545866120460L;DescendingSubMap(TreeMap<K,V> m,boolean fromStart, K lo, boolean loInclusive,boolean toEnd,     K hi, boolean hiInclusive) {super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);}// 反转的比较器:是将原始比较器反转得到的。private final Comparator<? super K> reverseComparator =Collections.reverseOrder(m.comparator);// 获取反转比较器public Comparator<? super K> comparator() {return reverseComparator;}// 获取“子Map”。// 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,K toKey,   boolean toInclusive) {if (!inRange(fromKey, fromInclusive))throw new IllegalArgumentException("fromKey out of range");if (!inRange(toKey, toInclusive))throw new IllegalArgumentException("toKey out of range");return new DescendingSubMap(m,false, toKey,   toInclusive,false, fromKey, fromInclusive);}// 获取“Map的头部”。// 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {if (!inRange(toKey, inclusive))throw new IllegalArgumentException("toKey out of range");return new DescendingSubMap(m,false, toKey, inclusive,toEnd, hi,    hiInclusive);}// 获取“Map的尾部”。// 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {if (!inRange(fromKey, inclusive))throw new IllegalArgumentException("fromKey out of range");return new DescendingSubMap(m,fromStart, lo, loInclusive,false, fromKey, inclusive);}// 获取对应的降序Mappublic NavigableMap<K,V> descendingMap() {NavigableMap<K,V> mv = descendingMapView;return (mv != null) ? mv :(descendingMapView = new AscendingSubMap(m, fromStart, lo, loInclusive, toEnd,     hi, hiInclusive));}// 返回“升序Key迭代器”Iterator<K> keyIterator() {return new DescendingSubMapKeyIterator(absHighest(), absLowFence());}// 返回“降序Key迭代器”Iterator<K> descendingKeyIterator() {return new SubMapKeyIterator(absLowest(), absHighFence());}// “降序EntrySet集合”类// 实现了iterator()final class DescendingEntrySetView extends EntrySetView {public Iterator<Map.Entry<K,V>> iterator() {return new DescendingSubMapEntryIterator(absHighest(), absLowFence());}}// 返回“降序EntrySet集合”public Set<Map.Entry<K,V>> entrySet() {EntrySetView es = entrySetView;return (es != null) ? es : new DescendingEntrySetView();}TreeMap.Entry<K,V> subLowest()       { return absHighest(); }TreeMap.Entry<K,V> subHighest()      { return absLowest(); }TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }}// SubMap是旧版本的类,新的Java中没有用到。private class SubMap extends AbstractMap<K,V>implements SortedMap<K,V>, java.io.Serializable {private static final long serialVersionUID = -6520786458950516097L;private boolean fromStart = false, toEnd = false;private K fromKey, toKey;private Object readResolve() {return new AscendingSubMap(TreeMap.this,   fromStart, fromKey, true,   toEnd, toKey, false);}public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }public K lastKey() { throw new InternalError(); }public K firstKey() { throw new InternalError(); }public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }public Comparator<? super K> comparator() { throw new InternalError(); }}private static final boolean RED   = false;private static final boolean BLACK = true;// 返回“节点t的后继节点”static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {if (t == null)return null;else if (t.right != null) {Entry<K,V> p = t.right;while (p.left != null)p = p.left;return p;} else {Entry<K,V> p = t.parent;Entry<K,V> ch = t;while (p != null && ch == p.right) {ch = p;p = p.parent;}return p;}}// 返回“节点t的前继节点”static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {if (t == null)return null;else if (t.left != null) {Entry<K,V> p = t.left;while (p.right != null)p = p.right;return p;} else {Entry<K,V> p = t.parent;Entry<K,V> ch = t;while (p != null && ch == p.left) {ch = p;p = p.parent;}return p;}}// 返回“节点p的颜色”// 根据“红黑树的特性”可知:空节点颜色是黑色。private static <K,V> boolean colorOf(Entry<K,V> p) {return (p == null ? BLACK : p.color);}// 返回“节点p的父节点”private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {return (p == null ? null: p.parent);}// 设置“节点p的颜色为c”private static <K,V> void setColor(Entry<K,V> p, boolean c) {if (p != null)p.color = c;}// 设置“节点p的左孩子”private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {return (p == null) ? null: p.left;}// 设置“节点p的右孩子”private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {return (p == null) ? null: p.right;}private static final long serialVersionUID = 919286545866124006L;// java.io.Serializable的写入函数// 将TreeMap的“容量,所有的Entry”都写入到输出流中  private void writeObject(java.io.ObjectOutputStream s)throws java.io.IOException {// Write out the Comparator and any hidden stuffs.defaultWriteObject();// Write out size (number of Mappings)s.writeInt(size);// Write out keys and values (alternating)for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {Map.Entry<K,V> e = i.next();s.writeObject(e.getKey());s.writeObject(e.getValue());}}// java.io.Serializable的读取函数:根据写入方式读出// 先将TreeMap的“容量、所有的Entry”依次读出private void readObject(final java.io.ObjectInputStream s)throws java.io.IOException, ClassNotFoundException {// Read in the Comparator and any hidden stuffs.defaultReadObject();// Read in sizeint size = s.readInt();buildFromSorted(size, null, s, null);}/** Intended to be called only from TreeSet.readObject */void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)throws java.io.IOException, ClassNotFoundException {buildFromSorted(size, null, s, defaultVal);}/** Intended to be called only from TreeSet.addAll */void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {try {buildFromSorted(set.size(), set.iterator(), null, defaultVal);} catch (java.io.IOException cannotHappen) {} catch (ClassNotFoundException cannotHappen) {}}// 根据已经一个排好序的map创建一个TreeMapprivate void buildFromSorted(int size, Iterator it, java.io.ObjectInputStream str, V defaultVal)throws  java.io.IOException, ClassNotFoundException {this.size = size;root = buildFromSorted(0, 0, size-1, computeRedLevel(size),   it, str, defaultVal);}// 根据已经一个排好序的map创建一个TreeMap// 将map中的元素逐个添加到TreeMap中,并返回map的中间元素作为根节点。private final Entry<K,V> buildFromSorted(int level, int lo, int hi, int redLevel, Iterator it, java.io.ObjectInputStream str, V defaultVal)throws  java.io.IOException, ClassNotFoundException {   if (hi < lo) return null;// 获取中间元素int mid = (lo + hi) >>> 1;Entry<K,V> left  = null;// 若lo小于mid,则递归调用获取(middel的)左孩子。if (lo < mid)left = buildFromSorted(level+1, lo, mid - 1, redLevel,   it, str, defaultVal);// 获取middle节点对应的key和valueK key;V value;if (it != null) {if (defaultVal==null) {Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();key = entry.getKey();value = entry.getValue();} else {key = (K)it.next();value = defaultVal;}} else { // use streamkey = (K) str.readObject();value = (defaultVal != null ? defaultVal : (V) str.readObject());}// 创建middle节点Entry<K,V> middle =  new Entry<>(key, value, null);// 若当前节点的深度=红色节点的深度,则将节点着色为红色。if (level == redLevel)middle.color = RED;// 设置middle为left的父亲,left为middle的左孩子if (left != null) {middle.left = left;left.parent = middle;}if (mid < hi) {// 递归调用获取(middel的)右孩子。Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,   it, str, defaultVal);// 设置middle为left的父亲,left为middle的左孩子middle.right = right;right.parent = middle;}return middle;}// 计算节点树为sz的最大深度,也是红色节点的深度值。private static int computeRedLevel(int sz) {int level = 0;for (int m = sz - 1; m >= 0; m = m / 2 - 1)level++;return level;}
        ……终于结束了源码,TreeMap有这么多我也没办法……最后看一下TreeMap的遍历方式。

2. TreeMap的遍历方式

       TreeMap的遍历方式一般分为两步:

        1. 先通过entrySet()或keySet()或value()方法获得相应的集合;

        2. 通过Iterator迭代器遍历上面得到的集合。

2.1 遍历TreeMap的Entry

// 假设map是TreeMap对象// map中的key是String类型,value是Integer类型Integer integ = null;Iterator iter = map.entrySet().iterator();while(iter.hasNext()) {    Map.Entry entry = (Map.Entry)iter.next();    // 获取key    key = (String)entry.getKey();    // 获取value    integ = (Integer)entry.getValue();}

2.2 遍历TreeMap的key

// 假设map是TreeMap对象// map中的key是String类型,value是Integer类型String key = null;Integer integ = null;Iterator iter = map.keySet().iterator();while (iter.hasNext()) {        // 获取key    key = (String)iter.next();        // 根据key,获取value    integ = (Integer)map.get(key);}

2.3 遍历TreeMap的value

// 假设map是TreeMap对象// map中的key是String类型,value是Integer类型Integer value = null;Collection c = map.values();Iterator iter= c.iterator();while (iter.hasNext()) {    value = (Integer)iter.next();}
TreeMap就介绍这么多吧,如有错误之处,欢迎留言指正~

_____________________________________________________________________________________________________________________________________________________

-----乐于分享,共同进步!

-----更多文章请看:http://blog.csdn.net/eson_15
6 0