Binder学习笔记(九)—— 服务端如何响应Test()请求 ?

来源:互联网 发布:金庸新修 知乎 编辑:程序博客网 时间:2024/06/01 22:07

从服务端代码出发,TestServer.cpp

int main() {    sp < ProcessState > proc(ProcessState::self());    sp < IServiceManager > sm = defaultServiceManager();    sm->addService(String16("service.testservice"), new BnTestService());    ProcessState::self()->startThreadPool();    IPCThreadState::self()->joinThreadPool();    return 0;}

前三行代码在之前的Binder学习笔记系列中都分析过了,继续往下看。

ProcessState::self()->startThreadPool()做了什么?

frameworks/native/libs/binder/ProcessState.cpp:132

void ProcessState::startThreadPool(){    AutoMutex _l(mLock);    if (!mThreadPoolStarted) {        mThreadPoolStarted = true;        spawnPooledThread(true);    }}

继续spawnPooledThread(true),frameworks/native/libs/binder/ProcessState.cpp:286

void ProcessState::spawnPooledThread(bool isMain){    if (mThreadPoolStarted) {        String8 name = makeBinderThreadName();        ALOGV("Spawning new pooled thread, name=%s\n", name.string());        sp<Thread> t = new PoolThread(isMain);        t->run(name.string());    }}

PoolThread是一个线程类,暂时先不去深究,它的run(…)函数最终会落实到线程函数threadLoop()的调用上,这个函数很简单,frameworks/native/libs/binder/ProcessState.cpp:61

class PoolThread : public Thread{......protected:    virtual bool threadLoop()    {        IPCThreadState::self()->joinThreadPool(mIsMain);        return false;    }    ......};

它调到了IPCThreadState::joinThreadPool(true);这个函数在main函数中接下来也被调到了,那我们就并案调查吧。

IPCThreadState::self()->joinThreadPool(…)做了什么?

frameworks/native/libs/binder/IPCThreadState.cpp:477

void IPCThreadState::joinThreadPool(bool isMain){    ......    mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);    ......    status_t result;    do {        processPendingDerefs();             // 处理上次循环尚未完成的内容        // now get the next command to be processed, waiting if necessary        result = getAndExecuteCommand();    // 重点看这里        ......        if(result == TIMED_OUT && !isMain) {            break;        }    } while (result != -ECONNREFUSED && result != -EBADF);    ......    mOut.writeInt32(BC_EXIT_LOOPER);    talkWithDriver(false);}

frameworks/native/libs/binder/IPCThreadState.cpp:414

status_t IPCThreadState::getAndExecuteCommand(){    status_t result;    int32_t cmd;    result = talkWithDriver();  // 这里完成一次对binder的IO    ......        size_t IN = mIn.dataAvail();        if (IN < sizeof(int32_t)) return result;        cmd = mIn.readInt32();        ......        result = executeCommand(cmd);    ......    return result;}

也是一个IO-解析的模式,重点来看解析executeCommand(…),frameworks/native/libs/binder/IPCThreadState.cpp:947

status_t IPCThreadState::executeCommand(int32_t cmd){    BBinder* obj;    RefBase::weakref_type* refs;    status_t result = NO_ERROR;    switch ((uint32_t)cmd) {    ......    case BR_TRANSACTION:        {            binder_transaction_data tr;            result = mIn.read(&tr, sizeof(tr));            ......            Parcel buffer;            buffer.ipcSetDataReference(                reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),                tr.data_size,                reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),                tr.offsets_size/sizeof(binder_size_t), freeBuffer, this);            const pid_t origPid = mCallingPid;            const uid_t origUid = mCallingUid;            const int32_t origStrictModePolicy = mStrictModePolicy;            const int32_t origTransactionBinderFlags = mLastTransactionBinderFlags;            mCallingPid = tr.sender_pid;            mCallingUid = tr.sender_euid;            mLastTransactionBinderFlags = tr.flags;            ......            Parcel reply;            status_t error;            ......            if (tr.target.ptr) {                sp<BBinder> b((BBinder*)tr.cookie);  // 注意:这里是重点!!!                error = b->transact(tr.code, buffer, &reply, tr.flags);            } else {                error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);            }            if ((tr.flags & TF_ONE_WAY) == 0) {                ......                sendReply(reply, 0);            }             ......            mCallingPid = origPid;            mCallingUid = origUid;            mStrictModePolicy = origStrictModePolicy;            mLastTransactionBinderFlags = origTransactionBinderFlags;            ......        }        break;    ......    }    ......    return result;}

tr.cookie是什么玩意?我们回到《客户端如何组织Test()请求 ?》末尾那张图上,此时服务端收到的tr就应该是客户端请求test时组织的数据,可是那张图里cookie明明是0呀?怎么可能用空指针来初始化sp呢?而且后面还有对这个指针的调用!

客户端发出的test请求中tr.cookie是什么?

为了确认那张图中cookie的正确性,我用gdb调试到源码内部,这是能得到最确凿结论的方法。
* 部署环境
编译《Binder学习笔记(一)》中的代码。我将该代码放到了android源码的external/testservice下,执行

$ mmm external/testservice$ emulator&    # 启动模拟器,把编译出的可执行文件上传到模拟器并修改可执行权限$ adb shell mkdir /data/local/tmp/testservice$ adb push prebuilts/misc/android-arm/gdbserver/ /data/local/tmp/testservice$ adb push out/debug/target/product/generic/obj/EXECUTABLES/TestServer_intermediates/LINKED/TestServer /data/local/tmp/testservice$ adb push out/debug/target/product/generic/obj/EXECUTABLES/TestClient_intermediates/LINKED/TestClient /data/local/tmp/testservice$ adb shell chmod 755 /data/local/tmp/testservice/*
  • 调试
    需要开三个终端:
    1. Target1 在模拟器上启动server
$ adb shell /data/local/tmp/testservice/TestServer
  1. Target2 在模拟器上通过gdbserver启动客户端
$ adb shell gdbserver :1234 /data/local/tmp/testservice/TestClientProcess /data/local/tmp/testservice/TestClient created; pid = 1254Listening on port 1234Remote debugging from host 127.0.0.1
  1. Host1 在宿主端启动gdb
$ ./prebuilts/gcc/darwin-x86/arm/arm-linux-androideabi-4.9/bin/arm-linux-androideabi-gdb out/debug/target/product/generic/obj/EXECUTABLES/TestClient_intermediates/LINKED/TestClient......(gdb) b mainBreakpoint 1 at 0xb6f571fc: file external/testservice/TestClient.cpp, line 14.(gdb) cContinuing.......(gdb) set solib-absolute-prefix out/debug/target/product/generic/symbols/Reading symbols from ...... linker...done.......Loaded symbols for ............(gdb) b IPCThreadState.cpp:937 # 在我们要查看的位置下断点Breakpoint 2 at 0xb6ec89f8: file frameworks/native/libs/binder/IPCThreadState.cpp, line 937.(gdb) cContinuing.......(gdb) bt  # 注意:一定要通过bt查看是不是由test到达该断点,如果不是,需要再continue#0  android::IPCThreadState::writeTransactionData (this=this@entry=0xb6c64000, cmd=cmd@entry=1076388608, binderFlags=binderFlags@entry=16, handle=handle@entry=1, code=code@entry=1, data=..., statusBuffer=statusBuffer@entry=0x0)    at frameworks/native/libs/binder/IPCThreadState.cpp:937#1  0xb6ec903c in android::IPCThreadState::transact (this=0xb6c64000, handle=1, code=code@entry=1, data=..., reply=reply@entry=0xbec50ad4, flags=16, flags@entry=0) at frameworks/native/libs/binder/IPCThreadState.cpp:566#2  0xb6ec408e in android::BpBinder::transact (this=0xb6c490c0, code=1, data=..., reply=0xbec50ad4, flags=0) at frameworks/native/libs/binder/BpBinder.cpp:165#3  0xb6f5742e in android::BpTestService::test (this=<optimized out>) at external/testservice/TestClient.cpp:10#4  0xb6f5723c in main () at external/testservice/TestClient.cpp:18(gdb) p tr$2 = {target = {handle = 1, ptr = 1}, cookie = 0, code = 1, flags = 16, sender_pid = 0, sender_euid = 0, data_size = 72, offsets_size = 0, data = {ptr = {buffer = 3066360032, offsets = 0}, buf = "\340\360Ķ\000\000\000"}}(gdb)

非常确认,客户端发出的数据包中tr.cookie就是0!

那就奇了怪了,客户端发出的是0,为什么到了服务端还要用它?

服务端接收到的test请求中tr.cookie是什么?

继续用gdb调试服务端,一探究竟。调试服务端也需要三个终端:
1. Target1 在模拟器上通过gdbserver启动server

$ adb shell gdbserver :1234  /data/local/tmp/testservice/TestServerProcess /data/local/tmp/testservice/TestServer created; pid = 1273Listening on port 1234
  1. Host1 在宿主机调试server
$ ./prebuilts/gcc/darwin-x86/arm/arm-linux-androideabi-4.9/bin/arm-linux-androideabi-gdb out/debug/target/product/generic/obj/EXECUTABLES/TestServer_intermediates/LINKED/TestServer......(gdb) b mainBreakpoint 1 at 0x19e8: file external/testservice/TestServer.cpp, line 30.(gdb) cThe program is not being run.(gdb) target remote :1234......0xb6f5c658 in ?? ()(gdb) cContinuing.......(gdb) set solib-absolute-prefix out/debug/target/product/generic/symbols/......(gdb) b IPCThreadState.cpp:1087Breakpoint 2 at 0xb6eeec52: file frameworks/native/libs/binder/IPCThreadState.cpp, line 1087.(gdb) cContinuing.
  1. Target2 在模拟器启动Client,触发断点
$ adb shell /data/local/tmp/testservice/TestClientBpTestService::test()

然后在Host1上就会看到如下结果:

Breakpoint 2, android::IPCThreadState::executeCommand (this=this@entry=0xb6c64000, cmd=cmd@entry=-2144833022) at frameworks/native/libs/binder/IPCThreadState.cpp:10871087                    error = b->transact(tr.code, buffer, &reply, tr.flags);(gdb) bt  # 打印调用堆栈,确认走到了我们想要断点#0  android::IPCThreadState::executeCommand (this=this@entry=0xb6c64000, cmd=cmd@entry=-2144833022) at frameworks/native/libs/binder/IPCThreadState.cpp:1087#1  0xb6eeedbc in android::IPCThreadState::getAndExecuteCommand (this=this@entry=0xb6c64000) at frameworks/native/libs/binder/IPCThreadState.cpp:433#2  0xb6eeee20 in android::IPCThreadState::joinThreadPool (this=0xb6c64000, isMain=<optimized out>) at frameworks/native/libs/binder/IPCThreadState.cpp:492#3  0xb6f7dabc in main () at external/testservice/TestServer.cpp:35(gdb) p tr  # cookie非0!!$1 = {target = {handle = 3066421360, ptr = 3066421360}, cookie = 3066323044, code = 1, flags = 16, sender_pid = 1276, sender_euid = 0, data_size = 72, offsets_size = 0, data = {ptr = {buffer = 3065258024, offsets = 3065258096}, buf = "( \264\266p \264\266"}}

见了鬼了,cookie非0!发送端和接收端看到的值不一样!服务端此时收到的这个cookie是什么呢?服务端把cookie直接当作地址转换成了BBinder,能这么搞说明cookie里记录的地址一定是服务端自己地址空间的,接下来又调用b->transact(…)执行具体服务,那这个服务应该就是服务端的BnTestService吧?
BnTestService是在addService时创建,而且还记得嘛,这个地址是被发送给了ServiceManager。参见《binder服务端是如何组织addService数据的?》末尾的图,服务端调用addService向ServiceManager注册自己,并把自己的BnTestService对象指针传给了cookie。在那张图中有两个cookie,左边是向ServiceManager发送的ADD_SERVICE_TRANSACTION命令数据,右边Parcel是该命令包含的注册信息数据。

cookie是否就是当初注册的时候new出来的BnTestService呢?

继续用gdb验证!
* 服务端收到的tr.cookie是否就是注册时呢我出来的BnTestService?
还是调试服务端,很多命令是重复的,如果嫌烦可以写一个gdb脚本。
Target1和Target2与上一小节没有任何差别,来看Host1,先写好gdb脚本,20160515.gdb:

define server_test    target remote :1234    b main    c    set solib-absolute-prefix out/debug/target/product/generic/symbols/    b IServiceManager.cpp:161    b IPCThreadState.cpp:1087    cend 

然后执行gdb:

$ ./prebuilts/gcc/darwin-x86/arm/arm-linux-androideabi-4.9/bin/arm-linux-androideabi-gdb out/debug/target/product/generic/obj/EXECUTABLES/TestServer_intermediates/LINKED/TestServer......(gdb) source ../androidex/external/testservice/20160515.gdb(gdb) server_test......Breakpoint 2, android::BpServiceManager::addService (this=0xb6c0e040, name=..., service=..., allowIsolated=<optimized out>) at frameworks/native/libs/binder/IServiceManager.cpp:161161         data.writeStrongBinder(service);(gdb) p service  # 查看addService时BnTestService的地址$1 = (const android::sp<android::IBinder> &) @0xbeb99b14: {m_ptr = 0xb6c06064}(gdb) cContinuing.Breakpoint 3, android::IPCThreadState::executeCommand (this=this@entry=0xb6c24000, cmd=cmd@entry=-2144833022) at frameworks/native/libs/binder/IPCThreadState.cpp:10871087                    error = b->transact(tr.code, buffer, &reply, tr.flags);(gdb) p tr  # cookie=3066060900=0xb6c06064,正是BnTestService!$2 = {target = {handle = 3066159216, ptr = 3066159216}, cookie = 3066060900, code = 1, flags = 16, sender_pid = 1297, sender_euid = 0, data_size = 72, offsets_size = 0, data = {ptr = {buffer = 3064995880, offsets = 3064995952}, buf = "( \260\266p \260\266"}}(gdb)

证实!

服务端接收到test()请求时,tr.cookie就是BnTestService的指针

至于为什么客户端发来时组的数据包中cookie为0,服务端收到时自动变成了BnTestService?我们以后再探究。先把test()的流程看完。

BnTestService继承自BnInterface,后者又继承自ITestService和BBinder。即BBinder是BnTestService基类的基类,故将cookie转换成BBinder*是合法的。
在看接下来的调用b->transact(…),frameworks/native/libs/binder/Binder.cpp:97

status_t BBinder::transact(    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags){   // code=TEST    ......    switch (code) {        case PING_TRANSACTION:            reply->writeInt32(pingBinder());            break;        default:            err = onTransact(code, data, reply, flags); // 走到这里            break;    }    ......    return err;}

BBinder::onTransact(…)是一个虚函数,b实际指向的是BnTestService,因此该虚函数实际应看BnTestService::onTransact(…)版本:

status_t BnTestService::onTransact(uint_t code, const Parcel& data,        Parcel* reply, uint32_t flags) {    switch (code) {    case TEST: {        printf("BnTestService::onTransact, code: TEST\n");        CHECK_INTERFACE(ITest, data, reply);        test();        reply->writeInt32(100);        return NO_ERROR;    }        break;    default:        break;    }    return NO_ERROR;}

终于到达了test()的实现!服务端的test服务被调用,如果有返回值,将被写入reply,打成包裹发给客户端,打包和发送过程就前面都有,不再重复分析了。

总结

至此,通过静态、动态代码走查,我把Binder的ServiceManager、服务端、客户端的角色基本梳理清晰了:
* 服务端通过addService向ServiceManager注册服务,后者缓存下服务的名称和在服务端的进程内指针,这两个变量就可以唯一确定一个服务。
* 服务端公开了服务接口,为每一个接口定义一个唯一编码,并负责实现这些服务接口。
* 客户端通过getService获取指定名称的服务端handle,该handle在客户端被伪装成指向服务的指针,通过该指针可以调用服务接口。实际上framework把handle和服务接口打成数据包发送给服务端。
* 服务端在接收到打包请求时,解析接口,并执行对应的实现,将结果返回给客户端。

当然,Binder的天空下还剩一小片乌云,就是那个tr.cookie,为什么客户端发送的时候填入的是0,而服务端却接收到了自己的BnTestService指针?现在可以考虑这个问题了。我猜测这是驱动层干的事儿。有没有点平行宇宙的意思?双缝干涉之所以出现了干涉条纹,是因为我们所在的世界和另一个平行宇宙世界的粒子发生了叠加!
接下来就继续穿越到驱动层一探究竟吧。

0 0
原创粉丝点击