图像特征检测(Image Feature Detection)

来源:互联网 发布:业务建模与数据挖掘 编辑:程序博客网 时间:2024/06/07 14:12

图像特征检测(Image Feature Detection)

作者:王先荣
前言
    图像特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。本文主要探讨如何提取图像中的“角点”这一特征,及其相关的内容。而诸如直方图、边缘、区域等内容在前文中有所提及,请查看相关文章。OpenCv(EmguCv)中实现了多种角点特征的提取方法,包括:Harris角点、ShiTomasi角点、亚像素级角点、SURF角点、Star关键点、FAST关键点、Lepetit关键点等等,本文将逐一介绍如何检测这些角点。在此之前将会先介绍跟角点检测密切相关的一些变换,包括Sobel算子、拉普拉斯算子、Canny算子、霍夫变换。另外,还会介绍一种广泛使用而OpenCv中并未实现的SIFT角点检测,以及最近在OpenCv中实现的MSER区域检测。所要讲述的内容会很多,我这里尽量写一些需要注意的地方及实现代码,而参考手册及书本中有的内容将一笔带过或者不会提及。

Sobel算子
    Sobel算子用多项式计算来拟合导数计算,可以用OpenCv中的cvSobel函数或者EmguCv中的Image<TColor,TDepth>.Sobel方法来进行计算。需要注意的是,xorder和yorder中必须且只能有一个为非零值,即只能计算x方向或者y反向的导数;如果将方形滤波器的宽度设置为特殊值CV_SCHARR(-1),将使用Scharr滤波器代替Sobel滤波器。
    使用Sobel滤波器的示例代码如下:

复制代码
//Sobel算子
private string SobelFeatureDetect()
{
//获取参数
int xOrder = int.Parse((string)cmbSobelXOrder.SelectedItem);
int yOrder = int.Parse((string)cmbSobelYOrder.SelectedItem);
int apertureSize = int.Parse((string)cmbSobelApertureSize.SelectedItem);
if ((xOrder == 0 && yOrder == 0) || (xOrder != 0 && yOrder != 0))
return "Sobel算子,参数错误:xOrder和yOrder中必须且只能有一个非零。\r\n";
//计算
Stopwatch sw = new Stopwatch();
sw.Start();
Image
<Gray, Single> imageDest = imageSourceGrayscale.Sobel(xOrder, yOrder, apertureSize);
sw.Stop();
//显示
pbResult.Image = imageDest.Bitmap;
//释放资源
imageDest.Dispose();
//返回
return string.Format("·Sobel算子,用时{0:F05}毫秒,参数(x方向求导阶数:{1},y方向求导阶数:{2},方形滤波器宽度:{3})\r\n", sw.Elapsed.TotalMilliseconds, xOrder, yOrder, apertureSize);
}
复制代码

 
拉普拉斯算子
    拉普拉斯算子可以用作边缘检测;可以用OpenCv中的cvLaplace函数或者EmguCv中的Image<TColor,TDepth>.Laplace方法来进行拉普拉斯变换。需要注意的是:OpenCv的文档有点小错误,apertureSize参数值不能为CV_SCHARR(-1)。
    使用拉普拉斯变换的示例代码如下:

复制代码
//拉普拉斯变换
private string LaplaceFeatureDetect()
{
//获取参数
int apertureSize = int.Parse((string)cmbLaplaceApertureSize.SelectedItem);
//计算
Stopwatch sw = new Stopwatch();
sw.Start();
Image
<Gray, Single> imageDest = imageSourceGrayscale.Laplace(apertureSize);
sw.Stop();
//显示
pbResult.Image = imageDest.Bitmap;
//释放资源
imageDest.Dispose();
//返回
return string.Format("·拉普拉斯变换,用时{0:F05}毫秒,参数(方形滤波器宽度:{1})\r\n", sw.Elapsed.TotalMilliseconds, apertureSize);
}
复制代码

 
Canny算子
    Canny算子也可以用作边缘检测;可以用OpenCv中的cvCanny函数或者EmguCv中的Image<TColor,TDepth>.Canny方法来进行Canny边缘检测。所不同的是,Image<TColor,TDepth>.Canny方法可以用于检测彩色图像的边缘,但是它只能使用apertureSize参数的默认值3;
而cvCanny只能处理灰度图像,不过可以自定义apertureSize。cvCanny和Canny的方法参数名有点点不同,下面是参数对照表。
Image<TColor,TDepth>.Canny    CvInvoke.cvCanny
thresh                                         lowThresh
threshLinking                               highThresh
3                                                apertureSize
值得注意的是,apertureSize只能取3,5或者7,这可以在cvcanny.cpp第87行看到:

aperture_size &= INT_MAX;
if( (aperture_size & 1) == 0 || aperture_size < 3 || aperture_size > 7 )
CV_ERROR( CV_StsBadFlag,
"" );


使用Canny算子的示例代码如下:

复制代码
//Canny算子
private string CannyFeatureDetect()
{
//获取参数
double lowThresh = double.Parse(txtCannyLowThresh.Text);
double highThresh = double.Parse(txtCannyHighThresh.Text);
int apertureSize = int.Parse((string)cmbCannyApertureSize.SelectedItem);
//计算
Stopwatch sw = new Stopwatch();
sw.Start();
Image
<Gray, Byte> imageDest = null;
Image
<Bgr, Byte> imageDest2 = null;
if (rbCannyUseCvCanny.Checked)
{
imageDest
= new Image<Gray, byte>(imageSourceGrayscale.Size);
CvInvoke.cvCanny(imageSourceGrayscale.Ptr, imageDest.Ptr, lowThresh, highThresh, apertureSize);
}
else
imageDest2
= imageSource.Canny(new Bgr(lowThresh, lowThresh, lowThresh), new Bgr(highThresh, highThresh, highThresh));
sw.Stop();
//显示
pbResult.Image = rbCannyUseCvCanny.Checked ? imageDest.Bitmap : imageDest2.Bitmap;
//释放资源
if (imageDest != null)
imageDest.Dispose();
if (imageDest2 != null)
imageDest2.Dispose();
//返回
return string.Format("·Canny算子,用时{0:F05}毫秒,参数(方式:{1},阀值下限:{2},阀值上限:{3},方形滤波器宽度:{4})\r\n", sw.Elapsed.TotalMilliseconds, rbCannyUseCvCanny.Checked ? "cvCanny" : "Image<TColor, TDepth>.Canny", lowThresh, highThresh, apertureSize);
}
复制代码

 

另外,在http://www.china-vision.net/blog/user2/15975/archives/2007/804.html有一种自动获取Canny算子高低阀值的方法,作者提供了用C语言实现的代码。我将其改写成了C#版本,代码如下:

复制代码
/// <summary>
/// 计算图像的自适应Canny算子阀值
/// </summary>
/// <param name="imageSrc">源图像,只能是256级灰度图像</param>
/// <param name="apertureSize">方形滤波器的宽度</param>
/// <param name="lowThresh">阀值下限</param>
/// <param name="highThresh">阀值上限</param>
unsafe void AdaptiveFindCannyThreshold(Image<Gray, Byte> imageSrc, int apertureSize, out double lowThresh, out double highThresh)
{
//计算源图像x方向和y方向的1阶Sobel算子
Size size = imageSrc.Size;
Image
<Gray, Int16> imageDx = new Image<Gray, short>(size);
Image
<Gray, Int16> imageDy = new Image<Gray, short>(size);
CvInvoke.cvSobel(imageSrc.Ptr, imageDx.Ptr,
1, 0, apertureSize);
CvInvoke.cvSobel(imageSrc.Ptr, imageDy.Ptr,
0, 1, apertureSize);
Image
<Gray, Single> image = new Image<Gray, float>(size);
int i, j;
DenseHistogram hist
= null;
int hist_size = 255;
float[] range_0 = new float[] { 0, 256 };
double PercentOfPixelsNotEdges = 0.7;
//计算边缘的强度,并保存于图像中
float maxv = 0;
float temp;
byte* imageDataDx = (byte*)imageDx.MIplImage.imageData.ToPointer();
byte* imageDataDy = (byte*)imageDy.MIplImage.imageData.ToPointer();
byte* imageData = (byte*)image.MIplImage.imageData.ToPointer();
int widthStepDx = imageDx.MIplImage.widthStep;
int widthStepDy = widthStepDx;
int widthStep = image.MIplImage.widthStep;
for (i = 0; i < size.Height; i++)
{
short* _dx = (short*)(imageDataDx + widthStepDx * i);
short* _dy = (short*)(imageDataDy + widthStepDy * i);
float* _image = (float*)(imageData + widthStep * i);
for (j = 0; j < size.Width; j++)
{
temp
= (float)(Math.Abs(*(_dx + j)) + Math.Abs(*(_dy + j)));
*(_image + j) = temp;
if (maxv < temp)
maxv
= temp;
}
}
//计算直方图
range_0[1] = maxv;
hist_size
= hist_size > maxv ? (int)maxv : hist_size;
hist
= new DenseHistogram(hist_size, new RangeF(range_0[0], range_0[1]));
hist.Calculate
<Single>(new Image<Gray, Single>[] { image }, false, null);
int total = (int)(size.Height * size.Width * PercentOfPixelsNotEdges);
double sum = 0;
int icount = hist.BinDimension[0].Size;
for (i = 0; i < icount; i++)
{
sum
+= hist[i];
if (sum > total)
break;
}
//计算阀值
highThresh = (i + 1) * maxv / hist_size;
lowThresh
= highThresh * 0.4;
//释放资源
imageDx.Dispose();
imageDy.Dispose(); image.Dispose();
hist.Dispose();
}
复制代码

 
霍夫变换
    霍夫变换是一种在图像中寻找直线、圆及其他简单形状的方法,在OpenCv中实现了霍夫线变换和霍夫圆变换。值得注意的地方有以下几点:(1)HoughLines2需要先计算Canny边缘,然后再检测直线;(2)HoughLines2计算结果的获取随获取方式的不同而不同;(3)HoughCircles检测结果似乎不正确。
    使用霍夫变换的示例代码如下所示:

复制代码
//霍夫线变换
private string HoughLinesFeatureDetect()
{
//获取参数
HOUGH_TYPE method = rbHoughLinesSHT.Checked ? HOUGH_TYPE.CV_HOUGH_STANDARD : (rbHoughLinesPPHT.Checked ? HOUGH_TYPE.CV_HOUGH_PROBABILISTIC : HOUGH_TYPE.CV_HOUGH_MULTI_SCALE);
double rho = double.Parse(txtHoughLinesRho.Text);
double theta = double.Parse(txtHoughLinesTheta.Text);
int threshold = int.Parse(txtHoughLinesThreshold.Text);
double param1 = double.Parse(txtHoughLinesParam1.Text);
double param2 = double.Parse(txtHoughLinesParam2.Text);
MemStorage storage
= new MemStorage();
int linesCount = 0;
StringBuilder sbResult
= new StringBuilder();
//计算,先运行Canny边缘检测(参数来自Canny算子属性页),然后再用计算霍夫线变换
double lowThresh = double.Parse(txtCannyLowThresh.Text);
double highThresh = double.Parse(txtCannyHighThresh.Text);
int apertureSize = int.Parse((string)cmbCannyApertureSize.SelectedItem);
Image
<Gray, Byte> imageCanny = new Image<Gray, byte>(imageSourceGrayscale.Size);
CvInvoke.cvCanny(imageSourceGrayscale.Ptr, imageCanny.Ptr, lowThresh, highThresh, apertureSize);
Stopwatch sw
= new Stopwatch();
sw.Start();
IntPtr ptrLines
= CvInvoke.cvHoughLines2(imageCanny.Ptr, storage.Ptr, method, rho, theta, threshold, param1, param2);
Seq
<LineSegment2D> linesSeq = null;
Seq
<PointF> linesSeq2 = null;
if (method == HOUGH_TYPE.CV_HOUGH_PROBABILISTIC)
linesSeq
= new Seq<LineSegment2D>(ptrLines, storage);
else
linesSeq2
= new Seq<PointF>(ptrLines, storage);
sw.Stop();
//显示
Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
if (linesSeq != null)
{
linesCount
= linesSeq.Total;
foreach (LineSegment2D line in linesSeq)
{
imageResult.Draw(line,
new Bgr(255d, 0d, 0d), 4);
sbResult.AppendFormat(
"{0}-{1},", line.P1, line.P2);
}
}
else
{
linesCount
= linesSeq2.Total;
foreach (PointF line in linesSeq2)
{
float r = line.X;
float t = line.Y;
double a = Math.Cos(t), b = Math.Sin(t);
double x0 = a * r, y0 = b * r;
int x1 = (int)(x0 + 1000 * (-b));
int y1 = (int)(y0 + 1000 * (a));
int x2 = (int)(x0 - 1000 * (-b));
int y2 = (int)(y0 - 1000 * (a));
Point pt1
= new Point(x1, y1);
Point pt2
= new Point(x2, y2);
imageResult.Draw(
new LineSegment2D(pt1, pt2), new Bgr(255d, 0d, 0d), 4);
sbResult.AppendFormat(
"{0}-{1},", pt1, pt2);
}
}
pbResult.Image
= imageResult.Bitmap;
//释放资源
imageCanny.Dispose();
imageResult.Dispose();
storage.Dispose();
//返回
return string.Format("·霍夫线变换,用时{0:F05}毫秒,参数(变换方式:{1},距离精度:{2},弧度精度:{3},阀值:{4},参数1:{5},参数2:{6}),找到{7}条直线\r\n{8}",
sw.Elapsed.TotalMilliseconds, method.ToString(
"G"), rho, theta, threshold, param1, param2, linesCount, linesCount != 0 ? (sbResult.ToString() + "\r\n") : "");
}

//霍夫圆变换
private string HoughCirclesFeatureDetect()
{
//获取参数
double dp = double.Parse(txtHoughCirclesDp.Text);
double minDist = double.Parse(txtHoughCirclesMinDist.Text);
double param1 = double.Parse(txtHoughCirclesParam1.Text);
double param2 = double.Parse(txtHoughCirclesParam2.Text);
int minRadius = int.Parse(txtHoughCirclesMinRadius.Text);
int maxRadius = int.Parse(txtHoughCirclesMaxRadius.Text);
StringBuilder sbResult
= new StringBuilder();
//计算
Stopwatch sw = new Stopwatch();
sw.Start();
CircleF[][] circles
= imageSourceGrayscale.HoughCircles(new Gray(param1), new Gray(param2), dp, minDist, minRadius, maxRadius);
sw.Stop();
//显示
Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
int circlesCount = 0;
foreach (CircleF[] cs in circles)
{
foreach (CircleF circle in cs)
{
imageResult.Draw(circle,
new Bgr(255d, 0d, 0d), 4);
sbResult.AppendFormat(
"圆心{0}半径{1},", circle.Center, circle.Radius);
circlesCount
++;
}
}
pbResult.Image
= imageResult.Bitmap;
//释放资源
imageResult.Dispose();
//返回
return string.Format("·霍夫圆变换,用时{0:F05}毫秒,参数(累加器图像的最小分辨率:{1},不同圆之间的最小距离:{2},边缘阀值:{3},累加器阀值:{4},最小圆半径:{5},最大圆半径:{6}),找到{7}个圆\r\n{8}",
sw.Elapsed.TotalMilliseconds, dp, minDist, param1, param2, minRadius, maxRadius, circlesCount, sbResult.Length
> 0 ? (sbResult.ToString() + "\r\n") : "");
}
复制代码

 

Harris角点
    cvCornerHarris函数检测的结果实际上是一幅包含Harris角点的浮点型单通道图像,可以使用类似下面的代码来计算包含Harris角点的图像:

复制代码
//Harris角点
private string CornerHarrisFeatureDetect()
{
//获取参数
int blockSize = int.Parse(txtCornerHarrisBlockSize.Text);
int apertureSize = int.Parse(txtCornerHarrisApertureSize.Text);
double k = double.Parse(txtCornerHarrisK.Text);
//计算
Image<Gray, Single> imageDest = new Image<Gray, float>(imageSourceGrayscale.Size);
Stopwatch sw
= new Stopwatch();
sw.Start();
CvInvoke.cvCornerHarris(imageSourceGrayscale.Ptr, imageDest.Ptr, blockSize, apertureSize, k);
sw.Stop();
//显示
pbResult.Image = imageDest.Bitmap;
//释放资源
imageDest.Dispose();
//返回
return string.Format("·Harris角点,用时{0:F05}毫秒,参数(邻域大小:{1},方形滤波器宽度:{2},权重系数:{3})\r\n", sw.Elapsed.TotalMilliseconds, blockSize, apertureSize, k);
}
复制代码

    如果要计算Harris角点列表,需要使用cvGoodFeatureToTrack函数,并传递适当的参数。

ShiTomasi角点
    在默认情况下,cvGoodFeatureToTrack函数计算ShiTomasi角点;不过如果将参数use_harris设置为非0值,那么它会计算harris角点。
使用cvGoodFeatureToTrack函数的示例代码如下:

复制代码
//ShiTomasi角点
private string CornerShiTomasiFeatureDetect()
{
//获取参数
int cornerCount = int.Parse(txtGoodFeaturesCornerCount.Text);
double qualityLevel = double.Parse(txtGoodFeaturesQualityLevel.Text);
double minDistance = double.Parse(txtGoodFeaturesMinDistance.Text);
int blockSize = int.Parse(txtGoodFeaturesBlockSize.Text);
bool useHarris = cbGoodFeaturesUseHarris.Checked;
double k = double.Parse(txtGoodFeaturesK.Text);
//计算
Stopwatch sw = new Stopwatch();
sw.Start();
PointF[][] corners
= imageSourceGrayscale.GoodFeaturesToTrack(cornerCount, qualityLevel, minDistance, blockSize, useHarris, k);
sw.Stop();
//显示
Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
int cornerCount2 = 0;
StringBuilder sbResult
= new StringBuilder();
int radius = (int)(minDistance / 2) + 1;
int thickness = (int)(minDistance / 4) + 1;
foreach (PointF[] cs in corners)
{
foreach (PointF p in cs)
{
imageResult.Draw(
new CircleF(p, radius), new Bgr(255d, 0d, 0d), thickness);
cornerCount2
++;
sbResult.AppendFormat(
"{0},", p);
}
}
pbResult.Image
= imageResult.Bitmap;
//释放资源
imageResult.Dispose();
//返回
return string.Format("·ShiTomasi角点,用时{0:F05}毫秒,参数(最大角点数目:{1},最小特征值:{2},角点间的最小距离:{3},邻域大小:{4},角点类型:{5},权重系数:{6}),检测到{7}个角点\r\n{8}",
sw.Elapsed.TotalMilliseconds, cornerCount, qualityLevel, minDistance, blockSize, useHarris
? "Harris" : "ShiTomasi", k, cornerCount2, cornerCount2 > 0 ? (sbResult.ToString() + "\r\n") : "");
}
复制代码

 

亚像素级角点
    在检测亚像素级角点前,需要提供角点的初始为止,这些初始位置可以用本文给出的其他的角点检测方式来获取,不过使用GoodFeaturesToTrack得到的结果最方便直接使用。
    亚像素级角点检测的示例代码如下:

亚像素级角点

 

SURF角点
    OpenCv中的cvExtractSURF函数和EmguCv中的Image<TColor,TDepth>.ExtractSURF方法用于检测SURF角点。
    SURF角点检测的示例代码如下:

复制代码
//SURF角点
private string SurfFeatureDetect()
{
//获取参数
bool getDescriptors = cbSurfGetDescriptors.Checked;
MCvSURFParams surfParam
= new MCvSURFParams();
surfParam.extended
=rbSurfBasicDescriptor.Checked ? 0 : 1;
surfParam.hessianThreshold
=double.Parse(txtSurfHessianThreshold.Text);
surfParam.nOctaves
=int.Parse(txtSurfNumberOfOctaves.Text);
surfParam.nOctaveLayers
=int.Parse(txtSurfNumberOfOctaveLayers.Text);
//计算
SURFFeature[] features = null;
MKeyPoint[] keyPoints
= null;
Stopwatch sw
= new Stopwatch();
sw.Start();
if (getDescriptors)
features
= imageSourceGrayscale.ExtractSURF(ref surfParam);
else
keyPoints
= surfParam.DetectKeyPoints(imageSourceGrayscale, null);
sw.Stop();
//显示
bool showDetail = cbSurfShowDetail.Checked;
Image
<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
StringBuilder sbResult
= new StringBuilder();
int idx = 0;
if (getDescriptors)
{
foreach (SURFFeature feature in features)
{
imageResult.Draw(
new CircleF(feature.Point.pt, 5), new Bgr(255d, 0d, 0d), 2);
if (showDetail)
{
sbResult.AppendFormat(
"第{0}点(坐标:{1},尺寸:{2},方向:{3}°,hessian值:{4},拉普拉斯标志:{5},描述:[",
idx, feature.Point.pt, feature.Point.size, feature.Point.dir, feature.Point.hessian, feature.Point.laplacian);
foreach (float d in feature.Descriptor)
sbResult.AppendFormat(
"{0},", d);
sbResult.Append(
"]),");
}
idx
++;
}
}
else
{
foreach (MKeyPoint keypoint in keyPoints)
{
imageResult.Draw(
new CircleF(keypoint.Point, 5), new Bgr(255d, 0d, 0d), 2);
if (showDetail)
sbResult.AppendFormat(
"第{0}点(坐标:{1},尺寸:{2},方向:{3}°,响应:{4},octave:{5}),",
idx, keypoint.Point, keypoint.Size, keypoint.Angle, keypoint.Response, keypoint.Octave);
idx
++;
}
}
pbResult.Image
= imageResult.Bitmap;
//释放资源
imageResult.Dispose();
//返回
return string.Format("·SURF角点,用时{0:F05}毫秒,参数(描述:{1},hessian阀值:{2},octave数目:{3},每个octave的层数:{4},检测到{5}个角点\r\n{6}",
sw.Elapsed.TotalMilliseconds, getDescriptors
? (surfParam.extended == 0 ? "获取基本描述" : "获取扩展描述") : "不获取描述", surfParam.hessianThreshold,
surfParam.nOctaves, surfParam.nOctaveLayers, getDescriptors
? features.Length : keyPoints.Length, showDetail ? sbResult.ToString() + "\r\n" : "");
}
复制代码

 

Star关键点
    OpenCv中的cvGetStarKeypoints函数和EmguCv中的Image<TColor,TDepth>.GetStarKeypoints方法用于检测“星型”附近的点。
    Star关键点检测的示例代码如下:

复制代码
//Star关键点
private string StarKeyPointFeatureDetect()
{
//获取参数
StarDetector starParam = new StarDetector();
starParam.MaxSize
= int.Parse((string)cmbStarMaxSize.SelectedItem);
starParam.ResponseThreshold
= int.Parse(txtStarResponseThreshold.Text);
starParam.LineThresholdProjected
= int.Parse(txtStarLineThresholdProjected.Text);
starParam.LineThresholdBinarized
= int.Parse(txtStarLineThresholdBinarized.Text);
starParam.SuppressNonmaxSize
= int.Parse(txtStarSuppressNonmaxSize.Text);
//计算
Stopwatch sw = new Stopwatch();
sw.Start();
MCvStarKeypoint[] keyPoints
= imageSourceGrayscale.GetStarKeypoints(ref starParam);
sw.Stop();
//显示
Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
StringBuilder sbResult
= new StringBuilder();
int idx = 0;
foreach (MCvStarKeypoint keypoint in keyPoints)
{
imageResult.Draw(
new CircleF(new PointF(keypoint.pt.X, keypoint.pt.Y), keypoint.size / 2), new Bgr(255d, 0d, 0d), keypoint.size / 4);
sbResult.AppendFormat(
"第{0}点(坐标:{1},尺寸:{2},强度:{3}),", idx, keypoint.pt, keypoint.size, keypoint.response);
idx
++;
}
pbResult.Image
= imageResult.Bitmap;
//释放资源
imageResult.Dispose();
//返回
return string.Format("·Star关键点,用时{0:F05}毫秒,参数(MaxSize:{1},ResponseThreshold:{2},LineThresholdProjected:{3},LineThresholdBinarized:{4},SuppressNonmaxSize:{5}),检测到{6}个关键点\r\n{7}",
sw.Elapsed.TotalMilliseconds, starParam.MaxSize, starParam.ResponseThreshold, starParam.LineThresholdProjected, starParam.LineThresholdBinarized, starParam.SuppressNonmaxSize, keyPoints.Length, keyPoints.Length
> 0 ? (sbResult.ToString() + "\r\n") : "");
}
复制代码

 
FAST角点检测
    FAST角点由E. Rosten教授提出,相比其他检测手段,这种方法的速度正如其名,相当的快。值得关注的是他所研究的理论都是属于实用类的,都很快。Rosten教授实现了FAST角点检测,并将其提供给了OpenCv,相当的有爱呀;不过OpenCv中的函数和Rosten教授的实现似乎有点点不太一样。遗憾的是,OpenCv中目前还没有FAST角点检测的文档。下面是我从Rosten的代码中找到的函数声明,可以看到粗略的参数说明。
/*
The references are:

 * Machine learning for high-speed corner detection,
 
   E. Rosten and T. Drummond, ECCV 2006
 * Faster and better: A machine learning approach to corner detection

   E. Rosten, R. Porter and T. Drummond, PAMI, 2009

*/
void cvCornerFast( const CvArr* image, int threshold, int N,

                   int nonmax_suppression, int* ret_number_of_corners,
                   CvPoint** ret_corners);


image:      OpenCV image in which to detect corners. Must be 8 bit unsigned.

threshold:  Threshold for detection (higher is fewer corners). 0--255

N:          Arc length of detector, 9, 10, 11 or 12. 9 is usually best.

nonmax_suppression: Whether to perform nonmaximal suppression.

ret_number_of_corners: The number of detected corners is returned here.

ret_corners: The corners are returned here.
EmguCv中的Image<TColor,TDepth>.GetFASTKeypoints方法也实现了FAST角点检测,不过参数少了一些,只有threshold和nonmaxSupression,其中N我估计取的默认值9,但是返回的角点数目我不知道是怎么设置的。
使用FAST角点检测的示例代码如下:

FAST关键点

 

Lepetit关键点
    Lepetit关键点由Vincent Lepetit提出,可以在他的网站(http://cvlab.epfl.ch/~vlepetit/)上看到相关的论文等资料。EmguCv中的类LDetector实现了Lepetit关键点的检测。
    使用Lepetit关键点检测的示例代码如下:

复制代码
//Lepetit关键点
private string LepetitKeyPointFeatureDetect()
{
//获取参数
LDetector lepetitDetector = new LDetector();
lepetitDetector.BaseFeatureSize
= double.Parse(txtLepetitBaseFeatureSize.Text);
lepetitDetector.ClusteringDistance
= double.Parse(txtLepetitClasteringDistance.Text);
lepetitDetector.NOctaves
= int.Parse(txtLepetitNumberOfOctaves.Text);
lepetitDetector.NViews
= int.Parse(txtLepetitNumberOfViews.Text);
lepetitDetector.Radius
= int.Parse(txtLepetitRadius.Text);
lepetitDetector.Threshold
= int.Parse(txtLepetitThreshold.Text);
lepetitDetector.Verbose
= cbLepetitVerbose.Checked;
int maxCount = int.Parse(txtLepetitMaxCount.Text);
bool scaleCoords = cbLepetitScaleCoords.Checked;
bool showDetail = cbLepetitShowDetail.Checked;
//计算
Stopwatch sw = new Stopwatch();
sw.Start();
MKeyPoint[] keyPoints
= lepetitDetector.DetectKeyPoints(imageSourceGrayscale, maxCount, scaleCoords);
sw.Stop();
//显示
Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
StringBuilder sbResult
= new StringBuilder();
int idx = 0;
foreach (MKeyPoint keypoint in keyPoints)
{
//imageResult.Draw(new CircleF(keypoint.Point, (int)(keypoint.Size / 2)), new Bgr(255d, 0d, 0d), (int)(keypoint.Size / 4));
imageResult.Draw(new CircleF(keypoint.Point, 4), new Bgr(255d, 0d, 0d), 2);
if (showDetail)
sbResult.AppendFormat(
"第{0}点(坐标:{1},尺寸:{2},方向:{3}°,响应:{4},octave:{5}),",
idx, keypoint.Point, keypoint.Size, keypoint.Angle, keypoint.Response, keypoint.Octave);
idx
++;
}
pbResult.Image
= imageResult.Bitmap;
//释放资源
imageResult.Dispose();
//返回
return string.Format("·Lepetit关键点,用时{0:F05}毫秒,参数(基础特征尺寸:{1},集群距离:{2},阶数:{3},视图数:{4},半径:{5},阀值:{6},计算详细结果:{7},最大关键点数目:{8},缩放坐标:{9}),检测到{10}个关键点\r\n{11}",
sw.Elapsed.TotalMilliseconds, lepetitDetector.BaseFeatureSize, lepetitDetector.ClusteringDistance, lepetitDetector.NOctaves, lepetitDetector.NViews,
lepetitDetector.Radius, lepetitDetector.Threshold, lepetitDetector.Verbose, maxCount, scaleCoords, keyPoints.Length, showDetail
? (sbResult.ToString() + "\r\n") : "");
}
复制代码


SIFT角点
    SIFT角点是一种广泛使用的图像特征,可用于物体跟踪、图像匹配、图像拼接等领域,然而奇怪的是它并未被OpenCv实现。提出SIFT角点的David Lowe教授已经用C和matlab实现了SIFT角点的检测,并开放了源代码,不过他的实现不方便直接使用。您可以在http://www.cs.ubc.ca/~lowe/keypoints/看到SIFT的介绍、相关论文及David Lowe教授的实现代码。下面我要介绍由Andrea Vedaldi和Brian Fulkerson先生创建的vlfeat开源图像处理库,vlfeat库有C和matlab两种实现,其中包含了SIFT检测。您可以在http://www.vlfeat.org/下载到vlfeat库的代码、文档及可执行文件。
    使用vlfeat检测SIFT角点需要以下步骤:
    (1)用函数vl_sift_new()初始化SIFT过滤器对象,该过滤器对象可以反复用于多幅尺寸相同的图像;
    (2)用函数vl_sift_first_octave()及vl_sift_process_next()遍历缩放空间的每一阶,直到返回VL_ERR_EOF为止;
    (3)对于缩放空间的每一阶,用函数vl_sift_detect()来获取关键点;
    (4)对每个关键点,用函数vl_sift_calc_keypoint_orientations()来获取该点的方向;
    (5)对关键点的每个方向,用函数vl_sift_calc_keypoint_descriptor()来获取该方向的描述;
    (6)使用完之后,用函数vl_sift_delete()来释放资源;
    (7)如果要计算某个自定义关键点的描述,可以使用函数vl_sift_calc_raw_descriptor()。
    直接使用vlfeat中的SIFT角点检测示例代码如下:

通过P/Invoke调用vlfeat函数来进行SIFT检测


    要在.net中使用vlfeat还是不够方便,为此我对vlfeat中的SIFT角点检测部分进行了封装,将相关操作放到了类SiftDetector中。
    使用SiftDetector需要两至三步:
    (1)用构造函数初始化SiftDetector对象;
    (2)用Process方法计算特征;
    (3)视需要调用Dispose方法释放资源,或者等待垃圾回收器来自动释放资源。
    使用SiftDetector的示例代码如下:

通过dotnet封装的SiftDetector类来进行SIFT检测


    对vlfeat库中的SIFT部分封装代码如下所示:

定义SiftDetector类


MSER区域
    OpenCv中的函数cvExtractMSER以及EmguCv中的Image<TColor,TDepth>.ExtractMSER方法实现了MSER区域的检测。由于OpenCv的文档中目前还没有cvExtractMSER这一部分,大家如果要看文档的话,可以先去看EmguCv的文档。
    需要注意的是MSER区域的检测结果是区域中所有的点序列。例如检测到3个区域,其中一个区域是从(0,0)到(2,1)的矩形,那么结果点序列为:(0,0),(1,0),(2,0),(2,1),(1,1),(0,1)。
    MSER区域检测的示例代码如下:

MSER(区域)特征检测

 

各种特征检测方法性能对比
    上面介绍了这么多的特征检测方法,那么它们的性能到底如何呢?因为它们的参数设置对处理时间及结果的影响很大,我们在这里基本都使用默认参数处理同一幅图像。在我机器上的处理结果见下表:

特征用时(毫秒)特征数目Sobel算子5.99420n/a拉普拉斯算子3.13440n/aCanny算子3.41160n/a霍夫线变换13.7079010霍夫圆变换78.077200Harris角点9.41750n/aShiTomasi角点16.9839018亚像素级角点3.6336018SURF角点266.27000151Star关键点14.8280056FAST角点31.29670159SIFT角点287.5231054MSER区域40.629702

(图片尺寸:583x301,处理器:AMD ATHLON IIx2 240,内存:DDR3 4G,显卡:GeForce 9500GT,操作系统:Windows 7)

 

感谢您耐心看完本文,希望对您有所帮助。

下一篇文章我们将一起看看如何来跟踪本文讲到的特征点(角点)。

另外,如果需要本文的源代码,请点击这里下载。


0 0